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Abstract—A recent policy ruling by the Federal Com-
munications Commission (FCC) set aside a fixed amount
of cleared spectrum for smaller network providers. Thanks
to this ruling, smaller providers can improve their quality
of service using carrier aggregation. In this paper, we
determine the optimal (minimum) level of carrier aggre-
gation that a smaller provider needs in order to bring
its service in line with a larger provider in the same
market. Toward this end, we provide an asymptotically
exact formula for the loss (blocking) probability of flows
under a quality-driven (QD) regime. Using this formula,
we establish an efficient way of numerically calculating
the optimal level of carrier aggregation and derive scaling
laws. Specifically, we show that the optimal level of carrier
aggregation scales sub-linearly with respect to the scaling
factor, i.e., the ratio between the network capacities of the
two providers, and decreases with the initial traffic load of
the providers. We derive a closed-form linear upper bound
on the optimal level of carrier aggregation and prove that
it is the tightest possible. We provide numerical results,
showing the accuracy of our methods and illustrating their
use. We also discuss the extension of our results to delay-
related metrics as well as their application to profitable
pricing in secondary spectrum markets.

I. INTRODUCTION

In recent years, the U.S. Federal Communications
Commission (FCC) has made stringent efforts to clear
spectrum bands and reallocate them for more efficient
use. In particular, to preserve the competitive landscape
of the wireless industry, the FCC has recently decided
to set aside 30 MHz of spectrum for service providers
that hold less than a third of the spectrum in a specific
market [1, 2]. With the 600 MHz spectrum auction on
the horizon, this ruling is poised to have a significant
impact on the industry [3]. The ruling has already caused
some controversy in the market as it restricts the amount
of spectrum larger providers have access to [4], though
some public interest groups are asking for it to be
increased to 40 MHz [5].

The policy ruling is facilitated by a central feature of
LTE-Advanced networks (as defined in 3GPP Release
10 and beyond) called carrier aggregation [6–9]. Car-

rier aggregation allows service providers to aggregate
contiguous or non-contiguous component carriers up to
100 MHz total bandwidth. This significantly improves
the performance of the network compared to LTE speci-
fications defined in Release 8 [10], where the maximum
supported bandwidth is 20 MHz.

A significant challenge associated with the ruling is
to identify how much additional spectrum a smaller
provider needs to improve its service to the level of
a larger provider, which initially holds a competitive
advantage in the market due to economies of scale. If
this criterion is met, the spectrum reservation policy
effectively fosters a competitive market. Otherwise, the
policy inherently risks wasting highly valuable spectrum.

The main goal of this paper is to determine the
optimal (minimum) level of carrier aggregation that a
smaller provider needs to bring its quality of service
in line with a larger provider operating in the same
market. Furthermore, we aim to provide insight into
the relationships between the optimal level of carrier
aggregation and fundamental network parameters, such
as the traffic load and capacity.

This paper makes several contributions. First, we
propose an asymptotically exact approximation of the
Erlang-B blocking formula under a quality-driven (QD)
regime that holds for large traffic and network capac-
ities [11]. We refer to this approximation as the QD
formula. As explained in the sequel, this formula is
applicable to both voice and data traffic models. Since
the Erlang-B formula does not easily yield itself to
mathematical analysis, the QD formula is useful to
provide more explicit insight into the impact of network
parameters. All the subsequent results derived in the
paper are based on the QD formula and several numerical
examples are provided to demonstrate the accuracy of the
results for typical network parameters.

Second, we identify the optimal carrier aggregation
decision for the smaller provider through which the mar-



ket outcome becomes favorable. We provide an efficient
method for numerically calculating the optimal level of
carrier aggregation.

Third, we derive scaling laws on optimal carrier aggre-
gation with respect to the scaling factor, i.e. the ratio of
the capacity of the larger provider to that of the smaller
provider, and establish a sub-linear relationship. We also
prove that while the level of carrier aggregation needed
increases with the scaling factor, it decreases when the
initial traffic load of the providers gets higher.

Fourth, we establish concavity properties and derive
the tightest possible linear upper bound on optimal
carrier aggregation as a simple and explicit function of
the network parameters and the scaling factor. We further
propose a numerical procedure to compute a piece-
wise linear bound. We provide numerical examples to
illustrate applications of our results in cellular markets.

Finally, we extend our results to delay-related metrics
(i.e., based on the Erlang-C formula) and discuss the
application of our results to the profitable pricing of
secondary users in a dynamic spectrum sharing scenario.

The rest of the paper is organized as follows. In
Section II, we survey previous work. In Section III, we
introduce our model. Next, in Section IV, we propose
a many-server approximation of the Erlang-B formula
under the QD regime. We then use this approximation
in Section V to identify the impact of reserved spectrum
through the analysis of optimal carrier aggregation, in
which we provide numerical calculation methods, struc-
tural properties, and explicit general bounds. We also
provide extension of our results to delay systems as well
as pricing in secondary spectrum markets. We conclude
the paper in Section VI.

II. RELATED WORK

In this section, we survey previous work on many-
server approximations of queuing systems, carrier aggre-
gation, and spectrum markets. We highlight the differing
contributions of our paper at the end.

The many-server approximation that forms the basis
of the QD regime was first introduced in Iglehart’s
work [12]. The paper considers a setting where the
arrival rate and the number of servers both become very
large and the ratio of the arrival rate to the service rate
(i.e., the traffic load) is a constant that is strictly smaller
than one. Under proper statistical assumptions, the pro-
cess describing the evolution of the queue occupancy
converges to a Ornstein-Uhlenbeck diffusion process.
Halfin and Whitt [13] provide another many-server ap-
proximation that characterizes queues in a quality-and-
efficiency driven (QED) regime, i.e., where the arrival
rate and the number of servers both become very large

and the traffic load approaches one. The work of Zeltyn
and Mandelbaum [14] provides an overview of different
types of many-server approximations and is useful as a
general reference. In our work, we utilize the QD regime
approximations that allow us to analyze the quality of
service experienced by voice calls and data flows in
cellular networks.

Carrier aggregation has been gaining significant at-
tention since it has been introduced in 3GPP Release 10
on LTE-Advanced in 2011. Several papers in the liter-
ature explain practical considerations to achieve desired
performance levels in networks, such as deployment
options, implementation frameworks, and challenges in
the physical layer [6–8]. The work by Shen et al. [15]
provides an overview on all layers, while also underlin-
ing the interest of several major U.S. providers in the
technology. Alotaibi and Sirbu provide a comprehensive
cost benefit analysis of spectrum aggregation in [16]. A
recent paper by Doyle et al. [9] introduces an interesting
application of carrier aggregation. The authors consider
the possible uses of carrier aggregation in a dynamic
spectrum access, such as dynamically aggregating car-
riers to address coverage or congestion issues. They
also propose a regulatory framework that supports this
enhanced form of carrier aggregation.

Fungibility of the aggregated spectrum is considered
in [17], where the authors seek to identify whether
all spectrum bands provide the same performance. For
example, low frequency spectrum, such as the 600 MHz
band considered in our paper, is generally viewed as
more desirable than higher frequencies because of its
propagation properties.

Scaling laws in wireless and wired networks have
been studied in various contexts [18–21]. The work
of Bolcskei et al., for example, focuses on the gains
realized by increasing the number of antennas in a
MIMO relay network. This work falls under the broad
category of papers that analyze the dimensioning of
telecommunications networks. Such papers are crucial
in providing a better understanding of the relationship
between resource allocation and system performance,
allowing policy makers to look past the current state of
the market.

Finally, spectrum markets have been the subject of
many papers in recent years. For instance, the work in
[22] analyzes the outcome of a game-theoretic pricing
competition between providers in private commons. In
the works by Jagannathan et al. [23], Kasbekar and
Sarkar [24], Duan et al. [25], Niyato and Hossain [26],
Sengupta and Chatterjee [27] and Xing et al. [28], game
theoretic approaches to spectrum auctioning and leasing
are analyzed.
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Fig. 1. Illustration of sessions and flows. Each session consists of one
or more flows separated by idle periods.

None of the previous work surveyed here considers
the impact of spectrum reservation for smaller providers
on the competitiveness of a wireless market. The identi-
fication of the optimal carrier aggregation and the scaling
laws provided thereunto, as well as simple methods of
calculating it, are the unique contributions of this paper.

III. MODEL

In this section, we introduce the network model con-
sidered and the accompanying notation. We consider a
small provider with a finite capacity C > 1, which
consists of the number of carriers in the spectrum
owned by the provider. For example, in an LTE network
configuration, these carriers could be interpreted as the
resource blocks.

To realistically model network traffic, such as web
browsing and streaming applications, we assume that the
user demand consists of a sequence of session arrivals
that follow a Poisson process with rate λ > 0 [29]. A ses-
sion consists of a combination of arbitrarily distributed
and possibly correlated flows, generated by the same user
or application. Each session consists of “on” and “off”
periods within, where an “on” period means that a flow
is generating traffic. Figure 1 provides an illustration
of sessions and flows. Without loss of generality, we
assume that the total “on” time within an individual
session follows a general probability distribution and has
a mean equal to one, independently of other requests and
arrival times. Each flow has a peak rate that corresponds
to the capacity of a carrier. If an arriving flow finds all
the carriers busy, it is lost, but the rest of the session
proceeds as normal. Note that standard voice calls are a
special case of this model, for which a session consists
of a single flow.

Under the above statistical assumptions, the probabil-
ity that a flow is lost (blocked), is given by the Erlang-B
formula [30]:

E(λ,C) =
λC/C!∑C
k=0 λ

k/k!
. (1)

The above formula is insensitive to all traffic character-
istics, except for the mean number of session arrivals per
time unit λ.

The provider finds itself in the same competitive spec-
trum market as a larger network provider that has similar
network parameters, but scaled by a multiplicative factor
n > 1 (i.e., its session arrival rate is λn and capacity
Cn). We refer to the parameter n as the scaling factor.

The objective of the smaller provider is to meet the
quality of service (QoS) of the larger provider, given
by its Erlang blocking probability formula. This can
be achieved through making use of the spectrum set
aside and implementing carrier aggregation. Our goal is
to identify the optimal level of carrier aggregation and
investigate how it changes with the network parameters
λ and C and the scaling factor n.

IV. QUALITY-DRIVEN APPROXIMATION OF
ERLANG-B FORMULA

The Erlang-B formula given by Eq. (1) does not easily
yield itself to analysis due to the summand and the
factorial functions. Therefore, we seek an approximation
of the Erlang-B formula that is more tractable. One such
approximation is obtained through the consideration of
a quality driven (QD) regime, characterized by C →∞,
λ→∞ and the following relationship:

C = λ(1 + γ), (2)

where γ > 0 is a constant representing the service grade.
In a QD regime, the provider positions itself in terms
of capacity with respect to its load so that it offers a
high quality service (e.g., low probability of blocking or
waiting).

The approximation that we will obtain under the QD
regime works well for large values of C. Moreover,
the approximation is asymptotically exact since the un-
derlying stochastic process, when properly normalized,
weakly converges to an Ornstein-Uhlenbeck diffusion
process as C → ∞ [12]. Before we establish the QD
approximation to the Erlang-B formula, it is beneficial
to recall the following fundamental inequality of the
logarithm function:

x− 1 ≥ ln(x) ≥ 1− 1

x
, x > 0,

which we can rewrite as:

x ≥ ln(1 + x) ≥ x

1 + x
, x > 0. (3)

Under the QD regime we propose the following
asymptotically exact approximation to the Erlang-B,
which we will use in the rest of the paper:

Lemma IV.1 Under a QD regime such that C = λ(1 +
γ), the Erlang-B formula satisfies:

lim
λ→∞

E(λ,C)(√
2ΠC(1 + γ)Ce−λγ

)−1 = 1.
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Proof. We first establish a relationship between the
delay probability formula (Erlang-C) given by:

Ec(λ,C) =
λC

C!
C

C−λ∑C−1
k=0

λk

k! + λC

C!
C

C−λ

,

and the Erlang-B formula. From the relationship between
Erlang-B and Erlang-C provided in [31], it can be shown
that:

E(λ,C) =
(1− ρ)Ec(λ,C)

1− ρEc(λ,C)
, (4)

where ρ = λ/C = 1
1+γ in a QD regime. Using the

results provided in Section 16 of [14] for the analysis of
queuing systems in the QD regime we obtain:

Ec(λ,C) =
eλγ + o(1/λ)√

2ΠCγ(1 + γ)C−1 + eλγ + o(1/λ)
. (5)

Substituting Eq. (5) for Ec(λ,C) and Eq. (2) for C into
Eq. (4) we get:

E(λ,C) =
1 + o(1/λ)

g(λ, γ) + 1 + o(1/λ)
,

where g(λ, γ) =
√

2πλ(1 + γ)
(
(1 + γ)(1+γ)e−γ

)λ
.

Now we will show that g(λ, γ) is the dominating term
in the denominator as λ gets large. Observe that (1 +
γ)(1+γ) ≥ eγ since taking the natural log of both sides
we obtain:

(1 + γ) ln(1 + γ) ≥ γ

ln(1 + γ) ≥ γ

1 + γ
,

which we know to be true from Eq. (3). Therefore
g(λ, γ) gets arbitrarily large with λ. We conclude that:

lim
λ→∞

1

g(λ, γ)
= 0.

Hence:

lim
λ→∞

E(λ,C)

g(λ, γ)−1
= lim

λ→∞

1 + o(1/λ)

g(λ, γ) + 1 + o(1/λ)

(g(λ, γ))
−1 = 1.

Finally, we obtain g(λ, γ) =
√

2πC(1 + γ)Ce−λγ

through Eq. (2). �

Lemma IV.1 states that the Erlang-B formula can
be approximated by (and is asymptotically equal to)
the following expression, which we refer to as the QD
formula:

E(λ,C) '
(√

2πC(1 + γ)Ce−λγ
)−1

. (6)

Figure 2 compares the Erlang-B and QD formulas,
for carrier capacities typical to an LTE network [32].
Clearly, the values obtained are almost indistinguishable.
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Fig. 2. QD Approximation with C = (1 + γ)λ and γ = 0.25. The
stem plot is the Erlang-B formula given by Eq. (1) while the line plot
is the QD formula given by Eq. (6) .

All of the results presented in the rest of this paper
are based the QD formula. Numerical examples will be
provided to confirm their accuracy.

V. MAIN RESULTS

A. Optimal Carrier Aggregation

In this subsection, we define the problem of optimal
carrier aggregation and provide numerical methods on
calculating the level needed. Smith and Whitt [33] show
that the Erlang-B formula is upwards scalable, that is:

E(λ,C) > E(λn,Cn). (7)

Thus, flows in a larger network experience a smaller
blocking probability than that in a smaller network op-
erating under a similar traffic load ρ = λ/C. This result
is not surprising to teletraffic engineers, who know that
combining two networks into a larger network results in
better performance due to statistical multiplexing.

Therefore, when two providers experience similar
loads but differ in network sizes in terms of the number
of carriers they each possess, the larger provider initially
provides an improved service to its users. Hence the
smaller provider is inherently at a disadvantage in a
competitive spectrum market.

We now turn our attention to the possibility of the
smaller provider increasing its capacity by carrier ag-
gregation. This way, the smaller provider can decrease
the blocking probability experienced by its users. Let
ψ∗(n) denote the minimum (optimal) level of carrier
aggregation the smaller provider needs to increase its
network capacity to a size that achieves the same

4



2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

Scaling Factor (n)

O
p

ti
m

a
l 
C

a
rr

ie
r 

A
g

g
re

g
a

ti
o

n
 (

ψ
* (n

))

 

 

ρ = 0.3

ρ = 0.5

ρ = 0.7

ρ = 0.9

Fig. 3. Optimal level of carrier aggregation ψ∗(n) of the smaller
provider with respect to scaling factor n for different initial traffic
loads ρ = λ/C. Solid lines are exact, markers are QD approximation,
and C = 50.

blocking performance as the larger provider, namely
E(λ,Cψ∗(n)) = E(λn,Cn)1. Formally:

ψ∗(n) , min{ψ : E(λ,Cψ) ≤ E(λn,Cn)}. (8)

Using the QD formula given by Eq. (6), we get:

E(λ,Cψ) '
(√

2πCψ(1 + γ′)Cψe−λγ
′
)−1

, (9)

E(λn,Cn) '
(√

2πCn(1 + γ)Cne−λnγ
)−1

, (10)

where Cψ = λ(1 + γ′) and hence (1 + γ′) = ψ(1 + γ).
Then we can rewrite Eq. (8) as:

ψ∗(n) , min

{
ψ :

√
ψ

n

(
(1 + γ)C

eλγ

)ψ−n
ψCψ

eλ(ψ−1)
≥ 1

}
.

(11)

As the left hand side of the inequality in Eq. (11) is
increasing in ψ, equivalently ψ∗(n) is the solution of:√

ψ

n

(
(1 + γ)C

eλγ

)ψ−n
eλ
(
ψC

eλ

)ψ
= 1. (12)

Eq. (12) provides a fast way of numerically calculating
the optimal level of carrier aggregation needed, which
can be achieved using a binary search procedure as
the left hand side is increasing in ψ. In Figure 3 we
illustrate the calculated values of the optimal level of
carrier aggregation using the QD formula and the exact
Erlang-B formula. One can observe that the calculations

1While Cψ must be an integer value when using Eq. (1), there exist
continuous relaxations of the Erlang-B formula [34]. Furthermore, as
the capacity tends to infinity in a QD regime, ψ can be treated as
continuous.

based on the QD formula work well: even at a capacity
as low as 50 carriers, the maximum percentage error2

between the QD approximation and the actual Erlang-B
calculation is 0.5714%, which occurs when ρ = 0.9.

B. Structural Properties of Optimal Carrier Aggregation

In this section, we derive structural properties of
optimal carrier aggregation. Specifically, we analyze the
asymptotic behavior of the optimal carrier aggregation
with respect to the scaling factor n. We also show that the
amount of carrier aggregation needed diminishes when
the initial traffic load at which the providers operate is
higher.

1) Scaling Laws: From Eq. (7), it follows that the
difference between the blocking probabilities of the two
providers increases with the scaling factor n. Thus the
disadvantaged provider needs to aggregate more carriers
as n gets larger. We next provide asymptotic lower and
upper bounds on the optimal level of carrier aggregation
as a function of the scaling factor n:

Theorem V.1 (Capacity Scaling Law) Consider two
providers differing by a scaling factor of n. Then the
optimal level of carrier aggregation with respect to the
scaling factor n satisfies:

1) ψ∗(n) = o
(

n
log(n)

)
2) ψ∗(n) = ω (nα) , for any constant α < 1,

where o(·) and ω(·) are standard asymptotic nota-
tions respectively representing strict upper and lower
asymptotic limiting behavior of the functions within the
parentheses.

Proof of Theorem. Making use of Eq. (2), let us
rearrange Eq. (12) to obtain:√

ψaλψψλ(1+γ)ψ =
√
naλneλ(ψ−1),

where a =
(1 + γ)(1+γ)

eγ
. Taking the loga(·) (which we

will simply denote by log(·) to alleviate the notation) of
both sides and dividing by λ yields:

log(ψ)

2λ
+(1 + γ)ψ log(ψ) + ψ

=
log(n)

2λ
+ n+ (ψ − 1) log(e). (13)

We will prove the upper and lower bounds separately.

1. Let us assume that ψ = n
loga(n)

. We will check
the upper bound by substituting for ψ in Eq. (13) and

2Calculated by

∣∣∣∣∣ψQD − ψErlang

ψErlang

∣∣∣∣∣ · 100, where ψQD is given by

Eq. (6) and ψErlang is given by Eq. (1).
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showing that as n → ∞, the left hand side is strictly
greater than the right hand side. We get:

1

2λ
log

(
n

log(n)

)
+
n(1 + γ)

log(n)
log

(
n

log(n)

)
+

n

log(n)
>

log(n)

2λ
+ n+

n log(e)

log(n)
− log(e).

Canceling the common terms and rearranging, we can
rewrite this relationship as:

γ log(n) + 1 +
log(e) log(n)

n
>(

1 + γ +
log(n)

2λn

)
log(log(n)) + log(e),

which is true for sufficiently large n (as log(n) = o(n)).
Thus, we have demonstrated that when ψ = n

log(n) and
n is sufficiently large, the left hand side of Eq. (12) is
strictly greater than one. Since the left hand side of (12)
is increasing in ψ, we conclude that there must be some
ψ′ < ψ = n

log(n) that satisfies Eq. (12).

2. Assume that ψ = nα, α < 1. We will demonstrate
that substituting for ψ in Eq. (13) results in the left hand
side being strictly smaller than the right hand side as
n→∞. We get:

α log(n)

2λ
+ α(1 + γ)nα log(n) + nα <

n+
log(n)

2λ
+ log(e)(nα − 1).

Dividing by nα and collecting and rearranging the terms
we have:

α(1 + γ) log(n) + 1+
log(e)

nα
<

n1−α +
(1− α) log(n)

2λnα
+ log(e),

which, since n = ω(log(n)), holds as n gets large.
Therefore, when ψ = nα, α < 1, the left hand side
of Eq. (12) is smaller than one. Hence, there must be
another ψ′ > ψ = nα that satisfies Eq. (12). �

Theorem V.1 states that n/ log(n) and nα are asymp-
totic upper and lower bounds on ψ∗(n) respectively.
Therefore as the scaling factor increases, the level of
optimal carrier aggregation scales sub-linearly but also
asymptotically approaches (though never achieves) a
linear relationship. This behavior can be observed in
Figure 3.

2) Traffic Load: Having provided scaling laws on
optimal carrier aggregation with respect to the scaling
factor n, we now turn our attention to the scaling with
respect to the traffic load.

In the next theorem, we state that the optimal level
of carrier aggregation needed by the smaller provider

is lower in a market where both providers experience a
high initial traffic load. Therefore, in high load markets
it is easier for a smaller provider to aggregate spectrum
in order to compete.

Theorem V.2 (Traffic Load Scaling Law) Let ρj denote
the traffic load in a market j, which consist of two
providers that differ in size by a scale of n such that:

ρj =
λjn

Cn
=
λj
C

for j = 1, 2.

Further define ψ∗j (n) to be the optimal level of carrier
aggregation for the smaller provider in the market char-
acterized by load ρj . Then, for two given traffic loads,
such that ρ1 > ρ2,

ψ∗1(n) < ψ∗2(n).

The next two lemmas, whose proofs are provided in
the technical report [35], give inequalities that we will
use in the proof of our theorem.

Lemma V.1 For γ > 0 and n > 1:

(1 + nγ) ln(1 + nγ) > n(1 + γ) ln(1 + γ).

Lemma V.2 For γ > 0 and n ≥ 1:

ψ∗(n) < ρ+ (1− ρ)n.

Proof of Theorem. Assume that the different loads
are caused by different arrival rates such that λ1 > λ2
while the capacity is kept constant at C. Then we have:

C = λ1(1 + γ1) = λ2(1 + γ2). (14)

It immediately follows that (1 + γ1) < (1 + γ2). Using
Eq. (12), the following need to be satisfied in optimality:√

ψ

n

(
(1 + γ1)C

eλ1γ1

)ψ−n
ψCψ

eλ1(ψ−1)
= 1, (15)√

ψ

n

(
(1 + γ2)C

eλ2γ2

)ψ−n
ψCψ

eλ2(ψ−1)
= 1. (16)

Suppose ψ∗2(n) = ψ and satisfies Eq. (16). Then we
need to show that the left hand side of Eq. (15) is strictly
greater than one when ψ∗1(n) = ψ.

Let us rewrite the left hand side of Eq. (16) as the
following:√

ψ

n

(
(1 + γ2)C

eλ2γ2

)ψ−n
ψCψ

eλ2(ψ−1)
=√

ψ

n

(
(1 + γ1)C

eλ1γ1

)ψ−n
ψCψ

eλ1(ψ−1)
(λ1/λ2)

C(ψ−n)

e(λ1−λ2)(1−n)
.

Now we will demonstrate that:

e(λ1−λ2)(n−1) < (λ1/λ2)C(n−ψ). (17)
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Start by taking the ln(·) of both sides of (17) to get:

(λ1 − λ2)(n− 1) < C(n− ψ) ln(λ1/λ2).

Since ln(λ1/λ2) ≥ λ1−λ2

λ1
by inequality (3) and C =

λ1(1 + γ1):

C(n−ψ) ln(λ1/λ2) ≥ (1 +γ1)(n−ψ)(λ1−λ2). (18)

From Lemma V.2 we have that ψ < ρ+(1−ρ)n, which
by substituting ρ = 1/(1+γ1) and rearranging the terms,
can be rewritten as:

(1 + γ1)(n− ψ) > (n− 1). (19)

Combining Eqs. (18) and (19), we get to the inequality
in (17). Then we can claim that:√

ψ

n

(
(1 + γ1)C

eλ1γ1

)
ψ−n ψCψ

eλ1(ψ−1)

>

√
ψ

n

(
(1 + γ2)C

eλ2γ2

)ψ−n
ψCψ

eλ2(ψ−1)
= 1.

Therefore, by continuity and the fact that the left hand
side of (15) is increasing in ψ, there must be another

ψ′ < ψ = ψ∗2(n)

that satisfies Eq. (15). Hence, ψ∗1(n) < ψ∗2(n). �

Theorem V.2 states that the level of carrier aggregation
needed to provide a service level that can compete
with the larger provider in the market is higher (lower)
under a low (high) traffic load, which is also illustrated
in Figure 3. This implies that the marginal benefit of
aggregating spectrum is higher when the providers are
operating under a higher load.

C. General Bounds

In this section, we seek to establish an upper bound
that holds for all possible values of the scaling factor n.
We will first establish that optimal carrier aggregation
ψ∗(n) is concave in n, the proof for which can be found
in the technical report [35]:

Lemma V.3 (Concavity) For 1 ≤ n1 < n2,

ψ′∗(n1) < ψ′∗(n2).

Given the derivative of ψ∗(n) is decreasing in n, we
next establish the tightest possible linear upper bound on
ψ∗(n):

Theorem V.3 (Linear Upper Bound) For γ > 0 and
n ≥ 1:

ψ∗(n) ≤ (1− f(ρ)) + f(ρ)n, (20)

where f(ρ) = 1−
1− ρ

1
2C + ln (1/ρ)

.
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Fig. 4. Linear upper bound on the optimal level of carrier aggregation
ψ∗(n) provided in Theorem V.3, with C = 50 and ρ = 0.5.

Proof of Theorem. We will start our proof by providing
a linear function of the form g(n) = a+bn, where a and
b are constants, that is equal to ψ∗(n) when n = 1 and
has the same derivative at that point. From the way we
defined ψ∗(n) in Eq. (8), it follows that ψ∗(1) = 1. Then
g(n) = (1− b) + bn in order to satisfy this inequality.

Taking the derivative of the both sides of Eq. (12) and
rearranging the terms one can obtain the following:

ψ′∗(n) =
1
2n + C ln(1 + γ)− λγ

1
2ψ∗(n) + C ln(1 + γ) + C ln(ψ∗(n))

. (21)

Note that Eq. (21) depends on the exact value of ψ∗(n).
Evaluating this expression at ψ∗(1) = 1 yields:

dψ∗(n)

dn

∣∣∣∣
n=1,ψ∗(1)=1

=
1
2 + C ln(1 + γ)− λγ

1
2 + C ln(1 + γ)

. (22)

Rearranging the terms in Eq. (22) and substituting ρ for
1

1+γ , we obtain:

dψ∗(n)

dn

∣∣∣∣
n=1,ψ∗(1)=1

= 1−
1− ρ

1
2C + ln (1/ρ)

.

Then b = 1−
1− ρ

1
2C + ln (1/ρ)

and

g(n) =
1− ρ

1
2C + ln (1/ρ)

+

(
1−

1− ρ
1
2C + ln (1/ρ)

)
n.

Now we will show that g(n) ≥ ψ∗(n) for n ≥ 1.
Observe that g(1) = ψ∗(1). In Lemma V.3 we have
established that the derivative of optimal carrier aggre-
gation with respect to the scaling factor n is decreasing
in n. Then we can state that

dg(n)

dn
≥ dψ∗(n)

dn
for any n ≥ 1.
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Let h(n) = g(n) − ψ∗(n). Taking the derivative with
respect to n we get:

dh(n)

dn
=
dg(n)

dn
− dψ∗(n)

dn
≥ 0.

By mean value theorem there exists an n0 such that:

dh(n0)

dn
=
h(n)− h(1)

n− 1
=
g(n)− ψ∗(n)

n− 1
≥ 0.

Since n ≥ 1 we conclude that g(n) ≥ ψ∗(n). �

Theorem V.3 provides a way to quickly calculate an
upper bound on the optimal carrier aggregation, which
is rather tight for small values of the scaling factor n as
illustrated in Figure 4. However, since ψ∗(n) is concave,
as the scaling factor increases, the linear upper bound
diverges from the actual value. The strength of the linear
upper bound that we provide lies in its ability to provide
simple insight on the impact of network parameters on
optimal carrier aggregation.

As a possible solution to the divergence of the linear
upper bound, one could seek to obtain a piece-wise linear
upper bound expression on ψ∗(n) by using the results
provided in Lemma V.3 and Theorem V.3. Starting at
ψ∗(1) = 1, one can use the linear bound provided
in Eq. (20) to approximate the value of ψ∗(n) at a
larger value of n, which can then be used to obtain the
derivative ψ′(n) provided in Eq. (21). The derivative
value can then be assumed to be the linear slope of
ψ∗(n), and the calculation procedure starts over.

Next, we propose a simple algorithmic procedure
to compute a piece-wise linear bound on ψ∗(n) (see
Algorithm 1). The algorithm takes as input the scaling
factor n, referred to as Scale, as well as the step size,
referred to as StepSize, that defines the distance between
points at which the slope of the bound is recalculated.
The procedure starts from the known point of ψ∗(1) = 1
and uses the linear bound established to calculate the
bound on ψ∗ at every evaluation point determined by
the step size until the target scaling factor is reached.

Algorithm 1 Piecewise Upper Bound Calculation
procedure BOUND(ψ, Scale, StepSize)

Initialize: ψ ← 1, n← 1
Set counter: State← 1
EvaluationPoints← Floor(Scale/StepSize)
while EvaluationPoints ≥ State do

n← n+ StepSize
ψ ← (1− f(ρ)) + f(ρ)n

f(ρ)← ψ′∗(n)

∣∣∣∣
ψ

State← State+ 1

return Bound

Using Algorithm 1, if the step size is chosen small
enough, the bound on ψ∗(n) will approach the real value.
Therefore, one can obtain a relatively tight piecewise
linear upper bound on ψ∗(n), which is illustrated in
Figure 5 for several different traffic loads, with a step
size of 1.

D. Numerical Examples

In this section, we provide numerical examples, where
we calculate how much spectrum needs to be aggregated
to preserve competition in different markets.

Consider two providers in a spectrum market with
network parameters given as follows:

(λ1, C1) = (90, 150) and (λ2, C2) = (60, 100).

The capacity numbers provided here are in line with
the spectrum holdings of Verizon and T-Mobile in the
New York City area, which respectively are 30 MHz
and 20 MHz (translated into the number of resource
blocks from Table I), according to the FCC’s Spectrum
Dashboard [36]. In this example, the scaling factor is
n = 150/100 = 1.5 and both providers are in a moder-
ately loaded market with ρ = 90/150 = 60/100 = 0.60.
Using Equation (12), we obtain the carrier aggregation
needed by the smaller provider: ψ∗(1.5) = 1.102.

This result tells us that in order to provide the same
level of service as the larger provider, the smaller
provider needs to increase its capacity at least by 1.102
times its current value. Therefore, d100 × 0.102e =
11 additional carriers are needed to bring the smaller
provider’s service level in line with that of the larger
provider. Taking a single carrier to be a resource block
in an LTE deployment, the smallest LTE bandwidth that
matches this requirement has a bandwidth of 3 MHz
from Table I. This is the amount of spectrum that the
smaller provider needs to aggregate in order to guarantee
its ability to compete with the larger provider.

Next, we consider two different markets: (i) a market
where the spectrum holdings of the providers have the
same scaling factor but the traffic load ρ is higher and
(ii) a market where there is an increase in the scaling
factor n while the traffic load ρ is the same.

(i) Consider a market where the scaling factor is n =
1.5 while the traffic load of the market increases to ρ =
0.9. The parameters of the two providers are now as
follows:

(λ1, C1) = (135, 150) and (λ2, C2) = (90, 100).

Under the new load, the carrier aggregation needed by
the smaller provider becomes ψ∗(1.5) = 1.037.

Thus, d100 × 0.037e = 4 additional carriers are
needed by the smaller provider, fewer than the number
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Fig. 5. C = 50 - Piecewise linear upper bounds on the optimal level of carrier aggregation ψ∗(n) obtained by the initial linear upper bound
provided in Theorem V.3, the slope of which is then adjusted at integer values of the scaling factor n using the derivative expression provided
in Eq. (21).

Bandwidth 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz
Resource Blocks 6 15 25 50 75 100

TABLE I
LTE BANDWIDTH CONFIGURATIONS AND ASSOCIATED NUMBER OF RESOURCE BLOCKS AS SPECIFIED IN 3GPP RELEASE 8 [10].

of carriers calculated before and in line with Theorem
V.2. Under the same LTE scenario considered previously,
Table I indicates that aggregating a minimum of 1.4 MHz
of spectrum in the market with a higher traffic load is
enough to achieve the same goal.

(ii) This time, we consider a market where the scaling
factor is increased to n = 6 but the traffic load is the
same as the first market (i.e., ρ = 0.6). The parameters
of the providers are given as follows:

(λ1, C1) = (90, 150) and (λ2, C2) = (15, 25).

These numbers are in line with the spectrum holdings
of Verizon and T-Mobile in Logan County, IL, which
respectively are 30 MHz and 5 MHz (translated into the
number of resource blocks from Table I), according the
FCC’s Spectrum Dashboard [36]. In this case, the carrier

aggregation needed by the smaller provider is ψ∗(6) =
1.719.

This time, the smaller provider needs an additional
d100× 0.719e = 72 carriers. Notice that the increase in
the total capacity needed is smaller than the increase in
the scaling factor since:

ψ∗(6)/ψ∗(1.5) = 1.559 < 6/1.5 = 4.

Under the same LTE scenario considered previously,
Table I indicates that aggregating a minimum of 15 MHz
of spectrum is needed to achieve the same goal, as the
scaling factor increases to 6.
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E. Extension to Delay Systems

In Section IV, we presented a QD regime approxima-
tion of the Erlang-B formula through Lemma IV.1. The
assumption was that if all the carriers are busy upon the
arrival of a flow, then the flow is lost. This is referred to
as a loss system.

Our results can easily be extended to a delay system.
In such a system, all active flows share the entire
network capacity. If the number of flows exceeds C, then
the flows can still be transmitted but at a rate below
their peak rate. In that case, the flows will experience
congestion and additional delay. The probability that
an arrival flow experiences congestion is given by the
Erlang-C formula:

Ec(λ,C) =
λC

C!
C

C−λ∑C−1
k=0

λk

k! + λC

C!
C

C−λ

.

This equation holds for the same general traffic model
as presented in Section III [37].

Using the results of [14] for the analysis of queuing
systems in the QD regime we have:

Ec(λ,C) '
(√

2πCγ(1 + γ)C−1eλγ
)−1

. (23)

Through following similar steps as in Section V-A and
replacing the QD formula of Erlang-B with Eq. (23), it
is possible to show that the optimal carrier aggregation
in a delay system is given by:

ψ∗c (n) = min

{
ψ :

√
ψ

n

(
(1 + γ)C

eλγ

)ψ−n
·

ψCψ

eλ(ψ−1)

(
1 +

ψ − 1

ψγ

)
≥ 1

}
. (24)

As the left hand side of the inequality in Eq. (11) is
increasing in ψ, equivalently ψ∗c (n) is the solution of:√

ψ

n

(
(1 + γ)C

eλγ

)ψ−n
ψCψ

eλ(ψ−1)

(
1 +

ψ − 1

ψγ

)
= 1.

(25)

Note that Eq. (25) is the same as Eq. (12) ex-
cept for the 1 + ψ−1

ψγ term at the end. Since
1 + ψ−1

ψγ > 1 for ψ > 1, one quickly concludes that
the left hand side of Eq. (25) is always strictly greater
than the left hand side of Eq. (12). In other words, for
the same system parameters, the level of optimal carrier
aggregation under the Erlang-C delay model is always
smaller than that under the Erlang-B loss model:

ψ∗c (n) < ψ∗(n)

Figure 6 illustrates this relationship. By replacing
Eq. (12) with Eq. (25) and following a similar analysis,
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Fig. 6. Comparison of optimal carrier aggregation under loss and delay
systems, with C = 50 and ρ = 0.7.

the same structural properties given in Theorems V.1 and
V.2 also hold for the QD Erlang-C formula. To give an
example, we revisit Theorem V.1 here:

Theorem V.4 (Erlang-C Capacity Scaling Law) Con-
sider two providers differing by a scaling factor of
n. Then the optimal level of carrier aggregation with
respect to the scaling factor n satisfies:

1) ψ∗c (n) = o
(

n
log(n)

)
2) ψ∗c (n) = ω (nα) , for any α < 1,

where o(·) and ω(·) respectively represent strict upper
and lower asymptotic limiting behavior on the function
within the parentheses.

Proof of Theorem. Let us rearrange Eq. (25) to
obtain:√

ψ

n

(
(1 + γ)C

eλγ

)ψ−n
ψCψ

eλ(ψ−1)
=

ψγ

ψ(1 + γ)− 1
. (26)

We will prove that n/log(n) and nα are still asymp-
totic upper and lower bounds by showing that the term

ψγ
ψ(1+γ)−1 converges to a constant and thus does not
affect the asymptotic relationships.

1. Assume that ψ = n
log(n) . Then replacing ψ in the

right hand side term of Eq. (26) we obtain:

ψγ

ψ(1 + γ)− 1
=

nγ
log(n)

n
log(n) (γ + 1)− 1

,

and:

lim
n→∞

nγ
log(n)

n
log(n) (γ + 1)− 1

=
γ

1 + γ
= (1− ρ).

10



2. This time, assume that ψ = nα, α < 1. Then
replacing ψ in the right hand side term of Eq. (26) we
obtain:

ψγ

ψ(1 + γ)− 1
=

nαγ

nα(1 + γ)− 1
,

and

lim
n→∞

nαγ

nα(1 + γ)− 1
=

γ

1 + γ
= (1− ρ).

�

F. Applications to Secondary Spectrum Markets

We next discuss how our results on carrier aggre-
gation apply to pricing games in secondary spectrum
markets. In previous work [38], we identified the min-
imum (break-even) price at which it is profitable for a
provider to start admitting secondary users. The break-
even price pBE is directly linked to the Erlang-B for-
mula:

pBE = KE(λ,C), (27)

where λ is the session arrival rate of primary users,
C is the network capacity, and K is the price paid
by primary users per session. Strikingly, the break-even
price is insensitive to the secondary demand.

The break-even price plays a critical role in deter-
mining the Nash equilibrium of a game where two
providers compete in prices to attract secondary demand.
Without loss of generality, suppose that the break-even
price of provider 1 is lower than that of provider 2.
Then, according to Theorem V.I in [38], the competition
results in a price war that is won by provider 1 (i.e.,
provider 1 captures the entire market). One concludes
that the outcome of the pricing game is directly related to
the break-even prices, which in turn relate to the Erlang-
B formula.

Hence, the level of optimal carrier aggregation acts as
an identifier of necessary network provisioning to obtain
a competitive price advantage in a secondary spectrum
market. All of our previous results, such as the structural
properties with respect to scaling factors and traffic loads
and the established general bounds can be readily applied
to the question of how to strategically implement carrier
aggregation in a secondary spectrum market.

VI. CONCLUDING REMARKS

We investigated the impact of reserving spectrum for
smaller providers, by providing computational methods,
scaling laws, and bounds on the optimal carrier aggrega-
tion. Under a QD regime, we derived an approximation
of the Erlang-B formula. This approximation is highly
accurate as long as the number of carriers is large enough
(e.g., above 50) and the spectrum utilization does not

approach 100% (e.g., 90% or below), an assumption that
is consistent with measurement studies [39].

Using the QD formula, we investigated optimal carrier
aggregation by proving two scaling laws: (i) with respect
to the scaling factor n and (ii) with respect to the traffic
load. Specifically, we obtained sub-linear (though close
to linear) asymptotic upper and lower bounds in the form
ψ∗(n) = o (n/ log(n)) and ψ∗(n) = ω (nα) for any α <
1. Then, we demonstrated that if the traffic load under
which each provider operates increases, then the level
of carrier aggregation required is reduced. This result
indicates that the marginal benefit of carrier aggregation
in a heavily loaded network is higher than that in a lightly
loaded network.

Next, we derived an upper bound on ψ∗(n) that
applies to any value of n and is provably the tightest
possible. This upper bound explicitly relates to the
network parameters and can provide regulators and mar-
ket players with useful guidelines. We also provided a
method of improving it to a piece-wise linear bound by
iteratively approximating ψ′(n).

We explained how the results derived for loss systems,
based on the Erlang-B formula, extend to delay systems
based on the Erlang-C formula. We proved that for the
same network parameters, the optimal level of carrier
aggregation in a delay system is always smaller than in a
loss system. Finally, we provided a relationship between
the profitable pricing of users in secondary spectrum
markets and the Erlang-B formula for which our results
apply. Hence, the results on optimal carrier aggrega-
tion presented in this paper are directly applicable to
pricing strategies in secondary spectrum markets, where
providers can aggregate spectrum to lower their prices
in a possible price war.

This paper focused on a single small provider imple-
menting carrier aggregation. If several small providers
are present in the same market, similar conclusions hold
if the total carrier aggregation needed stays below the
amount of spectrum reserved by the regulator. If the
total amount of spectrum needed by all of the small
providers exceeds the reserved amount, then one can
expect competition between the small providers and
possibly formation of coalitions. While beyond the scope
of this paper, evaluating the impact of carrier aggregation
on a market with multiple providers of different sizes is
an interesting area left for future research.
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