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Abstract—Recent initiatives allow cellular providers to
offer spot service of their licensed spectrum, paving the
way to dynamic secondary spectrum markets. This paper
characterizes market outcomes when multiple providers
are drawn into competition for secondary demand. We
study a game-theoretic model in which each provider
aims to enhance its revenue by opportunistically serving
secondary demand, while also serving dedicated primary
demand. The secondary demand is a function of the price
being charged. We consider two philosophies for sharing
spectrum between primary and secondary demand: In
coordinated access, spectrum providers have the option to
decline a secondary access request if that helps enhance
their revenue. We explicitly characterize a break-even price
such that profitability of secondary access provision is
guaranteed if secondary access is priced above the break-
even price, regardless of the volume of secondary de-
mand. Consequently, we establish that competition among
providers that employ coordinated access leads to a price
war. In particular market sharing above the break-even
price is not an equilibrium outcome. This conclusion is
valid for arbitrary secondary-demand functions. While the
demand function does not play a part in determining
the winner, it does affect the price of secondary access
as exercised by the winning provider. In uncoordinated
access, primary and secondary users share spectrum on
equal basis, akin to the sharing modality of ISM bands. We
demonstrate that market equilibrium in an uncoordinated
access setting can be fundamentally different as it opens up
the possibility of providers sharing the market at higher
prices.

I. INTRODUCTION

Recent initiatives by governmental agencies extend the
reach of spectrum management policies that license hold-
ers (e.g., network providers) are entitled to pursue [4, 7,
9–11, 26]. In particular, the FCC introduced a new spec-
trum access policy model known as Private Commons
to support fast time-scale spectrum transactions [1, 8].
Under this model, ownership of spectrum remains with
the license holder providing service to its primary users,
but the provider may also provide spectrum access to
secondary users for a fee.

As pointed out in FCC’s report on secondary spectrum
markets, control of secondary access in private commons
can be implemented in several different ways [1]. In
particular, access to the spectrum by secondary users
may be coordinated by the provider, via signals that
determine when or how such access is allowed [8].
A notable coordinated policy is the so-called threshold
(reservation) policy, whereby secondary spectrum access
is permitted as long as the number of channels occupied
in a given spectrum band is below a certain threshold.
Theoretical properties of the threshold policy, including
optimality in certain settings, have been extensively stud-
ied in the literature (cf. [22, 28–30, 34] and references
therein). Access to a band may also be uncoordinated,
in which case primary and secondary users share access
to the band on an equal basis, in a way similar to ISM
bands [8].

Since cellular networks are generally over-provisioned
to cope with short-term spikes in their loads, through
private commons it might be possible to increase spec-
trum utilization. For instance, a measurement based
study of close to 20,000 GSM base stations deployed
in Germany indicates that the majority of base station
in crowded areas, such as city centers, remain under-
loaded at all times [27]. Another study conducted in the
Commonwealth of Virginia indicates that the US market
is no exception to the case with maximum network
occupancy levels around 45% [3]. The results of these
studies point at the possibility of increasing network
revenues through secondary service provisions.

Realizing this potential entails a number of challenges
for a spectrum provider. One such challenge concerns
pricing of secondary spectrum access in the face of
uncertainty of demand response to the advertised price:
Providing secondary access at a charge returns an im-
mediate revenue for the provider, but it also incurs an
opportunity cost due to lost primary revenue because
spectrum is fundamentally a finite resource. The balance
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Fig. 1. Illustration of provider competition over the secondary users
in a private commons setting

between these two effects determines profitability of sec-
ondary spectrum provision, and it may possibly depend
not only on the secondary price but also on the secondary
demand. The relationship between secondary price and
demand, however, is difficult to characterize explicitly
and it may also be time-varying.

This issue is further aggravated in competitive situa-
tions in which multiple spectrum providers compete for
the same pool of secondary demand. In such situations a
provider may opt to beat the price of competitors thereby
winning entire secondary market, or may opt to match
competitors’ price thereby serving part of the market but
at a higher price. It is not readily clear which alternative
is favorable, especially under the alluded uncertainty in
the price-demand relationship.

In this paper we seek to analyze the outcomes of a
price competition between multiple providers in private
commons, as illustrated in Fig I. We consider a game
theoretic setting and identify equilibrium prices in term
of Nash equilibria. In profit calculations we adopt a
model that explicitly captures the random nature of
spectrum access requests of both primary and secondary
users. Our conclusions make no assumptions on the
secondary demand function, and therefore they hold for
arbitrary price-demand relations.

Next, we list the main contributions of our paper. Our
first contribution is to characterize and then prove the
existence of a break-even price for each provider. This
break-even price is the lower limit to the price values for
which a provider’s profitability is guaranteed. The paper
explicitly characterizes the break-even price, which is
independent of the parameters of other providers and
possesses the fundamental property of being insensitive
to the specific shape of the demand function of secondary
users. The analysis further reveals that the break-even
price directly relates to the fraction of lost primary
users (in the absence of secondary users), which can be
expressed using the well-studied Erlang-B function. The
break-even price therefore inherits all the mathematical

properties of that function.

We point out that a revenue-maximizing price does
depend on the shape of the secondary demand function,
and may be significantly higher than the break-even price
of each of the competing providers. In contrast to the
break-even price, however, revenue-maximizing prices
cannot be identified without explicit knowledge of the
secondary demand function.

Our next contribution is to show that, under an
optimal coordinated access policy, market sharing be-
tween providers is not an equilibrium outcome. Thus, a
provider that employs optimal coordinated access opts
to beat the price of its competitors, leading to a price
war. Furthermore this property holds irrespective of the
specific relation between the secondary price and the
secondary demand. We formally establish the dominating
strategy of each provider and list all possible market
outcomes (i.e., Nash equilibria), which this price war can
lead to. We demonstrate that the provider with the lowest
break-even price wins the market. If multiple providers
have the same break-even price, they are coerced into an
equilibrium in which no provider makes a profit.

As our last contribution, we show that market equi-
libria under uncoordinated secondary access may be
drastically different than those under coordinated access:
Through a numerical study, we illustrate that depending
on the shape of the secondary demand function, market
equilibria may reflect a situation wherein providers share
the market by matching each other’s price strictly above
their respective break-even prices. This outcome may
entail negative implications on affordable availability of
spectrum and appears to warrant further study.

The rest of the paper is organized as follows. In
Section II, we survey previous work. In Section III,
we introduce our model of the competition in private
commons. Afterwards, in Section IV, we construct the
optimal coordinated access policy and derive the break-
even price for each provider. Then, in Section V, we
analyze the multi-provider spectrum pricing game arising
when each provider implements the optimal coordinated
access policy. We numerically contrast these results
to the uncoordinated access case in Section VI. We
conclude the paper in Section VII.

For the interested reader, the proofs of all the lemmas
and theorems presented in this paper can be found in our
technical report [20].

II. RELATED WORK

In this section, we briefly survey related work on
competition and spectrum pricing for secondary markets
and highlight the differing contributions of our paper.



Network providers in spectrum markets may face
competition at two different levels. The first level
consists of competition between secondary network
providers to lease spectrum from a primary provider (or
the government) that holds a spectrum license. The sec-
ond level of competition is between network providers
holding a spectrum license or lease and competing to
offer their services to end-users.

Many papers in the literature consider the first level
of competition, while our paper addresses the second
one. For instance, in the works by Jagannathan [16],
Kasbekar [19], Duan [12], Ren [35], Niyato and Hossain
[31], Sengupta and Chatterjee [37] and Xing [40], game
theoretic approaches to spectrum auctioning and leasing
are analyzed. The set-up of all these papers (i.e., compe-
tition between providers to lease spectrum) is different
from ours (i.e., competition between providers to lure
users).

Several papers study the problem of ensuring prof-
itability in secondary spectrum markets. Niyato and
Hossain [31] derives market equilibria pricing by taking
into consideration the demand and supply dynamics of
spectrum auctions. However, the model uses a very
specific secondary demand based on the utility from
owning the spectrum and how much it costs to lease the
spectrum. Also, secondary users have the option to lease
parts of their spectrum from different spectrum owners.
On the end-user side, Alanyali et al. [6] establishes
a pricing policy which guarantees profitability for the
network provider as long as a demand is generated.
However, this paper assumes a monopolistic framework,
while ours considers an oligopolistic one. Furthermore,
[6] considers a multi-cell setting with a single frequency
band in each cell, while our paper focuses on an isolated
cell offering multiple frequency bands.

Mutlu et al. [29] also consider a monopolistic frame-
work and derive an optimal coordinated access policy
under which revenue from secondary users is maximized.
The results of that paper show that a threshold policy
is optimal for coordinated access in an isolated cell,
assuming that a provider advertises a fixed price (i.e.,
the price does not depend on the instantaneous channel
occupancy). These results are leveraged for the analysis
in our paper.

In the work by Ileri et al. [15], a comprehensive model
including both the auction and the end-user sides of the
competition is studied. Different from our paper, this
model focuses on the auctioning side of the competition
where the revenue generated by secondary users is used
to compensate for the costs of auctioning. In our model,
we assume that providers own spectrum and need only
to consider the revenue brought in by the primary and

secondary users.

The works by Maille and Tuffin [24] and Maille et al.
[25] use a model where both the auction side and the ser-
vice side of the competition are considered. The work in
[24] specifically focuses on the competition between two
different but substitute technologies while [25] models a
three level competition, where spectrum owners, lessees
and users each make their own separate decisions. These
decisions include the use of different technologies. In our
model, we assume that providers offer the same type
of services and therefore cannot influence the secondary
users’ preferences beside the price advertised. A related
work by Ren et al. [35] studies and compare the market
outcome achieved by respectively enforcing cooperation
or competition among providers. While such external
interventions might be useful in analyzing hypothetical
outcomes, our model refrains from such enforcements as
it aims to characterize a natural competition. In a work
by Kim et al. [21], competition between two providers is
analyzed where network preemption allows for primary
users to evict secondary users from the system. Unlike
our paper, the network model is not a finite capacity
multichannel network but rather a spatial distribution of
channels that turn on and off, and the analysis relies
on an approximation. In one recent study by Korcak
et. al. [23], the possibility of collusion between several
wireless network providers is considered. This collusion
is based on a coalition game model. In contrast, in our
model, network providers do not communicate with each
other about their intentions (i.e., it is a non-cooperative
game). Thus, the possibility of market sharing between
the providers is purely a result of market dynamics.

None of the previous work surveyed here considers
competition among network providers implementing op-
timal coordinated access and facing secondary demand
governed by a general demand function. The characteri-
zation of the market equilibrium and demonstration of a
price war won by the provider(s) with the lowest break-
even price as well as the possibility of market sharing
equilibria under uncoordinated access policies are unique
contributions of our paper.

III. NETWORK MODEL

In this section we introduce the considered model
and notation. For convenience of exposition we present
here a model with two providers, and later extend it
to an arbitrary number of competing providers: Each
provider i = 1, 2 has a finite Ci number of channels,
and a dedicated primary-user base whose intensity is
represented with λi > 0. For each primary user serviced,
provider i collects a reward of Ki units.

The providers compete for an additional secondary
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Fig. 2. Two providers each with a capacity Ci, i = 1, 2, compete for
secondary demand σ(p) while also serving their respective dedicated
(primary) demand λi .

demand whose intensity is modulated by the prices they
charge for secondary access. If provider i charges pi
units per secondary access then the intensity of sec-
ondary demand is σ(min{p1, p2}). Here σ(·) is the
demand function and it is assumed to be continuous and
non-increasing.

We shall assume that each demand type (primary and
secondary) consists of a random sequence of request
arrivals that occur according to independent Poisson
processes, and intensity of demand represents the av-
erage number of requests per unit time. We also assume
that, if granted, each request holds one channel for
a random duration that is generally distributed with
unit mean, independently of other requests and arrival
times. We shall assume that the channel holding statistics
are identical for primary and secondary requests. Such
an assumption is valid when both types of traffic are
generated by similar applications.

It is assumed that secondary demand is attracted to
the provider which charges the lowest price. In the case
when both providers charge the same price, the resulting
secondary demand splits between the two providers
according to a probability vector [α1, α2] such that
α1 + α2 = 1 and αi > 0 . Namely, each provider i
receives secondary demand intensity αiσ(pi).

Each provider i also has the choice of admitting
or rejecting secondary requests according to an access
policy, which we denote by Ai. We assume that actions
taken by Ai depend only on the total number of users
(primary and secondary) in the system. Thus, Ai be-
longs to the class of occupancy-based policies, which
performance are insensitive to the call length distribution
except through the mean [30].

Since demand is random and providers have a finite
number of channels to provide service with, they cannot
accommodate new requests if all of the channels are

occupied. This results in some requests being blocked.
We define Bi,j(λi, σ, Ai) as the blocking probability for
class j users (j = 1 for primary and 2 for secondary)
when secondary demand is σ and the access policy is
Ai.

The goal of each provider is to maximize the total
revenue collected. The revenue rate of provider i when
it services secondary demand of σ units is given by:

Wi(pi, σ, Ai) =(1−Bi,2(λi, σ, Ai))σpi

+ (1−Bi,1(λi, σ, Ai))λiKi. (1)

Here the first and the second terms are respectively
the revenue generated by primary and secondary requests
that are admitted by the provider. Each term represents
the expected long time rates per unit time.

Since the secondary demand a provider receives de-
pends on prices of both providers, so does the revenue
of the provider. We define the reward Ri(pi, p−i) of
provider i as its revenue when provider i and its com-
petitor −i charge secondary access pi and p−i units
respectively. Namely,

Ri(pi, pi) =

 Wi(pi, σ(pi), Ai) if pi < p−i
Wi(pi, αiσ(pi), Ai) if pi = p−i
Wi(pi, 0, Ai) if pi > p−i.

(2)
Hence the reward is affected by the amount of secondary
demand provider i captures through the relationship
between its own price pi and the price other provider
chooses p−i. Once the prices determine the secondary
demand for each provider, the rewards are further shaped
by the providers’ access policies. Each provider has
full information on its own network parameters and can
observe the prices advertised by its competitors.

IV. OPTIMAL COORDINATED ACCESS POLICIES AND
PROFITABILITY

For a given secondary demand σ and secondary price
p, let A∗i (p, σ) denote a coordinated access policy that
maximizes the revenue rate for provider i. We refer to
A∗i (p, σ) as the optimal coordinated access policy. We
represent the resulting maximal revenue W ∗i (p, σ) as
follows:

W ∗i (p, σ) = Wi(p, σ,A
∗
i (p, σ))

= max
Ai

Wi(p, σ,Ai).

Under the given assumptions, it is well-known that
the optimal coordinated access policy is a threshold
(reservation) policy: Secondary users are admitted by a
provider when the channel occupancy of the provider is
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Fig. 3. Behavior of break-even price as a function of network parameters.

below a threshold and they are blocked otherwise [22,
28, 30, 34]. The optimal threshold value depends on all
parameters of the provider including intensity of the
secondary demand.

In the competitive setting considered in this paper it
will be important to identify conditions under which
an optimal policy A∗i (p, σ) ever accepts a secondary
request. Under such conditions the secondary price-
demand pair (p, σ) yields profit relative to serving pri-
mary demand only; in turn (p, σ) represents an eco-
nomically viable situation for provider i. The issue is
closely related with the opportunity cost of accepting
a secondary request: On the one hand such a request
brings an immediate revenue of p, on the other hand it
may cause rejecting future requests, possibly with higher
immediate revenue, due to the channel that it holds
temporally. It turns out that the sign of the balance in this
tradeoff can be deduced by the so-called policy improve-
ment method of dynamic programming technique [5, 22].
Simply put, we can formulate a infinite horizon reward
problem where we do not admit any secondary users.
From this problem we can formulate the average reward
that a primary user brings from a single admission to
the network, which in turn yields the minimum reward
pBEi secondary users need to compensate for to gain
admission to the network [20]. The analysis reveals that
pBEi can be expressed as follows:

pBEi = KiE(λi, Ci), (3)

where E(λi, Ci) is the Erlang-B blocking formula given
by

E(λi, C) =

λC
i

C!∑C
k=1

λk
i

k!

. (4)

This leads to the following conclusion:

Theorem IV.1 For σ > 0:

(a) W ∗i (p, σ) > W ∗i (p, 0) if p > pBEi ,

(b) W ∗i (p, σ) = W ∗i (p, 0) if p ≤ pBEi .

Theorem IV.1(a) states that if the price exceeds pBEi
then serving secondary demand yields strictly higher
revenue for provider i than not serving it. Conversely,
part (b) of the theorem states that secondary demand
does not lead to any revenue improvement otherwise,
implying that rejecting the entire secondary demand is
optimal for such prices. In effect, at pBEi the immediate
revenue balances the opportunity cost of a secondary
request. We therefore coin pBEi as the break-even price
for provider i.

It is striking that the break-even price expression (3)
does not depend on the secondary demand. Namely,
any price above pBEi strictly improves the revenue of
provider i regardless of how much secondary demand it
generates.

Figures 3(a) and 3(b) illustrate how the normalized
break-even price (i.e., pBE/K) changes with respect to
relevant network parameters, namely the system capac-
ity C and the primary load λ. The normalized price is
given by the Erlang-B function, which has been well
studied in teletraffic theory. In particular upper and lower
bounds are obtained in [14, 18], and it is demonstrated in
[17] that for a given arrival load λ, the Erlang-B function
(hence, the break-even price) is a convex function of the
capacity C, as can be observed from Figure 3(a). It is
also worth noting that as the network capacity increases,
the value of the break-even price at the critical load
where λ = C decreases as demonstrated in Figure 3(b).



Figure 3(b) shows that for an over-provisioned net-
work (in which primary load λ is below the capacity
C by a significant margin), the break-even price is
substantially lower than the primary price. We observe
that for C = 16 the normalized break-even price is neg-
ligible compared to the primary price for network loads
below 40%, a number close to the network utilization
measurements reported in [3]. As the network capacity
increases, it takes even higher network loads to observe
the slightest increase in the break-even price, almost as
high as 80% when the capacity is increased to C = 128.
This result suggests that, in an over-provisioned network,
spectrum sharing at secondary prices that are low relative
to primary price would result in net profit, regardless of
secondary demand.

V. MARKET EQUILIBRIUM UNDER COORDINATED
SECONDARY ACCESS

In competing for and serving secondary demand, a
provider’s action consists of an advertised price for
secondary access and a local policy to coordinate sec-
ondary access. For any price, and for any demand the
price raises, each provider’s revenue is highest under
optimal coordination. Hence optimal coordination is a
dominating choice uniformly for all situations. In this
section we will assume all providers implement optimal
coordinated access. With this assumption each provider’s
strategic action reduces to a pricing decision.

We start with a characterization for competitive equi-
libria in the considered scenario. However, before we do
that, it is important to recall the formal definition of a
Nash equilibrium.

Definition V.1 A pricing strategy profile (p1, p2) is a
Nash equilibrium for rewards Ri(p1, p2) if and only if

R1(p1, p2) = max
p

R1(p, p2).

R2(p1, p2) = max
p

R2(p1, p).

The following theorem identifies possible market out-
comes in terms of Nash equilibria. The first part of the
theorem concerns the case when one provider (without
loss of generality provider 1) has strictly lower break-
even price than the other provider. Then, in equilibrium,
that provider sets its price below its competitor’s break-
even price, and thereby captures the entire secondary
demand irrespective of its shape. The second part of
the theorem concerns the symmetric case when both
providers have the same break-even price. It indicates
that, in that case, providers are forced to share the sec-
ondary demand at their break-even prices and therefore
make no profit.

Theorem V.1 (a) If pBE1 < pBE2 then one or more Nash
equilibria exist and have the form (p1, p2) with

p1 ∈ argmax
p∈[pBE

1 ,pBE
2 −ε]

,W ∗1 (p, σ(p))

p2 ≥ pBE2 ,

where ε is a sufficiently small discretization constant.

(b) If pBE1 = pBE2 then there exists a unique Nash
Equilibrium (p1, p2) such that

p1 = p2 = pBE1 .

Theorem V.1 states that if the break-even prices are
different, the provider with the lower break-even price
captures the entire market by pricing below its com-
petitor’s break-even price. However, when the price is
continuous, it is impossible to provide an exact price
value that achieves this best response. Hence, following
a well-known approach used in game theory to address
this technicality [33, pages 64-67], we assume that each
provider’s price is a multiple of a small discretization
step ε.

In the rest of this section we comment of various
aspects of the equilibria described in Theorem V.1.

a) Examples: The following two examples aim to
illustrate that qualitative differences in the placement of
Nash equilibria are governed by the secondary demand
function σ(p). These examples are based on demand
functions commonly used in the economics literature that
are respectively exponentially and linearly decreasing
with price [38].

Example V.1 Suppose that the secondary demand func-
tion follows a negative exponential demand given by:

σ(p) = 10e−0.2p,

which indicates sufficiently low-elastic demand so that
the revenue rate remains increasing with price. We set
the network parameters for both providers as:

(λ1, C1,K1) = (1, 2, 20)

(λ2, C2,K2) = (10, 5, 35),

which, through Eq. (3), yield

pBE1 = 4.00,

pBE2 = 19.74.

Figure 4(a) demonstrates the low-elasticity property of
provider 1’s revenue rate function, W ∗1 (p1, σ(p1)). The
revenue rate is clearly maximized when the price is p1 =
19.74− ε, at a price slightly below the other provider’s
break-even price.
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Example V.2 In this example we consider a linear
demand function given by:

σ(p) = 10− 0.5p.

The network parameters and thus the break-even price
are the same as in the previous example, which we omit.
Under this new and faster decreasing demand function,
we plot the revenue rate in Figure 4(b). The revenue
rate achieves its maximum at p1 = 15.76 after which it
demonstrates high-elasticity and starts to decrease with
price. This results in the revenue maximizing price being
less than pBE2 = 19.74. Therefore, facing such demand
provider 1 would lower its price further below even
though its competitor cannot match it without incurring a
net loss, which demonstrates our result stated in Theorem
V.1(b).

b) Interpretation of Nash equilibria in the asym-
metric case: Without loss of generality let us consider
the case pBE1 < pBE2 . Exact value of the equilibrium
price p1 depends on where provider 1’s revenue is
maximized on the interval [pBE1 , pBE2 − ε]. Note that the
revenue may attain its maximum at several price values
of this interval, hence the set notation provided in the
Theorem.

If the demand function σ(p) results in the revenue
rate being maximized right below the competitor’s break-
even price such that:

arg max
p∈[pBE

1 ,pBE
2 −ε]

W ∗1 (p, σ(p)) = pBE2 − ε,

then the price profile (pBE2 − ε, pBE2 ) is the Nash equi-
librium and no other equilibrium exists. This property

holds, for example, when σ(p) is constant and thus
demand is inelastic.

The equilibrium price of provider 2 is strictly above
its break-even price (p2 > pBE2 ) if all maxima of
provider 1’s revenue rate occur within the subinterval
[pBE1 , pBE2 − ε]. Only then provider 2 can choose to
advertise a higher price without creating an incentive for
provider 1 to deviate to a revenue maximizing price that
is above provider 2’s break-even price. Hence while all
Nash equilibria have the form given in Theorem V.1(a),
not any price profile that has this form is necessarily a
Nash equilibrium.

c) Profitability: Provider i profits from providing
secondary access only if it’s break-even price is lower
than its competitor’s (i.e., pBEi < pBE−i ): In this case
the provider i’s payoff given by Ri(p

BE
−i − ε, pBE−i ) =

W ∗i (pBE−i −ε, σ(pBE−i )) strictly exceeds the revenue with-
out secondary demand W ∗i (·, 0); hence profitability of
provider i follows. Otherwise provider i does not profit
from secondary demand: If pBEi > pBE−i it serves no
secondary users and if pBEi = pBE−i it serves secondary
users exactly at its break-even price. We point out that
in the latter symmetric case neither provider achieves
positive profit.

d) Best response dynamics: The equilibria pro-
vided in Theorem V.1 are consequences of best response
dynamics. The best response of provider i when facing
a competitor price p−i is to set its price slightly lower in
order to capture all of the secondary demand. This can
be formalized using the following lemma.

Lemma V.1 If pi > pBEi , then there is a price p′i such



that pBEi < p′i < pi and

W ∗i (p′i, σ(p′i)) > W ∗i (pi, αiσ(pi)). (5)

Namely, if provider i profits at a given price, ob-
taining the entire secondary demand is strictly more
profitable than obtaining part of the demand at a slightly
higher price. This property reflects an incentive for each
provider to unilaterally deviate from offering the same
price as its opponent, provided that the price is strictly
above its break-even price. A formal proof of Theorem
V.1 is given in [20] by making use of this best response.

Given initial prices p1 and p2 such that pi > pBEi , i =
1, 2, both providers will follow this strategy, lowering
their prices in turn. This process continues until the
market price drops so low that the provider with the
higher break-even price finds himself unable to lower its
price any further without incurring a net loss. Then the
other provider will choose to match this price or lower its
price slightly below, depending on what its own break-
even price is in comparison.

e) Comparison with classical Bertrand duopoly:
Theorem V.1 essentially asserts that the equilibrium
outcome of competition for secondary demand is a price
war. Price wars are also typical outcomes in the classical
Bertrand duopoly, hence it is worthwhile to put the
two settings in perspective. In the Bertrand game, for
a given price, both the revenue and the cost are linear
functions of demand. In contrast, in the present setting
neither revenue nor cost of secondary service is linear
in secondary demand, primarily because both quantities
rely heavily on blocking probabilities that are highly
nonlinear in the demand. In addition, the Bertrand model
precludes any capacity constraints and assumes that all
demand can be satisfied, whereas the model of this
paper is centered on a fundamental limitation in capacity.
Yet, interestingly, the equilibrium of the present game
resembles (and, depending on the secondary demand
function, may be identical to) the outcome of a Bertrand
game in which marginal cost is constant and equal to
the break-even price.

This similarity is a consequence of two nontrivial
properties established in the present paper: (i) insen-
sitivity of break-even price against secondary demand,
and (ii) Lemma V.1, which indicates that having more
secondary demand is always more favorable provided
that secondary service is priced above break-even price.
Both properties, however, rely on the assumption of
optimal coordination of secondary access and may not
extend to arbitrary access policies. In particular the
following section establishes that in the specific case
of uncoordinated secondary access, competitive market
equilibria may reflect market sharing at a continuum of

prices that are strictly above break-even prices, present-
ing a drastic deviation from Bertrand duopoly.

f) Extension to multiple providers: Equilibrium de-
scriptions of Theorem V.1 can be generalized to an arbi-
trary number of providers competing for the secondary
demand, each with their own primary users, capacities
and primary user rewards: Consider N such providers
and let pBEi continue to represent the break-even price
of provider i. Without any loss of generality, let us re-
index the providers if necessary so that: pBE1 ≤ pBE2 ≤
pBE3 ≤ . . . ≤ pBEN .

Further we define:

n = max{i : pBEi = pBE1 }.

Hence n is the number of providers that have the smallest
break-even price. We generalize the two cases presented
in Theorem V.1 as follows:

• If n > 1 then any price profile (p1, p2, · · · , pN )
such that

pi = pBE1 for i = 1, 2, · · · , n
pi > pBE1 for i = n+ 1, n+ 2, · · · , N.

is an Nash equilibrium. In each such equilibrium
providers 1, 2, · · · , n service the secondary de-
mand at their break-even prices thereby generat-
ing no additional profit. The secondary demand is
split among these providers according to an arbi-
trary probability vector [α1, α2, ..., αn−1, αn] where∑n
i αi = 1, αi > 0, which has no bearing on

equilibrium prices. The remaining N −n providers
do not capture any secondary demand.

• If n = 1 then there is a single provider whose break-
even price is lower than all the rest. In equilibrium
this provider captures the entire secondary demand
at a strictly profitable price, while the remaining
N − 1 providers cannot serve any secondary de-
mand. In particular Nash equilibria have the form

p1 ∈ argmax
p∈[pBE

1 ,pBE
2 −ε]

W ∗1 (p, σ(p)),

pi ≥ pBE2 for i = 2, 3, · · · , N.

VI. MARKET EQUILIBRIUM UNDER
UNCOORDINATED SECONDARY ACCESS

In this section we consider equilibrium regimes that
arise when competing providers grant uncoordinated
access to secondary demand. We shall argue that such
equilibria can be characterized explicitly and may be
drastically different than those under coordinated access.
In order to facilitate the exposition, this section focuses
on inelastic demand (that is, σ(p) = σ) but its qualitative
conclusions extend to general demand functions.



Under uncoordinated access, a provider does not
differentiate between primary and secondary users in
granting spectrum access requests. In turn, both types
of users experience the same blocking probability. This
probability depends on the aggregate demand and system
capacity, and can be computed using standard techniques
in teletraffic. Namely, when provider i serves secondary
demand σ, the two blocking probabilities are

Bi,2(λi, σ, Ai) = Bi,1(λi, σ, Ai) = E(λi + σ,Ci),

where E(λi+σ,C) is the Erlang-B formula given by (4).

The revenue rate of provider i, when serving sec-
ondary demand σ by charging pi per admitted request,
is then given by

Ŵi(pi, σ) = (1− E(λi + σ,Ci))σpi (6)
+ (1− E(λi + σ,Ci))λiKi,

where the first term corresponds to the reward collected
from secondary users that gain admission to the network,
while the second term corresponds to the reward col-
lected from the serviced primary users. (Here and in the
rest of this section we will consistently use the symbolˆ
to indicate the quantities associated with uncoordinated
access.)

A. Profitability

We recognize Ŵi(pi, 0) as the revenue rate of
provider i when it does not serve any secondary demand.
Similar to the profitability conditions for the optimal
coordinated access case stated in Theorem IV.1, note that

Ŵi(pi, σ) ≥ Ŵi(pi, 0) (7)

if and only if pi ≥ p̂BEi where

p̂BEi =
(E(λi + σ,Ci)− E(λi, Ci))λiKi

(1− E(λi + σ,Ci))σ
. (8)

Hence the provider incurs loss and has no incentive
to serve the secondary demand at a price below p̂BEi .
In turn p̂BEi is the break-even price of provider i under
uncoordinated access.

It is instructive to compare the break-even prices under
uncoordinated access and optimal coordinated access.
Firstly, p̂BEi ≥ pBEi because if the optimal admission
policy does not yield positive profit from secondary
demand then neither does any other policy. For typ-
ical parameters this inequality is strict. Consequently,
providers need to charge a higher price to secondary
users in order to avoid a net loss, which results in
the tendency to bid higher prices under uncoordinated
access. Secondly, in contrast to pBEi , the break-even
price p̂BEi for uncoordinated access depends on the value
of secondary demand σ.
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Fig. 5. Revenue rates under optimal coordinated and uncoordinated
access versus secondary demand - network parameters: pi = 30, λi =
13, Ci = 20 and Ki = 50.

B. Market Sharing

While Lemma V.1 establishes that market sharing is
not favorable under optimal coordinated access, these
results do not necessarily extend to a case when uncoor-
dinated access is implemented. As it turns out, under
an uncoordinated access implementation, whether the
revenue rate increases or decreases by sharing secondary
demand depends on another critical parameter we shall
establish later.

Before we get into our analysis, it is insightful to
compare how the revenue rates Ŵi(pi, σ) and W ∗i (pi, σ)
behave under uncoordinated and optimal coordinated
access strategies. Figure 5 illustrates the two revenue
rates for a range of secondary demand σ ,when all other
parameters are fixed. When plotting both revenue rates,
the secondary price pi is chosen above both break-even
prices so that the optimal revenue rate W ∗i (pi, σ) is
strictly increasing in σ. As a by-product of optimality,
W ∗i (pi, σ) ≥ Ŵi(pi, σ) under all circumstances.

However, Ŵi(pi, σ) has an important qualitative dif-
ference relative to its optimal counterpart: It increases
for a range of secondary demand σ and decreases
afterwards. This happens because for small σ, secondary
users enhance revenue by using the leftover capacity
from primary users, but as σ increases secondary access
occurs at an increasing expense of primary access and
that leads to a decline in revenue if primary users are
more valuable (that is, if pi < Ki). This property opens
the possibility that Ŵi(pi, αiσ) > Ŵi(pi, σ), in which
case a provider has incentive to share secondary demand
at prices higher than break-even. Consequently, it has a
profound impact on the outcome of a competitive setting.



Access Policy Equilibrium price Equilibrium profit
Coordinated p1 = p2 = 0.91 P1 = P2 = 0

Uncoordinated 23.46 ≤ p̂1 = p̂2 ≤ 34.11 0 ≤ P̂1 = P̂2 ≤ 121.54

TABLE I
EQUILIBRIUM PRICES AND RESULTING PROFITS FOR THE SETTING CONSIDERED IN EXAMPLE VI.1.

To formalize this intuition let us define

p̄i =
(E(λi + σ,Ci)− E(λi + αiσ,Ci))λiKi

(1− E(λi + αiσ))αiσ − (1− E(λi + σ))σ
.

It can be verified directly from (6) that:

Ŵi(pi, αiσ) > Ŵi(pi, σ) for pi < p̄i (9)

Ŵi(pi, αiσ) ≤ Ŵi(pi, σ) for pi ≥ p̄i. (10)

Thus, only up to the price value p̄i, any provider i
would benefit from a reduction in its secondary demand.
The price p̄i can be interpreted as a market sharing
threshold for provider i: Any price above this threshold
renders secondary demand too valuable to share and
warrants a price war. Below this threshold, the provider
has an incentive to remain at an equilibrium that reflects
market sharing, provided the price satisfies the initial
profitability condition in Eq. (7), which translates to
being above the break-even price p̂BEi .

C. Equilibrium

Competitive equilibria under uncoordinated access can
now be determined depending on the critical price values
p̂BEi and p̄i of all providers i. Figure 6 illustrates a par-
ticular placement of these parameters for two providers.
In the illustrated setting, the market sharing threshold
exceeds the break-even price (that is, p̄i > p̂BEi ) for
each provider. Furthermore the price intervals [p̂BE1 , p̄1]
and [p̂BE2 , p̄2] have a non-empty intersection; therefore
there exist common price values that are above break-
even values and acceptable for market sharing for both
providers. In turn, there is a continuum of equilibria
strictly above the break-even prices. We point out that
the nature of equilibria depend on the relative ordering
of p̂BEi , p̄i of all providers.

We conclude this section with a numerical example
concerning a symmetric setting.

Example VI.1 We consider two network providers with
identical parameters: Primary arrival rate λi = 13,
capacity Ci = 20, and revenue collected per serviced
primary user Ki = 50. We continue to assume inelastic
secondary demand whose value is chosen to be σ = 20.
We assume that secondary demand splits equally in the
case of equal prices, that is, α1 = α2 = 0.5.

The break-even price for coordinated access is com-
puted as 0.91; hence by Theorem V.1 the unique price
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Fig. 6. Point (A) represents the Nash equilibrium under optimal
coordinated access, and the continuum of points in (B) is the set of
Nash equilibria under uncoordinated access.

equilibrium under coordinated access is p1 = p2 = 0.91
and no provider profits from secondary demand.

The break-even price for uncoordinated access is
p̂BEi = 23.46 and the market sharing threshold is
p̄i = 34.11. Hence, any price profile (p, p) where p lies
in the interval [23.46, 34.11] constitutes a competitive
equilibrium. For example, if provider −i adopts the
secondary price p−i = 30 then

Ri(pi, p−i) =


Ŵi(pi, σ) = 74.66 if pi = 29.99

Ŵi(pi,
σ
2 ) = 90.01 if pi = 30

Ŵi(pi, 0) = 0 if pi > 30,

in particular pi = 30 is the best response of provider i;
and so the price profile (30, 30) is a Nash equilibrium. A
comparison of possible equilibria and associated profits
under both access strategies is given in Table I.

Interestingly, a policy (here uncoordinated access) that
is sub-optimal for a provider in isolation results in
competitive equilibria in which all providers are strictly
better off than resorting to their optimal individual poli-
cies.

VII. CONCLUSION

In this paper we investigated the equilibrium out-
comes in a secondary spectrum market where multi-
ple firms compete against each other. We focused on



two proposed regimes for secondary spectrum access,
namely coordinated access and uncoordinated access
under private commons. Such an investigation can help
provide important guidance to a firm’s strategic decision
process, by explicitly determining the parameters on
which market success depends. To accomplish this goal,
we formulated the problem as a non-cooperative game,
in which providers with finite network capacities are
making strategic pricing and access control decisions
with respect to secondary users.

We first analyzed the case of coordinated access,
for which the optimal access policy is of threshold
type. We demonstrated that each provider has a unique
break-even price, above which profitability is guaranteed
regardless of the secondary user demand response. We
provided an explicit analytical formula for the break-
even price, thus establishing its relationship with the
system parameters (i.e., the primary load, primary re-
ward, and system capacity). The break-even price of
each provider is independent of the system parameters
of other providers. Interestingly, the break-even price is,
in general, significantly smaller than the primary reward.
Thus, the break-even price is less than 1% of the primary
reward if the primary load is below 68% and the number
of channels C exceeds 32. Even at the critical load where
the primary load is equal to the system capacity (i.e.,
λ = C), the break-even price remains below 20% of the
primary reward for C ≥ 16.

Next, using the notion of Nash equilibrium, we for-
malized the possible outcomes resulting from a non-
cooperative game in which optimal coordinated access
is implemented by two or more network providers.
We explained how the best response dynamics of each
provider reflect a price war, in which each provider is
driven into advertising a price slightly below that of its
competitors as long as this price is above the break-
even price. This price war leads to a single provider
(that with the lowest break-even price) capturing the
entire secondary spectrum market. Although the demand
function does not play a role in determining the identity
of the winning provider, we showed that is does affects
the revenue-maximizing price for that provider and the
placement of the Nash equilibria. In the case of multiple
providers sharing the same lowest break-even price, the
game results in a market equilibrium in which none of
the providers make profits.

Finally, we showed that the market dynamics funda-
mentally differ when providers implement uncoordinated
access. We demonstrated that the break-even price is no
longer insensitive to the secondary demand and market
sharing becomes a possible best response. It is worth
noting that even though a provider i might find it desir-
able to share the market, it would still go into a price war

for price values higher than its market sharing price p̄i,
thus preventing convergence to an arbitrarily high price
for secondary access. The possible market outcomes
under an uncoordinated access policy become complex
when the number of providers increases, but deserve
further study, since they may result in a larger number
of providers joining the market and higher revenues than
possible under an optimal coordinated access policy.
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