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Abstract— We study secondary pricing of spectrum in wireless
cellular networks employing CDMA at the physical layer. We
consider a primary license holder who aims to lease its spectrum
within a certain geographic subregion of its own network. Such
a transaction has two contrasting economic implications for the
seller: On the one hand the seller obtains a revenue due to the
exercised price, or rent, of the region. On the other hand, the
seller incurs a cost due to (i) reduced spatial coverage of its
network and (ii) possible interference from the leased region into
the retained portion of its network. We formulate an optimization
problem with the objective of profit maximization, and character-
ize its solutions based on a reduced load approximation that can
be shown to be asymptotically exact. The form of optimal prices
suggests charging the buyer per admitted call, in proportion with
the interference it generates. The charged amount balances the
corresponding loss of revenue incurred by the seller due to the
influence of an admitted call. We numerically argue that this
pricing approach yields better profit compared to some other
simplistic techniques.

I. I NTRODUCTION

Legacy regulatory frameworks of cellular wireless com-
munications grant limited property rights to license holders
of spectrum: a license holder can only provide a specific
service and cannot resale any part of its license. Economists
have long argued against such rigid regulation [1], whose
inefficiency has recently gained wider recognition and led to
global regulatory effort centered around more flexible frame-
works that allow secondary trading of spectrum among license
holders. The Secondary Markets Initiative [3] of the Federal
Communications Commission (FCC), for example, permits
leasing of spectrum licenses subject to approval by FCC.
Similar regulatory efforts are also underway in the EU [9].

In this paper we focus on secondary pricing of spectrum
in wireless cellular networks. We consider a primary license
holder who aims to lease its spectrum within a certain geo-
graphic subregion of its own network. Such a transaction has
two contrasting economic implications for the seller: On the
one hand the seller obtains a revenue due to the exercised
price, or rent, of the region. On the other hand, the seller
incurs a cost due to (i) reduced spatial coverage of its network
and (ii) possible interference from the leased region into
the retained portion of its network. We formulate optimal
pricing as an optimization problem with the objective of profit
maximization.

While the pricing problem can in principle be considered

within the framework of monopolistic markets in classical
microeconomic theory [11], complexity of network-wide con-
sequences of interference presents a major hurdle in obtaining
explicit solutions. For example, a call in progress leads to a
temporal reduction in utilization in its immediate neighbor-
hood, which may in turn help accommodate more calls in the
second-tier cells around it. In view of such knock-on effects
determining the marginal cost of traffic in a given area appears
involved. A seemingly appealing solution to this issue might
be to eliminate interference by isolating the activity in the two
subregions by way of guardbands [10]. A guardband, however,
is an unutilized resource whose cost needs to be internalized
either by the seller or by the buyer involved in the transaction.
The situation leads to an inevitable loss of efficiency in the
transaction, which may in fact be significant. The attendant
inefficiency in turn limits the granularity and thereby liquidity
of a secondary spectrum market.

Here we pursue optimal secondary price of spectrum with-
out resorting to conservative methods to eliminate interference.
In particular, the form of optimal price suggests charging the
buyer per admitted call that generates interference for the
seller. The charged amount is shown to depend on the extent of
generated interference, namely, it balances the corresponding
loss of revenue incurred by the seller due to the influence
of an admitted call. This effort entails convenient analytical
techniques that avoid the alluded difficulties associated with
network-wide effects of interference at the expense of reason-
able loss of modeling accuracy. Towards that end we adopt
reduced load approximations that have found application in
classical telephony. We show that the profit resulting from
such prices may significantly exceed those of less sophisticated
pricing techniques that ignore or eliminate interference.

Although pricing of communication networks is a well-
studied topic, the setting considered here is specific to sec-
ondary wireless markets and, to the best of the authors’ knowl-
edge, it has not been considered before. In related work, [4]
pursues interference based pricing in a single cell via adaptive
optimization techniques, and [7], [8] adopt a performance
oriented viewpoint in considering dynamic spectrum access
within a cell. Main contributions of the present paper are

1. Global consideration of network: We consider general
network topologies rather than a single cell. Rather than
lumping any portion of the network into an approximate
module, the paper accounts for sophisticated dependence



between cells due to generated interference.
2. Characterization of optimal price: We characterize the

form of optimal prices under a general framework. Opti-
mal prices are shown to have an interpretation that offers
insight on dominant factors that determine the value of
spectrum under spatial interactions.

The technical focus of this paper is on networks that employ
CDMA as spectrum access mechanism, where a call uses the
whole spectrum but can be sustained under some interference.
Narrowband networks, in which a channel cannot be utilized
simultaneously in neighboring cells, generally appear harder
to analyze due to combinatorial consequences of interference.
While the techniques presented in this paper apply to certain
narrowband topologies and channel assignment policies, a
general treatment of such networks is not pursued here.

The paper is organized as follows. Sections II and III
describe respectively the teletraffic and economic aspects of
the considered network model. Optimal pricing is formulated
as a profit maximization problem in Section IV. The reduced
load approximation employed in approximating the objective
function is provided in Section V and the resulting optimal
prices are given in Section VI. Numerical solutions on some
hexagonal lattice networks are provided in Section VII and
are compared with less sophisticated pricing techniques. The
paper concludes with final remarks in Section VIII.

II. N ETWORK MODEL

In this section we introduce the operational model of the
generic cellular network considered in this paper. We represent
a wireless cellular network with a weighted graphG =
(N, W ) where N and W refer respectively to nodes and
positive edge weights. Each nodei ∈ N in the graph represents
a cell. For each pairi, j of cells the associated weightwij ∈ W
is a measure of electromagnetic interference between the cells
due to their geographic proximity. Self-loops are allowed,
in fact it will consistently be the case thatwii > 0. The
example of Figure 1 illustrates the graphical representation
of a hexagonal lattice model.

We consider the network under circuit-switched operation
and refer to each communication session as a call. Letni be
the number of calls in progress at each celli and letn denote
the cell loads(ni : i ∈ N). A call is subject to interference
from other calls in the same cell, as well as from calls in
other cells in proportion with the associated weights. We shall
assume that a call can be sustained only if it experiences small
enough interference. A cell, however, may receive unbounded
interference if does not accommodate a call. A network load
n is thus feasible if for all cellsj and certain constantsκj > 0

∑

i∈N

niwij ≤ κj whenever nj > 0. (1)

Network models based on similar constraints have been con-
sidered in earlier works on cellular wireless CDMA networks.
See, for example, [2] for an in-depth discussion of this model
and specification of model parameterswij andκj in terms of
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Fig. 1. The network graph of a hexagonal lattice topology with 19 cells.

physical layer parameters. In this paper we shall assume that
the model parameters satisfy the following mild condition:

Assumption 1:For all i, j ∈ N the parameterswij andκj

are rational numbers. Hence, without loss of generality in the
feasibility condition (1), these parameters are further taken as
integers.

Calls arrive at eachi cell according to a Poisson process of
rateνi ≥ 0. Arrival processes for different cells are mutually
independent. Each call has a holding time that is exponentially
distributed with unit mean, independently of the history prior
to its arrival. An incoming call is accepted if and only if its
inclusion in the network conserves the feasibility condition (1)
and the call is blocked otherwise. We denote the vector of call
arrival rates byν = (νi : i ∈ N) and defineBi(ν) as the
associated probability of call blocking on celli.

The network provider generates unit revenue per admitted
call in the network. We denote byR(ν) the long-term average
rate of revenue generation of the provider per unit time, which
is given by

R(ν) =
∑

i∈N

(1−Bi(ν))νi.

III. E CONOMIC MODEL

We consider pricing of a region, i.e. a given subsetL ⊂ N
of cells, from the perspective of the network provider. Namely
we seek optimal price, more precisely optimal rent, in leasing
to another provider the license to provide service in regionL.
Henceforth we refer to the original provider of the network
as theseller and to the potential provider in regionL as the
buyer.

A price for regionL is a scalar which we denote byp. The
unit of p is determined by the pricing philosophy adopted by
the seller. For example if a flat price is employed then the unit
of p is currency per unit time, whereas if a usage-based price
is employed thenp may be expressed in currency per Erlang.

It is assumed that the buyer reflects the transaction pricep
onto pricing of its own service, and therebyp would affect



the demand that the buyer receives in regionL. Specifically,
we denote byαi(p) the call arrival rate of the buyer to cell
i ∈ L provided that the transaction is realized at pricep. The
demand statistics for the seller in the regionN − L after the
sale remain unaltered. The overall network demand after a
transaction at pricep is denoted byλ(p) = (λi(p) : i ∈ N)
where

λi(p) =
{

αi(p) if i ∈ L
νi if i ∈ N − L.

The seller has an expected rate of revenue over the term
of a lease signed at pricep. To keep the discussion general
we succinctly denote this value byF (p). For the special cases
alluded earlier in this section the expected revenue rateF (p)
may take the following forms:

a) Flat price: A flat price would be taken if it does not
exceed the valuation of the commodity by potential buyers.
Suppose that the seller’s apriori perception of the market value
of the spectrum in regionL can be represented by a random
variableV . The seller’s expected rate of revenue generation
from a flat pricep would then be given by

F (p) = pP (V > p).

b) Price per demand:The seller may price the spectrum
per unit demand generated in the regionL, in which casep
refers to the revenue of the seller per call request in regionL
after the sale. The revenue rateF (p) of the seller would then
be

F (p) =
∑

i∈L

αi(p)p. (2)

c) Price per honored demand:Alternatively, the seller
may choose to tax the interference that the buyer generates
on its (retained) network. This abstract principle may be
interpreted as imposing a taxp peracceptedcall in the region
L, thereby entitling the seller to a certain share of the buyer’s
revenue. The revenue rate from the sale would then be given
by

F (p) =
∑

i∈L

(1−Bi(λ(p)))αi(p)p. (3)

IV. PROBLEM FORMULATION

For each nonnegative vectorλ = (λi : i ∈ N) of arrival
rates let

Q(λ) =
∑

i∈N−L

(1−Bi(λ))λi. (4)

Note that Q(λ) is a network revenue due to the service
provided over the regionN −L, however it is affected by the
demand in regionL through the blocking probabilitiesBi(λ).
In particular Q(λ(p)) is the after-sale revenue of the seller
over the retained regionN − L, provided that the transaction
is realized at pricep.

The cost incurred by the seller in leasing regionL at price
p is then given by

C(p) = R(ν)−Q(λ(p)), (5)

namely, by the reduction in rate of revenue generation from the
service it provides to its end-users. The seller aims to choose

the price parameterp so as to maximize its profit; hence an
optimal price for the seller solves:

max
p

(F (p)− C(p)) . (6)

In characterizing solutions of problem (6) we shall assume
that the following technical condition holds:

Assumption 2:The functionsF andαi, i ∈ L, are differ-
entiable.

The discussion of the next section establishes that the
blocking probabilitiesBi(·) are also differentiable. Hence, in
light of Assumption 2, the profitF (p)−C(p) is differentiable
in p and a solutionp∗ to the seller’s problem (6) satisfies

F ′(p∗) = C ′(p∗) = − d

dp
Q(λ(p))|p=p∗ . (7)

In this paper we seek insight on the nature of optimal prices
by focusing on characterizing solutions of the first-order con-
dition (7). Existence and uniqueness of such a solution depend
on further properties of the objective function; in principle a
second order analysis may be employed to obtain conditions
under which (6) has a unique solution. That direction is not
pursued in the present paper beyond assuming existence of a
solution.

V. BLOCKING PROBABILITIES

Let S denote the set of feasible cell loads. That is,

S = {n ∈ Z|N |+ : n satisfies condition (1)}.
For any set of arrival ratesλ = (λi : i ∈ N) the vector
of cells loads evolves according to a Markov process whose
states belong toS. This process is obtained by truncating the
state space of a reversible process that corresponds to cells
loads when interference limitations are ignored; in particular
its equilibrium distributionπλ is given by

πλ(n) = G
∏

i∈N

λni
i

ni!
, n ∈ S,

whereG is a constant which ensures thatπλ is a probability
vector.

Let e(i) = (ej(i) : j ∈ N) be such thatej(i) = 1 if j = i
and ej(i) = 0 otherwise. The blocking probabilities can then
be expressed as

Bi(λ) =
∑

n:n+e(i) 6∈S

πλ(n).

Each Bi(·) is differentiable, however despite its appealing
form, further manipulation of the above expression is hindered
by difficulties in computing the normalization constantG. To
gain more insight on the blocking probabilities we proceed
with a “reduced load approximation,” which has proved useful
in analysis of blocking in circuit-switched telephony [6]:

Reduced load approximation:We shall approximateBi(λ)
by the quantityB̂i(λ) defined by

B̂i(λ) = 1−
∏

j∈N

(1− bj(λ))wij (8)



where the numbersbj(λ), j ∈ N, satisfy the equalities

bj(λ) = E

 
(1− bj(λ))−1

X
i∈N

wijλi

Y

k∈N

(1− bk(λ))wki , κj

!

(9)

andE(·, ·) denotes the Erlang blocking formula

E(ρ, κ) =

(
κ∑

m=0

ρm

m!

)−1
ρκ

κ!

for all ρ > 0 and positive integerκ. The set of equations (9)
has a unique solution [6]; hence the approximation is well-
defined, and furthermore the solution is differentiable inλ [5,
Lemma 2.2]. The reduced load approximation above can be
better motivated by first replacing the feasibility condition (1)
by ∑

i∈N

niwij ≤ κj . (10)

Note that this condition is more stringent than (1) in that
it limits the interference on idle cells as well. Under the
feasibility condition (10),κj can be regarded as capacity of
cell j andwij can be regarded as the units of capacity reserved
from cell j per call in progress in celli. The expression (8)
then suggests that̂Bj(λ) is the blocking probability at cell
i in a hypothetical model where eachunit of capacity is
available independently with probability1 − bj(λ) at link j,
and furthermore availability of capacity is independent from
link to link. Such a model is consistent only if the parameters
bj(λ) satisfy the fixed-point relation (9).

The approximate blocking probabilitieŝBj(λ) are known
to be asymptotically exact for the feasibility condition (10)
along a limiting regime where the network arrival ratesλj and
thresholdsκj increase in proportion [6]. While condition (10)
leads to higher blocking than condition (1), the disparity
may arguably be expected to vanish in the same limiting
regime as increasing the arrival rates reduces the chances
of finding cells at idle state. This intuition is confirmed in
Section VII for moderate values of model parameters, via
numerical verification of the reduced load approximation.

VI. CHARACTERIZATION OF PRICES

We next exploit the tractable nature of reduced load approx-
imations to obtain approximate expressions for the optimal
price of spectrum. Conclusions of this section are valid under
the following simplifying assumption:

Assumption 3:(Exactness of reduced load approximation)
Bi(λ) = B̂i(λ) for each celli and all call arrival ratesλ =
(λi : i ∈ N).

Theorem 6.1:Under Assumption 3 an inner solutionp∗ of
the seller’s problem (6) satisfies

p∗ =
∑

i∈L

(
1− B̂i(λ(p∗))

)
αi(p∗)γi(p∗) (11)

where

γi(p∗) =
εi(p∗)
F ′(p∗)

∑

j∈N

wij
d

dκj
Q(λ(p∗)) (12)

and εi(p∗) = p∗α′i(p
∗)/αi(p∗) is the price elasticity of

demand in celli.
Theorem 6.1 can be interpreted for the three pricing philoso-

phies alluded in Section III as follows:
Flat price: The form (11) suggests that optimal flat price

per unit time for regionL is the same as the revenue generated
from the regionL per unit time by charging each admitted call
in cell i ∈ L an amountγi(p∗). In parsing the expression (12)
for this quantity it is helpful to interpretd

dκj
Q(λ(p∗)) as the

reduction in the seller’s revenue from regionN−L due to unit
reduction in the interference threshold of cellj, or equivalently
due to imposing unit interference on cellj. An accepted call
in cell i ∈ L then leads to a reduction ofwij

d
dκj

Q(λ(p∗)) in
seller’s revenue. The form (12) in turn indicates that theper-
call price γi(p∗) balances the attendant loss of revenue, up to
a multiplicative quantity that depends on the price elasticity
of demand in celli and the revenue functionF .

Price per demand: If the seller’s revenue is given by (2)
then

F ′(p) =
∑

i∈L

αi(p)(1 + εi(p)),

and rearrangement of equalities (11) and (12) yields
X
i∈L

αi(p
∗)εi(p

∗)
�
1− B̂i(λ(p∗))

�
×

 
p∗

1 + ε−1
i (p∗)

1− B̂i(λ(p∗))
−
X
j∈N

wij
d

dκj
Q(λ(p∗))

!
= 0.

The insight offered by this equality can perhaps be clarified
by considering pricing of a single cell, in which caseL = {i}
and

p∗ =
�
1− B̂i(λ(p∗))

� �
1 + ε−1

i (p∗)
�−1 X

j∈N

wij
d

dκj
Q(λ(p∗)).

In particular the optimal per-demand pricep∗ is proportional
to the marginal cost of the seller due to anacceptedcall,
discounted at rate equal to acceptance probability.

Price per honored demand: In the case when the seller’s
revenue is given by (3) a relatively more explicit characteri-
zation ofp∗ can be obtained by definingU(p) as theoverall
revenue of the seller after the transaction at pricep. That is,

U(p) =
∑

i∈N

(
1− B̂i(λ(p))

)
λi(p)ri(p)

where

ri(p) =
{

p if i ∈ L
1 if i ∈ N − L; (13)

and in turn

F (p)− C(p) = U(p)−R(ν).

Proposition 6.1: (Optimal price per honored demand)If F
is given by (3) then under Assumption 3 an inner solutionp∗
of the seller’s problem (6) satisfies
X
i∈L

α′i(p
∗)
�
1− B̂i(λ(p∗))

�
×

 
p∗
�
1 + ε−1

i (p∗)
�−

X
j∈N

wij
d

dκj
U(λ(p∗))

!
= 0.



Hence ifL = {i} is comprised of a single cell then

p∗ =
(
1 + ε−1

i (p∗)
)−1 ∑

j∈N

wij
d

dκj
U(λ(p∗)).

Note that here the form of the optimal price does not include
a discount at the acceptance probability since the price is
already applied to accepted calls.

Computation of optimal cell price:The derivatives that
appear in the above expressions possess certain properties that
can be useful in computingp∗. For notational convenience let
us denote quantity d

dκj
U(λ(p)) by cj(p). Note thatcj(p) is

the reduction in the overall revenue of the seller due to a unit
reduction in the interference threshold of cellj. To obtain a
more explicit characterization of this quantity, letηj(p) denote
the increase in the (unit) blocking probabilitybj(λ(p)) at cell
j per unit decrease in the interference threshold of the cell.
Let

ρij(p) = λi(p)
∏

k 6=j

(1− bk(λ(p)))wik

denote the intensity of calls at celli after being thinned due
to blocking at cells other thanj. Such a call is accepted with
probability (1− bj(λ(p)))wij in which case it returns revenue
ri(p). Unit decrease inκj results in a reduction

(1− bj(λ(p)))−1
∑

i∈N

ρi(p)wijηj(p)ri(p)

in revenue obtained from such calls. Here

ρi(p) = ρij(p)(1− bj(λ(p)))wij

is the rate of accepted calls at celli. By way of blocking in its
neighborhood, a call has further consequences in operation of
other cells. Since each blocked call in celli can be associated
with increasing the threshold of celll by wil units, a call in
cell j leads to an increase of

(1− bj(λ(p)))−1
∑

i∈N

ρi(p)wijηj(p)
∑

l∈N−j

wilcl(p)

in the revenue obtained from other cells in the network.
Thereforecj(p) can be written in the form

cj(p) = ϕj(p)
∑

i∈N

wijρi(p)


ri(p)−

∑

l∈N−j

wilcl(p)




whereϕj(p) = ηj(p)(1− bj(λ(p)))−1. A similar relation can
be written for the derivativesd

dκj
Q(λ(p)) as well.

It can be shown that for a fixed value ofp the above relations
identify the valuescj(p) uniquely [5]. Also in cases when
an inner solutionp∗ exists, properly damped versions of the
recursion

pk+1 =
(
1 + ε−1

i (pk)
)−1 ∑

j∈N

wijc
k
j (14)

ck+1
j = ϕj(pk)

∑

i∈N

wijρi(pk)


ri(pk)−

∑

l∈N−j

wilc
k
l


 (15)

Blocking Probability

Cell Reduced load Simulated under

No. approximation condition (1)

1 0.358 0.305±0.003

2-7 0.279 0.259±0.003

8-18 (even) 0.107 0.102±0.002

9-19 (odd) 0.159 0.150±0.002

TABLE I

BLOCKING PROBABILITIES OF THE19-CELL SYSTEM REPRESENTED BY

THE GRAPH IN FIGURE 1 AND PARAMETERS: κ = 5.0, wij = 0.5, AND

wii = 1.0 FOR ALL i, j. ARRIVAL RATES ARE EQUAL FOR ALL THE CELLS

WITH VALUE 1.0. CONFIDENCE LEVEL FOR THE SIMULATED RESULTS IS

95%.

may be expected to converge, thereby yieldingp∗. In fact, in
Section VII we give an example where the recursion turns
useful in computing the optimal price.

VII. N UMERICAL STUDY

A. Accuracy of the Reduced Load Approximation

We start our numerical study by showing an example of
the accuracy of thereduced load approximationin computing
the cell blocking probabilities. Recall that the approximation
is based on the more stringent feasibility condition (10)
compared to (1). For this purpose we use a19-cell hexagonal
lattice model with the corresponding graph shown in Figure 1.
The cells are assumed to have equal interference thresholds,
that is, κi = 5.0 for i ∈ N . We shall assume that a call
generates half of the interference in neighboring cells relative
to its own cell. More specifically,wij = 0.5 for each edge
such thati 6= j andwii = 1.0 for all nodesi.

We first consider the network under the traffic demand of
νi = 1.0 arrivals per unit time per cell, and solve the fixed
point equations (9) using repeated substitutions. Approximate
blocking probabilitiesB̂i(λ) are then computed via (8) and
are given in Table I. To verify their accuracy, we simulate
the network process under the feasibility condition (1), where
idle cells can have unlimited interference. The duration of the
simulation process is taken to be long enough so that each
cell receives around5000 call requests over the period of the
process. Table I presents the resulting proportion of blocked
calls along with95% confidence intervals.

The disparity between approximate and simulated values for
blocking probabilities appear acceptable in view of the practi-
cally prohibitive computational complexity of exact analysis.
Moreover, the approximate results are asymptotically exact
under certain limiting regimes as argued in Section V.

We next turn to the sensitivity of optimal price to errors in
the blocking probabilities due to reduced load approximation.
Our investigation here involves computing optimal price of
a single cell using the reduced load approximation and also
using the exact equilibrium distribution of the network process.
We adopt the 7-cell topology whose graph representation is
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Fig. 2. Graph representation for the 7-cell topology studied in Section VII.

shown in Figure 2, where cell1 is for sale. A smaller topol-
ogy would be useful to avoid otherwise lengthy simulation
processes to compute the exact profit for every given price. In
fact, for this small topology the equilibrium distribution can
be exactly computed in a relatively short time.

For the network in Figure 2, we continue adopting the
parametersκi = 5.0, wij = 0.5 for each edge such thati 6= j
andwii = 1.0 for all nodesi. The traffic demand of the seller
prior to the transaction is taken as

νi =
{

0 if i = 1
1 if i = 2, . . . 7,

(16)

and the demand functionα1 in cell 1 is taken as

α1(p) = p−2. (17)

Figure 3 shows exact and approximated profit of the seller
for different prices for cell1. The figure shows that the
profit maximization problem admits a unique solution for
this particular setup. The disparity in the profitF (p) − C(p)
appears small and exact and approximate optimal prices are
remarkably close, both values approximately equal to1.4.

B. Computation of Optimal Prices

We continue our numerical study by computing the opti-
mal price for the 7-cell network shown in Figure 2 using
the recursion (14), (15). Indeed, for a fixed value ofp, it
can be shown that sufficiently damped form of (15) always
converges [5]. The same argument does not seem to carry out
to the case when price recursive formula (14) is incorporated.
However, we show by an example that for the polynomial
demand functions given in (17) convergence indeed occurs.

Figure 4 shows the convergence path to the optimal price
p∗ for the network shown in Figure 2, under the demand func-
tion (17) and per honored demand pricing. The convergence
occurs after relatively small number of iterations, namely20
for this example. The resulting optimal price is1.37 and it
matches the value observed in Figure 4.
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Fig. 3. Approximated and exact profit from selling cell1 in the system
shown in Figure 2 under the demand function (17) and per honored demand
price. κi = 5.0, wij = 0.5, wii = 1.0, andν as given in (16).
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Fig. 4. Convergence path to the optimal pricep∗ for cell 1 in the network
in Figure 2 under the demand function (17) and per honored demand pricing.
κi = 5, wij = 0.5, wii = 1.0, andνi as given in (16) for alli, j. The limit
agrees with the optimal price observed from Figure (3).

C. Comparison with Simple Pricing Techniques

In this section we numerically argue that our proposed
pricing technique yields better profit than some other simplistic
techniques. Consider first the simple technique where the seller
does not count for the cost resulting from the interference
caused by the traffic in the sold region. Therefore the profit
maximization problem (6) can be modified to be

max
p

F (p). (18)

In other words, the seller would afford the cost of the interfer-
ence caused by the buyer’s traffic. To understand the conse-
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pricing. The seller’s traffic isνi = νo for nodesi 6= 1. The values are
computed using reduced load approximation forκi = 5.0, wij = 0.5 and
wii = 1.0.

quences of this technique, we consider the 19-cell network in
Figure 1, where we are interested in pricing cell 1 for honored
demand. The capacities of the cells are taken to be equal with
valueκi = 5.0 and all non-zero edge weights to be equal with
value wij = 0.5 and wii = 1.0 for all i, j. We assume also
price per honored demand with polynomial demand function
given by (17).

In Figure 5, we show the optimal profit for different traffic
ratesνi to the kept region. We also show the actual revenue
when solving (18) for cell1. For the range of givenνi, asνi

increases, the profit gap between the optimal and the simple
techniques widens.

Another simplistic approach is to use space guard bands to
isolate interference caused by the traffic of the buyer from the
rest of the network. For example in the network in Figure 1,
traffic in cell 1 can be isolated from the rest of the network by
prohibiting traffic to cells(2 − 7). This implies losing some
potential revenue from those cells. However, if the seller prices
the traffic in the sold region without counting for the losses,
then the seller’s profit is clearly suboptimal.

To get an exposure on that, consider the 19-cell network in
Figure 1, where cells(2−7) are taken as guard bands for cell1.
We are interested in the price per honored demand for cell1
facing a demand function given by (17). In Figure 6 we show
the profit gained by solving (18) for cell1 for different traffic
intensities on the cells8 − 19. As can be noticed, the seller
may commit significant losses out of this pricing technique.
The percentage loss in profit can be expected to decrease if
the sold regionL is a large connected component ofN that is
significantly larger than its boundary, although the loss would
still remain positive.
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Fig. 6. Profits from the optimal pricing scheme and the pricing scheme
with the use of space guard bands, when cell1 is sold under the demand
function (17). The seller’s traffic isνi = νo for nodesi 6= 1. The values are
computed using reduced load approximation forκi = 5.0, wij = 0.5, and
wii = 1.0.

VIII. C ONCLUSION

We considered the problem of optimal pricing of spectrum
in CDMA-based cellular wireless networks. We adopt an
economic viewpoint and characterize the optimal price of
spectrum in terms of price elasticity of demand: The cellular
network is modeled with a weighted graph in which nodes
indicate cells and edge weights indicate interference strengths.
We study a stochastic model of circuit-switched network traffic
with Poisson call arrivals, and express optimal prices by
adapting reduced load approximations to the situation at hand.
The form of optimal prices suggests that the seller should
charge the buyer per accepted call in the sold region, thereby
providing a dynamic framework for the transaction. We show
that the prices are determined to a large extent by the seller’s
traffic in the retained region. We finally compare the optimal
pricing scheme to more simplistic schemes, and provide nu-
merical results in support of the analytical conclusions.
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