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Abstract We explore and demonstrate the feasibility of implementing dis-
tributed solutions for advance reservation of network resources. We introduce a
new distributed, distance-vector algorithm, called Distributed Advance Reser-
vation (DAR), that provably returns the earliest time possible for setting up a
connection between any two nodes. Our main findings are the following: (i) we
prove that widest path routing and path switching (i.e, allowing a connection
to switch between different paths) are necessary to guarantee earliest schedul-
ing; (ii) we propose and analyze a novel approach for loop-free distributed
widest path routing, leveraging the recently proposed DIV framework. Our
routing results directly extend to on-demand and inter-domain QoS routing
problems.

Keywords Grid and cloud computing; scheduling; routing; quality of service

1 Introduction
1.1 Background

Modern grid and cloud computing applications require unprecedented network
capabilities to support transfer of extremely large amounts of delay-sensitive
and throughput-sensitive data among various data centers, national labs, uni-
versities, and other research centers. As a simple illustration, experiments run
on the Large Hadron Collider (LHC) at CERN in Switzerland generate huge
datasets, reaching the order of dozens of petabytes [25]. This information is
then transferred from CERN to various sites around the world for the purpose
of storage, processing, and analysis.

To address the above challenges, research and commercial providers have
initiated the deployment of novel networking architectures, which principles
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represent a major shift from those underlying traditional TCP/IP networks.
One of the most important and distinctive features of these new architectures is
to support advanced reservation. As such, distributed hosts are provided with
the ability to reserve in advance dedicated channels (circuits) to connect their
resources. The goal of this design is two-fold: (i) provide deterministic qual-
ity of service guarantees to applications with strict bandwidth, delay, and/or
jitter requirements, such as remote instrumentation and collaborative visual-
ization applications used in grid computing [16]; (ii) provide traffic isolation to
large bulk data transfer applications, such as GridFTP [3]. For both types of
applications, current TCP /IP network architectures have been found to be in-
adequate, due to unacceptable throughput degradation and delay fluctuations
caused by interfering traffic [12].

The advance reservation paradigm has been successfully proven and tested
by a number of experimental projects, such as OSCARS [20,28] and Ultra-
ScienceNet [30], and is now part of the operation of production networks, such
as ESnet [13] and Internet2 [21]. Moreover, ESnet has recently established
a second core network, called Science Data Network (SDN), that uses ad-
vance reservation services to set-up circuits and allocate dedicated bandwidth
to flows. The main purpose of SDN is to provide support to the relatively
small number (hundreds to thousands) of extremely large volume data flows
(Gigabytes to Terabytes) that dominate ESnet traffic [22].

1.2 Problem

SDN as well as other similar advance reservation architectures are managed
centrally, i.e., a central scheduler performs advance reservations based on
knowledge of the entire topology of its domain. Such solutions do not scale to
large network domains or administratively heterogeneous networks, where net-
work administrators do not wish to disclose internal topology information [37].

Motivated by current limitations of centralized approaches, our goal in this
paper is to identify fundamental constraints and requirements for implement-
ing distributed advance reservation with guaranteed delay performance. By
distributed, we mean that the calculation of routes and scheduling of connec-
tions are performed by routing nodes rather than on a central computer. By
delay guarantees, we mean that the time elapsed from the moment the request
is placed until the start of the corresponding connection is minimized (based
on the current network state). We refer to such a property as achieving min-
imal delay or earliest scheduling. Our objective is to constructively show the
feasibility of implementing distance vector routing, whereby each node only
maintains a successor (best next hop based on some metric) and a correspond-
ing metric value for each destination and each time slot (a time slot roughly
corresponds to a period of time delineated by connection set-up or release
events; a more precise definition will be given in Section 3).

We divide the task of devising a distributed advance reservation algorithm
into two sub-problems:
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1. Scheduling: assuming that every node knows its successor and the metric
value to all destinations at all time slots, find and reserve resources at the
earliest time interval that can accommodate a connection satisfying the
desired user criteria.

2. Routing: calculate a successor for each destination and time slot at ev-
ery node. This way, every node knows its successor upon the arrival of a
request.

Given the constraints imposed by the data structure available at nodes,
our contributions are the following:

1. We show that both widest path routing, i.e., routing on the path with
largest end-to-end bandwidth, and path switching, i.e., allowing connection
to switch between different paths, are necessary to ensure earliest schedul-
ing (minimal delay) of connections.

2. We prove that a simple implementation of distributed asynchronous Bellman-
Ford for widest path routing [6] may suffer from permanent routing loops
in a time-varying network supporting connection set-ups and releases.

3. We propose a distributed loop-free routing module called the Successor Se-
lection Module (SSM) that provably computes the widest path for each pair
of nodes and each time slot, leveraging a recently proposed loop-prevention
paradigm called Distributed Path Computation with Intermediate Variables
(DIV) [31].

4. Based on the principles of widest path routing and path switching and using
the routing information provided by SSM, we devise an algorithmic solution,
called Distributed Advance Reservation (DAR), that provably guarantees
minimal delay for each arriving request.

The rest of this paper is organized as follows. We first review related work
in Section 2. Next, in Section 3, we explain our notation and assumptions
and define the data structure maintained at nodes. Section 4 explains the DAR
algorithm and is divided into two parts: (i) scheduling; and (ii) routing. In
the first part, after analyzing the requirements imposed by earliest scheduling,
we present the DAR algorithm and prove its properties. In the second part, we
first bring negative results showing the existence of permanent routing loops
in naive implementation of distributed Bellman-Ford for widest path routing.
We then review the DIV loop prevention mechanism and judiciously adapt it
to our specific problem. We develop the SSM routing algorithm and prove its
theoretical properties. We conclude the paper in Section 5

2 Related Work

Our work relates to several areas, namely joint routing and scheduling, QoS
routing, and loop prevention. We briefly review each of them next.

There exists a rich literature on advance reservation services [41,18,38,33,
19,23,4,32,8,29,9]. Most algorithmic work focuses on centralized solutions. A
notable exception is [15], but this work provides no theoretical performance
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guarantees. Additionally, a recent work [42] proposes a distributed advance
reservation mechanism based on link-state routing. The problem with link-
state routing schemes is that they require each node to have some global
topology knowledge, which means that they share several of the same prob-
lems as centralized solutions. An earlier and abbreviated version of our paper
appears in [14].

Some references focus on the signaling aspects of a distributed solution. For
example, [34] discusses possible modifications to the RSVP protocol. More re-
cently, several backbone networks (Internet2 and ESnet in the US, GEANT2
in Europe, and Canarie in Canada) have been working on the specifications
of a new protocol, called Inter-Domain Controller Protocol (IDCP), allow-
ing centralized schedulers in different domains to communicate [1]. Our paper
complements this effort by offering a distance vector-like routing protocol that
reports available bandwidth information as a function of time without reveal-
ing internal domain topologies.

Most work on QoS routing employs link-state routing, especially when it
comes to widest path routing (see [7] for an excellent survey). Ref. [11] surveys
various multi-criteria QoS distributed routing algorithms that try to reduce
the complexity of this problem. Ref. [40] studies multi-criteria QoS routing
and presents several combinations of criteria for which the problem is proved
to be NP-complete. Ref. [35] investigates the properties that QoS criteria must
possess to allow for computation of optimal paths using a generalized version
of the Dijkstra algorithm.

We show in this paper that in order to guarantee the earliest connection
starting time, selection of the widest path is required. Refs. [10,40] study
widest path routing based on distance vector structure. The algorithms are
assumed to run synchronously (an assumption which we do not make) since
all nodes must always be at the same stage of the execution. More critically,
their solutions do not consider how to handle updates resulting from link band-
width changes. We show in this work that such updates can trigger permanent
routing loops, unless they are properly addressed.

Distributed distance-vector routing is notoriously known to suffer from
routing loops in dynamic networks. In the case of shortest-path routing, such
loops may result into the infamous count-to-infinity problem leading to slow
convergence. For the case of widest-path routing, we will show in that the
problem is more severe, namely no convergence at all.

Next, we review some existing methods to prevent routing loops. Refs. [17,
39] introduce loop-free shortest path algorithms extended from the Bellman-
Ford algorithm [6]. Specifically, Ref. [17] proposes an algorithm called DUAL
which restricts selection of the successor to a set of neighbors called the feasi-
ble successor set and triggers a synchronous update procedure called diffusing
computation to synchronize a group of nodes in case of any change. Ref. [39]
proposes an alternative method to prevent routing loops. Specifically, it main-
tains a pair of invariant conditions called Loop Free Invariant (LFI) at each
node that depend on the node’s cost to destination and that of its neighbors.
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The LFI conditions prevent formation of transient loops. The update mecha-
nism is similar to that of DUAL.

The previous references considered prevention of routing loops for shortest
path routing. Ref. [31] offers a framework called DIV for loop prevention that
can be used in conjunction with other metrics, which is critical for our paper.
DIV is roughly a hybrid of the DUAL and LFI algorithms. We explain DIV in
detail in Section 4.2. Here, we outline some of its advantages, other than its
generic nature, compared to the previous references: (i) it supports multi-path
routing; (ii) its feasibility conditions are more relaxed compared to the DUAL
algorithm and hence triggers synchronous updates less frequently; and (iii) it
can handle multiple overlapping updates simultaneously.

3 Model
3.1 Notation

Consider a network modeled with a weighted graph G, either directed or undi-
rected, consisting of a set of nodes V' and a set of links F. The graph is dynamic
meaning that weights change over time. Nodes represent hosts and routers and
links are reliable channels connecting the nodes. We denote e;; the link con-
necting node i € V to node j € V. We denote N(i) the set of neighbors of
node 1.

Connection requests arrive randomly over time across the network. Any
pair of nodes may request a connection at any time. Each request specifies
the transmission source s, the transmission sink d, a desired bandwidth B and
a connection duration 7. Users can restrict the connection start time to an
interval [tq,tp]. Otherwise, t, = tnow and t, = 0o where t,4,, is the present
time.

Because of advance reservation of connections, a common time frame must
be maintained at each node of the network. Hence, we assume coarse-grained
synchronization (e.g., on the order of seconds) between clocks at different
nodes to agree on the set-up time and release of connections. We emphasize
however that our routing algorithms, and SSM in particular, can be run in a
fully asynchronous manner.

We associate a weight wle;;] with each link e;; based on the desired rout-
ing optimization criterion. Examples of link weight are length (denoted {[e;;])
which in our settings is equivalent to link hop count (equal to 1) and bandwidth
which is the bandwidth available on the link (denoted ble;;]).

A path from node i to node j consists of an ordered list of one or more
consecutive links that connect ¢ to j and is denoted F;;. The path weight
is a combination of weights of links forming the path. If the path weight is
based on bandwidth then the path weight is given by min,, ;e p,,{b[es;]} for any
given path Pgq. If the path weight is based on length then the path weight is
Zeij ep,, l[eij] for any given path Psq. A path with the optimal weight among
all paths from s to d is called the optimal path.
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We denote w;; the estimated path weight from ¢ to j by our routing algo-
rithm. Likewise, we denote b;; and l;; the estimated path bandwidth and the
estimated path length respectively. The optimal values of the above variables
are denoted w;;, b;; and [7;.

The successor of node i to destination d on some path Py is defined as
the immediate next hop of ¢ on the path and denoted m;q. If j = m;q then
node i is the predecessor of j. An ancestor of a given node ¢ with respect
to destination d is defined as a node that connects to ¢ through a chain of
consecutive successors. If node k is an ancestor of 4, then 7 is called a descendant
of k.

3.2 Assumptions

The statements proposed in this paper are correct under the following assump-
tions which are made to simplify the analysis:

1. Communication links do not drop packets.

2. Links never fail.

3. There is no Byzantine behavior at nodes, i.e., nodes do not drop, modify, or
mis-route packets in an attempt to disrupt or degrade the routing service.

4. We assume that requests do not arrive simultaneously.

5. Clocks at different nodes are coarsely synchronized (e.g., on the order of
seconds). This is in order that nodes agree on the set-up time and release
of connections. We do not really need this assumption for the successor
calculations of the routing sub-problem.

6. Later in this paper, we show that, following any change in the network, all
the variables maintained at nodes eventually converge. We assume that the
convergence always happens earlier than the arrival of a new connection
request to the system.

This does not imply that there is no way we can resolve or alleviate these
issues but rather that they are commonplace to distributed network routing
algorithms. Much work in literature has addressed them and solutions are
extensible to our particular case [2,36,26].

3.3 Node data structures

In this section, we describe the data structures maintained by nodes and illus-
trate them with an example. Here, we detail only part of the data structure at
nodes which is relevant to the performance of the DAR algorithm. This part is
consistent with the usual definition of distance vector routing. In section 4.2,
we add additional variables used uniquely to prevent formation of loops.

To accommodate advance reservation, every node should maintain relevant
information regarding network state for all future times. Since the available
link bandwidths change over time because of scheduled set-up or release of
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Fig. 1 The figure shows a network with changing link state: (a) an undirected graph of
four nodes representing a network (b) available bandwidth on links eap , epc, ecp, and
epp over time. Since the graph is undirected every link can be presented with two formats.
For example, egqp and ep 4 represent the same link.

connections, the variables maintained by nodes are time dependent (we intro-
duce the node variables in the next paragraph). To simplify the analysis, we
divide the continuous time axis into discrete slots delineated by changes in
the values of the node variables. Therefore, node variables remain fixed during

each time slot. We refer to tgid), tgd), e 5} ) as the slot transition instances for

node i with respect to destination d, where tgid) is the present time (t04,) and

tsfd) = o0o. Note that the time slots are not necessarily the same for different
source destination pairs. They are not fixed and pre-determined but formed
dynamically with scheduled set-up and release of connections.

Every node i maintains the following state variables for each future time
slot for each destination d: (i) a successor for destination d, denoted m;q(t)
(ii) an estimate of the optimal path weight from i to d denoted wj,(¢) (iii)
an estimate of the optimal path weight denoted w;d(t) from j to d for all
neighbors j € N(i) (iv) the link weight w[e;;](¢) from ¢ to each neighbor
j € N (7). The last item does not depend on the destination. This is consistent
with the standard data structure used in distance vector routing with the
difference that our structure must include future states to support advance
reservation. Note that although all of the above variables depend on time ¢,
they are fixed during each time slot.

We show in the next section that given the presented data structure at
each node, the successors must be selected based on widest path optimization
to guarantee the earliest connection start time.

Ezxample Figure 1.a shows a network consisting of four nodes and four undi-
rected links. Link bandwidths change over time as depicted in Figure 1.b

Table 1 depicts the node data structures related to the network of Figure
1.a. This table shows only the data used directly by algorithm DAR. Each node
maintains for each destination and time slot its successor, and the estimated
path bandwidth.
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source A
destination A B C D
time (hours/AM) | 12:00-c0 | 12:00-c0 | 12:00-co | 12:00-2:00 | 2:00-co
next hop - B B B B
path bandwidth - 10 10 10 20
source B
destination A B C D
time (hours/AM) | 12:00-co | 12:00-co0 | 12:00-co | 12:00-2:00 | 2:00-co
next hop A - C C D
path bandwidth 10 - 10 10 20
source C
destination A B C D
time (hours/AM) | 12:00-c0 | 12:00-c0 | 12:00-c0 12:00-00
next hop B B - D
path bandwidth 10 10 - 10
source D
destination A B C D
time (hours/AM) 12:00-2:00 | 2:00-00 12:00-2:00 | 2:00-0c0 12:00-00 12:00-00
next hop C B C B C -
path bandwidth 10 10 10 20 10 -

Table 1 Node data structures for widest path successor selection.

We present a case study regarding node B. There are two time slots
for destination D: mpp(t) = C and bh,(t) = 10 Gbit/s for time ¢ from
tBPP =12:00AM to tFP = 2:00AM and 7pp(t) = D and b, (t) = 20 Gbit/s
for time ¢ from t&P = 2:00AM to t¥P = co. However at the same node B there
is only one time slot for destination C: mpc(t) = C and by (t) = 10 Gbit/s
for time ¢ from tP¢ = 12:00AM to t£¢ = cc.

4 DAR algorithm

Our objective is to devise a distributed algorithm guaranteeing that each re-
quest is provided with minimal delay. By minimal delay, we mean that the
time until a request is scheduled is minimized, based on the network state
at the time of arrival of the request (i.e., we consider an on-line algorithm).
We also assume that previously scheduled requests cannot be reshuffled. We
emphasize that our optimization metric does not guarantee the smallest pos-
sible (i.e., minimum) delay for each request. However, this problem is very
difficult and even proven to be NP-hard for centralized, off-line variants [24].
Therefore, several advance reservation algorithms proposed in the literature
for centralized settings are based on the earliest-scheduling criterion [19,8].
We employ here the same metric for a distributed setting.

We divide the problem of devising a distributed algorithm into two sub-
problems, one for scheduling and one for routing. As shown next, these two sub-
problems are not fully dissociated. In the first part, after stating the routing
requirements imposed by delay optimization, we introduce an algorithm called
DAR that provably returns the earliest connection start time. In the second part,
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Fig. 2 Illustration of various successor selection criteria regarding the graph of Figure 1:
(a) successor tree for destination D based on widest path optimization (b) successor tree for
destination D based on shortest path optimization. Note that successor trees for destinations
A, B and C should be formed separately in a similar way.

after highlighting the fundamental problems involved in distributed widest
path routing, we briefly describe a recently proposed approach called DIV that
provides a generic framework to solve loop issues in distributed routing. One of
our main contributions is to introduce an algorithm called SSM that judiciously
selects adequate optimization metrics for DIV to ensure loop-free calculation
of routes. We conduct a performance analysis of SSM and prove its correctness.
Note that the DAR algorithm relies on the routing tables computed by SSM.

4.1 Scheduling

We start this sub-section by mentioning the constraints imposed on routing
because of the earliest scheduling optimization. For added clarity, we occa-
sionally refer to the example network of Figure 1 and Table 1 with concrete
examples.

4.1.1 Widest routing requirement

Figures 2.a and 2.b depict the successor graphs based on widest path opti-
mization and shortest path optimization respectively for destination D of the
network illustrated in Figure 1.a.

Let us consider a particular example. Assume a request arrives at 12:00AM
for a 10 Gbit/s connection lasting 3 hours from node A to D. According to
Figure 2.b, the shortest path successors of A and B toward D are wap(t) =
B and wpp(t) = D at all times ¢ > 12:00AM leading to path (ean,epp).
We observe that it is not possible for a connection requesting 10 Gbit/s to
start at 12:00AM because bandwidth of the mentioned path is 5 Gbit/s from
12:00AM to 2:00AM. The earliest time to start the connection is 2:00AM for
that path, though we could have started the connection at 12:00AM using
path (eap,epc,ecp). This simple example reflects a restriction that exists
with distributed hop-by-hop routing algorithms in general. With shortest path
successor selection, longer paths with larger bandwidth are ignored. We prove:
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Theorem 1 With the given node data structure and hop-by-hop routing paradigm,
widest path routing is required to achieve earliest scheduling (i.e., one must set
wle;;] = ble;;] for each link e;;).

Proof The proof is by contradiction. Assume that at every node the successors
and path weights for each time slot and destination are selected based on some
given criteria other than widest path optimization. Also assume that we are
able to achieve the earliest connection start time based on the mentioned
structure for every request. Since the primary successor selection criterion is
not the largest path bandwidth, there could exist some time slot [t/,t' + A]
during which the achieved path bandwidth by from a given source s’ to a
given destination d’ is less than the widest path bandwidth between the same
pair during this interval, i.e., byrq» < b3, . In that case, we can generate a
request (s',d', B', A,t', 00) where B’ is larger than by and smaller than b7, .
Given such a request, the earliest connection starting time possible based on
the mentioned structure is ¢’ + A or later. However, the network resources are
sufficient to start this connection at ¢’. This contradicts the assumption that
we are able to achieve the earliest connection start time for every request using
the mentioned structure and the theorem follows. |}

4.1.2 Path switching

We reconsider the network of Figure 1.a and the example request from A to
D described in previous sub-section. According to the table of node A, based
on the widest path optimization, we have for ¢ > 12:00AM, wap(t) = B and
wi p(t) = b% p(t) = 10 Gbit/s. Hence it seems natural to assign the requested
connection to the time interval 12:00AM to 3:00AM. However, according to
the same table, for ¢ € [12:00AM, 2:00AM] we have mpp(t) = C, and for
t > 2:00AM we have mgp(t) = D. Thus the successors in table 1 do not provide
a fixed path for connection during 12:00AM to 3:00AM. This restriction is
concealed at node A. Therefore, A cannot decide to start the connection at
2:00AM to avoid the inconsistent paths throughout one connection.

We overcome the mentioned restriction with the aid of path switching.
With path switching, a connection is not restricted to use the same path over
all its duration, i.e., it can switch paths. Hence, we reserve in advance the
paths as well as relevant switching information. The concept of path switching
was first introduced in [8] in the context of centralized routing with advance
reservation.

Back to our example, we see that one can reserve a connection from
12:00AM to 3:00AM from A to D with bandwidth of 10 Gbit/s provided
that during interval [12:00AM, 2:00AM] the reserved path is (eap,epc,ecp)
and during interval [2:00AM, 3:00AM] the reserved path is (eap, esp).
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4.1.8 Presentation of DAR algorithm

Referring to the node data structure presented earlier, assume that the esti-
mated widest path bandwidth b},(¢) from every node i to d is optimal (widest).
Based on this assumption, we want to automate the process illustrated above
for finding the earliest connection start time for each arriving request.

We present next the scheduling component of DAR which provably returns
the earliest connection start time and a path (or sequence of paths in case of
path switching).

Upon arrival of a request R = (s,d, B, T,t4,ty), DAR searches for a point
in time ¢ within the time frame [t,,¢;] such that the bandwidth constraint is
satisfied, i.e., b*,(t®) > B for all t € [tF,tF + T).
(sd) (sd)

Every node, such as s, must regularly update its time slot structure t;", ..., t
since the first element of the list must always correspond to the present time
tnow- The update process at node s consists of removing every time slot k
whose start time t,(:d) < tnow, updating the indices of all remaining time slots
so that the first slot is indexed 1 and t&‘gd) = thow-

Algorithm DAR run at node s:

1. Upon arrival of a request R = (s,d, B, T, t4,1p),
(a) Initialize connection start time ¢t to t,
(b) If b%,(t) > B does not hold at all times ¢ € [t¥, ! + T then,
i IftB > ¢y,
— Reject the request

ii. Otherwise,
(sd)

— Find a slot j with minimum value of j such that ¢, > 1 and

set 7 to t{°?
— Go back to step 1b

(¢c) If request is admissible, reserve connection
2. Go tostep 1

After a request is found feasible, a distributed signalling protocol runs the
reservation process. The source s sends a reservation request message to its
successor(s). The message indicates the destination, the amount of reserved
bandwidth and the reservation time interval. Note that, due to path switching,
s may have different successors at different times during [t??, t® + T, and thus
may need several messages. Every node that receives a reservation request
message, updates its routing table and sends reservation messages to its own
successor(s) and so forth till the destination node d is reached.

Note that due to the propagation and processing delay of reservation mes-
sages flowing from sources to destinations, resource reservation conflicts be-
tween various incoming requests may arise. We do not get into the details of
this problem here, as there already exist standard solutions in the literature
for resolving reservation conflicts and re-routing of connections [36].
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4.1.4 Performance analysis

We next prove the most important property of DAR:

Theorem 2 DAR provides the earliest connection start time for each arriving
request.

Proof Assume the path Ps4(t) constructed by consecutive successors from node
s to destination d is the widest path from s to d at every time ¢ (we will prove
this in Theorem 4).

We consider two cases: (i) If we only consider P,4(t), then DAR chooses the
earliest time t# to set up the connection because according to step 1(b)ii, DAR
always investigates the earliest slot j after ¢, that is followed by a continuous
duration T with sufficient resources between s and d. (ii) On the other hand,
assume there exists a path P.,(t) from s to d other than Ps4(t), with available
bandwidth B or more during ¢t € [t'F,¢'® + T] where t, < t'® < tf. Since
P,4(t) has the largest available bandwidth at any time, bandwidth of Pyy(t) is
at least equal to the bandwidth of P/,(t) which exceeds B for t € [t/ ¢/ +T.
But in this case DAR would have selected time /% at step 1(b)ii. [l

We may improve the performance of DAR by choosing the successor that re-
turns the shortest path length among all widest path successors. Although this
may improve performance by encouraging shorter paths compared to random
widest path selection, we prove:

Lemma 1 Given the presented node structures, shortest-earliest path opti-
mization is not feasible.

Proof We prove this lemma with a negative example. Consider again the ex-
ample network of Figure 1.a with the same bandwidth-time plots for links
esc, ecp and egp but assume e4p has constant bandwidth of 5 Gbit/s after
12:00AM. If we select the successor returning the shortest among all widest
paths, then mpp(t) = C for ¢t € [12:00AM, 2:00AM]. We also have map(t) = B
at all times ¢ > 12:00AM since this is the only option. Given this, we get
P = (eap,epc,ecp) with bandwidth 5 Gbit/s from 12:00 to 2:00AM, while
the shorter path (eap,epp) with the same bandwidth of 5 Gbit/s during the
same time interval is ignored. This proves that, using this data structure,
selection of the shortest-earliest path is not guaranteed. [

Comparison with performance of a centralized algorithm The above results
show that DAR must employ widest-earliest scheduling. A centralized approach,
on the other hand, could implement shortest-earliest scheduling (i.e., returns
the shortest paths among all the earliest available) [8]. Simulation results, re-
ported in [8, Section V.C.2], compare the performance of two similar schemes
(called widest-shortest and shortest-widest). It is assumed that requests arrive
according to a Poisson process with the same rate at each node, the destination
for each request is selected uniformly at random among all nodes (excluding the
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source), the connection duration is exponentially distributed, and the band-
width requested is distributed uniformly on a given range. Simulations run
for different topologies suggest that the mazimum sustainable load of widest-
earliest scheduling is about 10-15% lower than that of shortest-earliest schedul-
ing, where the maximum sustainable load is defined as the maximum rate of
request arrivals before the average delay of requests becomes unbounded. This
result illustrates the trade-off between deploying a fully distributed solution,
such as DAR, and achieving higher performance with a centralized solution. In
this case, the performance gap between the two solutions seems reasonable.

4.2 Pre-computation of routes

In the previous section we have assumed that nodes know the appropriate
successor to every destination for all future times. We proved that given our
particular node data structure only the widest path to destination guarantees
earliest scheduling.

In this section we present a distributed algorithm for selection of successors
which we refer to as the Successor Selection Module (SSM). SSM runs at every
node independent of other nodes and DAR. First we explain the challenges
of achieving widest paths given such a data structure. Then we prove that
the paths tentatively constructed by SSM converge to the widest for every
destination. Note that DAR relies on the steady state results produced by SSM.

Notation: to simplify the presentation, we discard the time dimension
throughout this section and present all algorithms as if they were on-demand.
Every algorithm presented here can be considered as an advance path calcula-
tion for a given time slot and can be directly extended to all future time slots.
Therefore, we eliminate the time argument from our notation in what follows
since node variables remain unchanged during every slot.

The problem of successor selection for distributed hop-by-hop routing in
networks has been visited frequently in the literature. The common approach
is using a distributed asynchronous version of the standard Bellman-Ford algo-
rithm [2,27,6]. However, much of the focus of prior work has been on shortest
path routing rather than any other metric for the reason explained next.

4.2.1 Routing loops

Assume we modify the distributed asynchronous shortest path Bellman-Ford
algorithm for widest path optimization by replacing link lengths and path
lengths by link bandwidth and path bandwidths respectively and by adjusting
the relaxation equation accordingly.

In our presentation below, the variable bgti) for j € N(i) is the estimate of
b;q stored at node i according to the last message communicated from j to <. In
brief, every node i tries to maintain the largest value of min{b[e;], b;.fi)} among
all of its neighbors j and it elects as successor the neighbor j° which maxi-
mizes this term. Whenever a neighbor j changes b;4 it notifies all its neighbors
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before 2:00 am after 2:00 am
A 2 B3 C 3 D A 2 B3 C 1 D
o —0—0—0 o —0—>0—90

Fig. 3 Illustration of permanent loops with widest path routing in a linear 4-node network:
the widest path successors toward destination D are demonstrated with arrows and the
numbers above links show available link bandwidth in Gbit/s at the given time.

including ¢. Then ¢ modifies its own estimate of b;q by setting byg = bjq. Then

i recalculates big = max;c n(;){min{ble;;], bgzd)}} and switches successor if nec-
essary. If link bandwidth b[e;;] changes, a similar update should take place at
. Once node i changes b;q (either because of a change in a neighbor’s esti-
mated bandwidth or change in an adjacent link bandwidth) it notifies all its
neighbors.

We model nodes as state machines. Next we present formally the states,
transitions and procedures run at any node ¢ for calculation of the widest path
to any destination d.

Widest path Bellman-Ford at node i € V:

State variables:

— b;q; initialized 0 if ¢ # d and otherwise co.

mia € N (i) Unull; initialized to null.

— bley;] for all j € N(4); initialized to full capacity of link e;;.
— bgg for all j € N(7); initialized 0 if j # d and otherwise co.

Transitions:

— if 7 receives a message regarding change in b;4 from neighbor j:
— ¢ updates its own estimate of node j bandwidth: set bgg = bjq
— if big # max;e () {min{ble;;], b9 1},
— i recalculates its bandwidth estimate: set b;g = max ;¢ y(;) {min{b[e;], b%) +H

— i updates its successor: set miq = argmax;¢ y ;) {min{ble;], b;g}}
— if b;q changed, ¢ notifies all neighbors about new b;q4

In what follows we explain an important performance failure of the pre-
sented algorithm. It is well known in the context of shortest path routing that
asynchronous Bellman-Ford may create transient routing loops in case of link
failures which slows down its convergence [6]. Besides, if some node is com-
pletely disconnected from the destination, convergence may take forever (this
phenomenon is known as the count to infinity problem) [6].

In our case, link states change dynamically because of scheduled set-up
and release of connections according to step 1c of DAR algorithm. Along with
the changes in future available link bandwidths, the estimated successors and
path bandwidths for future time slots must be updated to remain consistent.
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Lemma 2 Distance vector routing based on the distributed asynchronous widest
path Bellman-Ford presented above suffers from permanent routing loops in dy-
namic networks.

Proof We prove this via an example showing the formation of a permanent
routing loop following a change in the network state. In Figure 3 we show a
linear network consisting of 4 nodes and 3 links. Assume a 2 Gbit/s connection
from C to D is scheduled in advance starting from 2:00AM. The figure reflects
this event with a change in link bandwidth blecp] at 2:00AM. Since node C
knows about this event in advance, it performs a successor transition from
mcp = D to mgp = B. Then the estimated bandwidth at C remains bop =
3 Gbit/s. B keeps C as its successor mpp = C with bgp =3 Gbit/s instead of
1 Gbit/s. Assuming no further change in link states, the loop mgp = C and
mcp = B runs forever. [

We proved in sub-section 4.1 that given our node data structure it is not
possible to guarantee shortest-earliest path optimization. Here, we show that
selecting at each node the shortest length among all widest path successors
does not help to prevent formation of loops either.

We show this by an example based on the same Figure 3. We assume every
node selects the successor with smaller estimate of path length in case of a tie
regarding path bandwidth. Then, after 2:00AM we have at C, 71¢p = B and
again at B, mgp = C since C falsely offers B a wider path than A does. The
estimated path lengths at B and C' keep increasing in a loop without a bound
because C sets lcp = Ipp +1 (lcp denotes estimated length of a path from C'
to D) and vice verse for B. Soon we will have Igp > lap. However this loop
never breaks because invariably C' offers a wider path than A, i.e. bgp > bap.

The two previous examples show whenever routing optimization criterion
is path width, formation of permanent loops is inevitable using the straight-
forward extension of the shortest path Bellman-Ford. This explains why dis-
tance vector routing with widest path QoS is not explored in the literature,
while shortest path QoS or link-state strategies are very well studied. Loops
are less likely with link-state strategies since every node maintains a copy of
the network topology.

The looping problem can, in principle, be solved by re-initializing the state
variables at all nodes in the network after every change. However, this is not
scalable because of excessive message overhead. Hence, the literature offers
practical methods for preventing formation of loops in distributed algorithms
without having to re-initialize the whole network [17,39]. However, most of
the offered solutions are based on shortest path (or minimum delay) routing
optimization and either do not apply to or need a lot of modifications to fit
our scenario.

4.2.2 Loop prevention

We exploit a recently proposed algorithm called Distributed Path Computa-
tion with Intermediate Variable (DIV) to prevent formation of loops [31]. DIV
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has the advantage of decoupling routing optimization from loop prevention
process. This makes DIV applicable to various routing algorithms or succes-
sor selection criteria. The authors in [31] present it as a generic framework
that can be adjusted to any distributed distance-vector routing algorithm, not
limited to shortest-path routing.

The DIV prevents loop formation using the concept feasible successor set
defined for each destination at all nodes. The feasible successor set of i for
each destination is a subset of N (7). Successor to each destination is selected
from the feasible successor set based on the routing optimization criteria.

In order to use DIV in our routing computations we must modify the data
structure at nodes presented in sub-section 3.3. Other than the path bandwidth
and successor which are essential information for route calculation, every node
must store intermediate variables called values which are solely added to de-
termine the feasible successor set at every node for loop prevention purpose.
Using the intermediate variables every node can track its own value and that
of its neighbors.

Each value has the format val(i; j|k) which represents the value of node
i known (believed) by node j and stored at node k (authors in [31] use the
notation V' (i; j|k)). Hence, in addition to the data structure described in sub-
section 3.3, every node 7 stores for each destination d:

1. The value of i as known to itself, val(i; i|7);
2. The value of neighbor j as known to itself, val(j;|i), for each j € N(i);
3. The wvalue of itself as known to neighbor j, val(i; j|i), for each j € N(q).

The first and third variables are not equal in general for a given neighbor
j but in steady state, DIV ensures that val(i;i|é) = val(i; j|i) = val(i; j|j) for
every j € N(i). Throughout the paper, if we mention value of node i without
specifying stored or known by whom, we refer to val(; i|i). Note that in order
to simplify notation, and stay consistent with the notation used in [31], we do
not explicitly include the dependency of the above variables in the destination

d.

4.2.8 Adapting DIV to our problem

Defining values The quantity wval(i; j|k) is a generic variable that the DIV
framework does not define specifically. For our particular purpose, we define
it as a two dimensional vector val(i; j|k) = (valy(i; j|k), vals(i; j|k)). For any
given node i, the first component valy (i; j|k) inversely relates to the estimated
path bandwidth from ¢ to d, b;g and the second component vals(i; j|k) re-
lates to the estimated path length from i to d. We will prove that valy (i;]7)
converges to —b},, i.e., the optimal (widest) bandwidth between ¢ and d, and
vala(i;i)i) converges to the length of the optimal path in steady state. The
intuition behind this choice of values is that the first component accounts for
widest routing optimization. Thus, we give it the higher priority. The second
component is required to satisfy the DIV constraints. Its role is to break the
uniformity between neighboring node values with the same path bandwidth
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estimate; according to an invariance that we present later, every node must
have a strictly larger value than its successor. With path bandwidth alone, it
is not always possible to satisfy this invariance. In that case, some nodes could
have no successor.

We set the following relation between the path bandwidth estimate b;4
at any given node i and the value of its successor as known by i: by =
min{ble;;], —vali(j;i|¢)} where j = m;q and the following relation between the
estimated path length l;; and value of i: I;3 = 1 + vala(j;i|i) where j = ;4.

Invariances Although the value of every node 4, has to eventually be con-
sistent with b;q and [;4, the values are restricted to satisfy certain invariant
conditions. The invariances are responsible for preventing formation of loops.
Our invariant conditions are very similar to those presented in [31] with the
difference that we replace the standard comparators with the lexicographic
comparators defined next. Thus, val(iy; ji|k1) > val(iz; j2|ks) implies:

1. vall(il;j1|k1) > ’l)all(ig;j2|k2)
or

2. valy (ix; j1lk1) = valy (iz; jalkz),
and vala(i1; j1|k1) > vala(iz; j2|k2)

Similarly, val(i1; ji|k1) =1 val(is; ja|k2) implies:

L. valy (i1; j1|k1) > valy (ig; j2|k2)
or

2. valy (i j1lk1) = valy (iz; jalkz),
and Ualg(il;j1|k1) Z Ualz(iz;jgwfz)

The invariances are:

1. wal(i; j|i) »= 1, val(i;ilt), where j € N (7).

2. Node j is in the feasible successor set of node i if and only if val(i;i|i) >1
val(j;i)4).

The first condition sets a bound on the choice of value. Every node has to

keep its value below or equal to the estimate of its value communicated by

its neighbors. This implies that if a node wants to increase its value, it should

first notify its neighbors. The second condition defines the feasible successor

set which restricts selection of successors only to neighbors that offer a better

(lexicographically lower) value. This condition is set to prevent creation of

routing loops.

Updating values The first invariance requires use of a special technique to
update values. Communication between nodes is through three types of DIV
messages: Update::Inc, Update::Dec and ACK. Update::Inc is a message that
a node sends to its neighbors before it increases its value. Update::Dec is a
message that a node sends to its neighbors after it decreases its value. ACK
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is sent in response to Update::Inc (only to the sender) after the appropriate
actions are performed at the receiver of Update::Inc. For more details on the
structure of these messages we refer the reader to [31].

When a given node ¢ wants to increase its value it will first notify its
neighbors before the actual increase. In turn, the neighbors that precede @
will notify their own neighbors, etc. The recursive updates will finally extend
to all ancestors of i. Every node that receives an Update::Inc and does not
have to change its own value responds with an ACK immediately. Node i will
eventually increase its value once it receives ACK from its neighbors. When a
node needs to decrease its value it performs the decrease and then issues an
Update::Dec to its neighbors (pretty much like the standard Bellman-Ford).

4.2.4 Presentation of SSM

In the following, we describe our algorithm SSM for selection of successors.
Next, we prove that the tentative paths constructed by SSM (by concatenation
of successors) converge to the optimal (widest) paths.

As mentioned earlier, we present only the subroutines and states at node
i for one destination d and for one particular time slot. SSM must be repeated
independently for each destination and for all future time slots at every node
i. In our presentation oo denotes a sufficiently large number.

On the high level, SSM is a combination of the asynchronous widest path
Bellman-Ford and the DIV. Again, nodes are modeled as state machines. After
listing the state variables and their initial settings at any given node 7, we detail
four events and the state transitions and actions they trigger. We illustrate
each of these events using the example of Fig. 3.

State variables:

— bjg; initialized 0 if ¢ # d and otherwise oco.

— miqa € N (i) Unull; initialized to null.

— ble;;] for all j € N(4); initialized to full capacity of link e;;.

— (valy(4;4]9), vala(i;i]i)); initially set to (0,00) if ¢ # d. Otherwise if i = d
we set (—o0,0).

— (valy(j;ili),vala(j;i|i)) where j € N(i); initially set to (0,00) if j # d.
Otherwise if j = d we set (—00,0).

— (valy(3; j|i), vala(i; j|i)) where j € N(i); initially set to (0,00) if i # d.
Otherwise if i = d we set (—o0, 0).

Events:

1)Inconsistency between b;y and max ;e y(;){min{ble;;], —valy(j;ili)} }-
Such an inconsistency may happen if the bandwidth of a link adjacent to ¢
changes, or right after initialization. In either case, node ¢ immediately updates
its successor, if needed. Whether or not the successor changes, b;q must be re-
calculated. If b;y changes, node i needs to update its value according to the
DIV update rules mentioned earlier. Therefore, the steps to be taken are the
following (the DecreaseV module is described in the sequel):
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L. set miq = j' for any j' € J and J = argmax;¢ y ;) {min{ble;], —vali (j;ili) } }
where j is in the feasible successor set of ¢

2. set b;q = {min{ble;;], —vali(5';|¢)}}

3. if wal(i;i]i) < (—bia,vala(j';47) + 1),
(a) send an Update::Inc with the desired value for i, (—b;q, vala(j'; i) +1),

to all neighbors j € N(4)

4. else if val(i;i|i) =1 (—bia,vala(j'; i) + 1),

(a) decrease value of i by calling DecreaseV(i, j', d)

Ezxample Consider Fig. 3. Before the change at 2:00AM, node C holds the fol-

lowing values for itself and its neighbors B and D: val(C; C|C) = val(C; B|C) =

val(C; D|C) = (=3 Gbit/s, 1); val(B; C|C) = (—3 Gbit/s, 2); and val(D; C|C)
(—00,0). Based on the second invariance, only node D belongs to the feasible
successor set of node C. After 2:00AM, the available bandwidth of link ecp
goes down to 1 Gbits/s. In that case, D remains the successor of C' (step 1)
and the new estimate for the bandwidth from C to D is bop = 1 Gbit/s (step
2). Next, node C sends an Update::Inc message with its new desired value
(—1 Gbit/s, 1) to both nodes B and D (step 3).

2) Receipt of an Update::Inc message. When node i receives an Up-
date::Inc message with content (V7, V5) from a neighbor j”, this is a notifica-
tion that j” wants to increase val(j";j"”|j") according to (Vi, Vo). If §” is the
successor of 7, this triggers an increase in value of i. To increase its value, @
will send an Update::Inc message containing the value that ¢ wants to have
((—min{ble;j»],—V1}, Vo + 1)) to all of its neighbors including j” and then
waits for an ACK response from neighbors (node transition after reception
of ACK will be explained separately). If j” is not the successor of i, then ¢
will just respond with an ACK since it does not need to increase its value. In
summary, the steps to be taken are the following:

1. set val(j";i|i) equal to (Vq,Va)
2. if j” is successor of ¢ then,
(a) send an Update::Inc with (— min{b[e;;~], —V1}, Vo + 1) to all neighbors
Jj € N()
3. else if j” is not successor of i then,
(a) send to j” an ACK holding val(j";|¢) which equals (V1, V5)

Ezxample We continue with the previous example. First, consider the action of
node B upon the receipt of of an Update::Inc message from neighbor C' with
desired value (—1 Gbit/s, 1). Node B first sets val(C; B|B) = (—1 Gbit/s, 1)
(step 1). Since node C is the successor of node B, node B sends an Update::Inc
message with value (—1 Gbit/s,2) to both nodes A and C (step 2). Next,
consider the action of node D upon the receipt of the Update::Inc message from
node C. Node D first sets val(C; D|D) = (—1 Gbit/s, 1) (step 1). Since C is not
the successor of D, D sends an ACK to C with val(C; D|D) = (—1 Gbit/s, 1)
(step 3).

3) Receipt of an ACK that contains val(i; j”|j") from neighbor j”. When
i receives an ACK message from j”, it first updates its estimate of the value
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of j” and then its own value can increase according to invariance 1. Note that
ACK message must contain the value of its generator j” and because it is
triggered in response to an Update::Inc issued earlier by 4, it must contain the
value that i has requested to increase to. After ¢ receives an ACK from each
of its neighbors, it can search for a better successor. In the case of a successor
switch, i will decrease its value by calling the function DecreaseV, defined
below. Finally, ¢ must send an ACK if it has received an Update::Inc (¢ must
have stored the content (V7, Vo) of Update::Inc in its memory). The steps in
that case are the following:

1. set val(i; 7”|i) = val(i; 5"|5")
2. increase wval(i;i]i) as much as possible such that val(i;i|i) <p val(i;jli)
holds for all j € N(i)
if 7 has not received an ACK message from each of its neighbors, exit.
4. if i has received an ACK message from each of its neighbors it can now
search for a better successor:
(a) set J = argmax; y(;){min{ble;;], —vali(j;ili)}} where j is in the feasi-
ble successor set of i
(b) set bjq = min{ble;;/], —vali(j';]i)}, for any j" € J
5. if mq ¢ J, i switches successor:
(a) set miq = j' for any j' € J
(b) decrease value of i by calling DecreaseV(i, 5, d)
6. if 7 has received an Update::Inc with (V,V3) from a neighbor j* which has
not been acknowledged yet, send an ACK to j* holding val(j*;i|7)

©w

Example We pursue the previous example. Consider node A. Upon receiving
the Update::Inc message with value (—1 Gbit/s,2) from neighbor B, it sends
an Update::Inc message with value (—1 Gbit/s,3) to neighbor B. Neighbor
B then sends to A an ACK with value val(4; B|B) = (—1 Gbit/s,3). As a
result of the receipt of this ACK, node A performs the following actions: set
val(A; BJ|A) = (—1 Gbit/s,3) (step 1) and set val(A; A|A) = (—1 Gbit/s, 3)
(step 2). After receiving the ACK of node B, node A looks for a better suc-
cessor. In this example, the successor remains node B (steps 4 and 5). Finally,
node A sends an ACK to node B containing val(B; A|A) = (—1 Gbit/s, 2)
(step 6). Upon receiving this ACK message, node B performs similar steps as
node A and sends an ACK message to node C, at which point the protocol
converges.

4) Receipt of an Update::Dec message with the desired value, (V1, Va)
from neighbor j”. The decrease of values is conceptually much simpler, as
this action is similar to the standard Bellman-Ford algorithm. If ¢ receives an
Update::Dec message from neighbor j” with content (V4,V3) this indicates j”
wants to decrease val(j"”;7”|7") according to (Vi,Vs). If j” is i’s successor,
i decreases its value by performing DecreaseV. If j” is not the successor of
1, then 4 decreases its value only if j” becomes the new successor again by
performing DecreaseV. The following pseudo-code summarizes these steps:

1. set val(j";ili) = (V1, Va)
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2. if j” is successor of ¢ then,
(a) decrease value of i by calling DecreaseV(i, j”, d)
3. else if j” is not successor of 7 then,
(a) set J = argmax;¢ y ;) {min{ble;;], —vali(j;ili)}} where j is in the feasi-
ble successor set of i. If m;q ¢ J then i switches successor:
i. set mq = j' for any j' € J
ii. decrease value of i by calling DecreaseV(i, j/, d)

Next, we introduce the DecreaseV module. Assume y is the chosen succes-
sor of z and d the destination. Whenever a node x wants to decrease its value
it performs the following task: = decreases its value, the estimated value of x
as known by any neighbor z, and z’s estimated path bandwidth b,4 based on
the parameters of successor y. Then x sends an Update::Dec message to notify
all its neighbors.

Module DecreaseV(z,y,d):

1. set —vali(x; z|z) and —valy (z; z|z) and byq equal to {min{ble,, |, —vali (y; z|x)}}
and set vals(x;z|z) and vals(x; z|x) equal to valy(y; z|z) + 1 for all z €
N(z)

2. send Update::Dec to all neighbors z of x with the content val(x; z|x)

Example Fig. 4 demonstrates the state transitions of SSM at each node for the
network of Fig. 3. After the bandwidth change on link ecp, SSM eventually
converges to correct estimates of the path bandwidth at every node.

4.2.5 Performance analysis

In this section, we first analyze the worst-case memory complexity of SSM.
Then, we prove the time elapsed from issuing an Update::Inc message until
receipt of the corresponding ACK is finite. Based on this, we prove that b;4
and —waly (i;]i) converge to the bandwidth of the optimal path for every i and
d. Using this and the loop-freedom property from [31], we prove that the paths
constructed by SSM between every pair of nodes converge to the widest. Our
analysis is based on the assumptions from section 3.2. Hence, request inter-
arrival time is long enough to allow for convergence of SSM path computations,
there is no Byzantine behavior at nodes, and links are reliable.

Theorem 3 The memory complexity of SSM at each node is O(Dmaz.|V|.R)
where Dy, is the mazimum node degree and R is the number of pending
requests in the system.

Proof Every node stores:

1. a path bandwidth estimate, successor and value of itself for each desti-
nation and future time slot (memory complexity: number of destinations
multiplied by number of time slots)
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Fig. 4 State transitions and events for the network depicted in Fig. 3, after a bandwidth
change on link ecp at 2:00AM from 3 Gbits/s to 1 Gbits/s. Among all the state variables of
SSM, only b;; and val(i;4|¢) are shown, where ¢ can represent any node A, B, C or D and j rep-
resents node D. The format for the state variables is as follows: b;;, (val1(i;4(i), vala(7;i|7)).

A dashed arrow depicts one of the four events of SSM.
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2. bandwidth of all its adjacent links for each future time slot (memory com-
plexity: node degree multiplied by number of time slots)

3. estimated wvalue of all of its neighbors and its neighbor’s estimate of its
own value for each destination and future time slot (memory complexity:
node degree multiplied by number of destinations multiplied by number of
time slots)

The third item has the dominant memory complexity. Hence, we only con-
sider it. The total number of slots at any node is in the worst case equal to
2R+ 1. This happens if the node changes its successor or the path bandwidth
changes for each set up or tear down of a connection throughout the network
(note that path switching can only happen when another connection is set up
or torn down). Thus, the worst case memory complexity is O(Dmaz-|V]-R)
since the maximum number of destinations is |[V|.

Note that the above memory complexity analysis only considers the vari-
ables required by SSM for distributed path computation. For resource reserva-
tion, each node on each connection path must also store the successor for each
time slot throughout the connection duration and the corresponding connec-
tion bandwidth. Hence, the memory required by DAR for resource reservation
at every node is at most the number of reserved (pending) requests in the
system multiplied by the total number of time slots, i.e., O(R?).

Next we show that the first invariance always holds.

Lemma 3 For all nodes i,5 € V, val(i;ili) <1 val(i; j|i), where j € N(7).

Proof The only situation in which node i is allowed to increase its value is
Step 2 of the procedure Receipt of an ACK. However, this step enforces
val(i;di) <r val(i; j|i) for all j € N(i). Similarly, the only situation in which
node i decreases its value is Step 1 of the DecreaseV module. This step sets
val(i; j|i) = val(i;i|i) for all j € N (i), and therefore the lemma holds. W

We borrow the following lemmas from [31]. Its proof can be found therein.

Lemma 4 The successor graph is a directed acyclic graph (DAG) or a col-
lection of DAGSs at all times.

The proof is similar to the one in [31]. Because our initialization respects the
invariances of DIV, they will always remain valid. The only difference is the
replacement of regular inequalities with lexicographic ones.

Lemma 5 The worst case time from the moment a node issues an Update::Inc
until it receives the corresponding ACK response is finite.

Proof We focus on a given destination d. Assume val(i;4|i) for some node
i has to increase. Thus, ¢ sends Update::Inc message to all of its neighbors
and waits for ACKs from all of them. If a neighbor is not the predecessor
of i, then according to step 3a of the procedure receipt of Update::Inc,
it responds ¢ with an ACK immediately. The lemma obviously holds in this
case. If a neighbor is predecessor of ¢ with respect to d it will recursively send
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Update::Inc messages to all of its neighbors before responding to ¢ with an
ACK. The recursion continues up to the leaf nodes of the successor graph, for
which all neighbors respond with ACK messages immediately (the successor
graph must have leaf nodes at every branch according to Lemma 4). Every
node which receives ACK from all of its neighbors, sends an ACK back to the
node from which it received an Update::Inc.

The above statements hold even if nodes receiving an Update::Inc message
switch successor. If a node that has received an Update::Inc from its successor
needs to switch successor according to step 5 of the procedure receipt of
an ACK, then it makes sure to issue an ACK toward its original successor
afterwards according to step 6. Hence, the original successor will not wait
forever for an ACK response. [l

Next, we prove that a network whose nodes are initialized according to
SSM, will eventually reach a steady state even if a finite number of links change
bandwidth. By steady state, we mean all node variables remain fixed.

Lemma 6 Assuming that the network is in steady state, the time of update
messages after a bandwidth change on any link is finite.

Proof First consider the situation for one particular destination d. If band-
width of a link e;; increases, this may only trigger Update::Dec messages. The
update procedure in this case is similar to standard widest path or short-
est path Bellman-Ford applied to an unchanging network. In this case node
variables are proved to converge after a finite number of message emissions [6].
Assume bandwidth on a link e;; decreases. If j is the successor of ¢ with
respect to d, i.e. m;q = j, this change causes a decrease in the estimated
bandwidth at ¢, i.e. b;q, according to the SSM procedures. This triggers ¢ to
issue Update::Inc messages to all of its neighbors in order to increase valy (7; i|7)
accordingly. According to Lemma 5 the time elapsed until every ACK response
arrives at 4 is finite. Afterwards, if ¢ needs to change successor to achieve a
lower value, then the total number of update messages in the network is finite
using a similar reasoning as the one regarding standard shortest path Bellman-
Ford in [6]. Note that, in the worst-case, the number of messages generated
may be exponential in the number of nodes in the network |V| [5, p. 450].
Now consider, node k that is initially an ancestor of i. The state at such a
node stabilizes, as long as the total number of update messages it receives is
finite. Since the network size is finite, the number of update messages reaching
every such node k through various paths will indeed be finite. The superposi-
tion of all messages for different destinations will lead to a similar result since
variables corresponding to different destinations are updated independently.

Corollary 1 Assuming that the network is in steady state, the total number
of messages triggered by any finite number of link changes is finite.

We infer from Corollary 1 that assuming the network state is initialized
according to SSM and bandwidth on a finite number of links changes afterwards,
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the network will eventually stabilize. To understand this, first assume that
there will be no link bandwidth change in the network after initialization.
In this case, all nodes will keep decreasing (improving) their value because
except for d, all nodes are initialized with the largest (worst) possible value
and there is no link bandwidth decrease to trigger an increase in node values.
The process of decreasing value is no different than the standard Bellman-Ford
update procedure and its convergence in an unchanging network is provable
in a way similar to [6, p. 404-410].

Now, assume some link bandwidths change after initialization. In this case,
we have a superposition of update traffic due to initial conditions and update
traffic due to link changes. Again, using the same reasoning used for Corol-
lary 1, the total number of messages will be finite and the network will reach
steady-state in finite time. Since SSM follows the same steps as the standard
distributed Bellman-Ford algorithm, except for preventing loops between a
node and one or more of its ancestors due to inconsistent information about
the node’s value, we obtain the following:

Theorem 4 The path constructed by consecutive successors from any node i
to any given destination d converges in finite time to the widest among all
paths connecting i to d.

Proof We prove by contradiction. According to Corollary 1 the network will
eventually reach steady state. We assume the network has reached steady state.
According to Lemma 4, the path constructed from every node 7 by consecutive
successors is loop-free: so either it is a simple path connecting i to d or it is a
simple path that does not connect i to d and terminates at some node j # d.
We denote such path P;; in either case where in the first case j = d. The proof
consists of two parts:

Part 1. First, we prove b;q and —valy (7; i|7) for every node i equal the band-
width of the path P;;, i.e. mine, cp,;{blexy]}. The proof is by contradiction.
Assume —wvaly (4;4]i) # mine, cp,; {blewy]} at steady state. Starting at node j,
moving on predecessors one by one on F;;, we call k the first node on the path
with inconsistent —wvaly (k; k|k) and path bandwidth. Assume 7py = h and
according to our assumption —vali(h;h|h) = mine, cp, {blesy]}. At steady
state, we have val(h; k|k) = val(h; h|h) because after every decrease in value
of h, h should have updated k and before every increase val(h;k|k) is set to
the new value even before val(h; h|h) was updated.

Therefore, we have min{blen], —valy(h; k|k)} = mine,, ep, {blesy]}. If we
assume byq is not equal to min{b[exy], —valy (h; k|k)}, according to the incon-
sistency procedure, k has to update bxq and this contradicts the node steady
state assumption. So, we conclude that by4 equals bandwidth of path P;.

But at steady state we also know that —wvaly (k; k|k) = brq because other-
wise k has to update its value by issuing update messages. So, we conclude
that both —vali(k; k|k) and brq equal bandwidth of path Py;. Therefore, by
recursive reasoning we conclude the same is true for i.

Part 2. Next, we prove by contradiction that if all nodes are at steady
state, path P;; must be an optimal path connecting ¢ to d. At all times, we
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have for j' = m;q, big = min{b[e;;/], —val1(j'; ¢|¢)} which equals the bandwidth
of path P;; formed by consecutive successors at steady state. If P;; is not
the widest possible path from ¢ to d, because of the inconsistency between
max ¢ y ;) min{ble;], —vali(j';4)i)} and biq, i has to update its successor ac-
cording to the inconsistency procedure. This contradicts the steady state
assumption. Finally, we note that according to the first part of the proof, if
P;; does not connect i to d, then b;q = 0. Therefore, as long as there exists
some path with positive bandwidth from i to d, we must have j =d. [l

5 Summary

In this paper, we investigated the feasibility and requirements to implement
end-to-end advance reservation with delay guarantees based on a distance-
vector approach. This problem is practically relevant to the design of dis-
tributed network architectures supporting grid computing applications, and
possibly also cloud computing applications in the future. Our analysis revealed
the importance of proper choice of the path optimization criterion. We first
proved that earliest scheduling requires widest path routing and that shortest-
earliest routing is infeasible given our node data structure.

Next, we highlighted the possible emergence of routing loops with widest
path distance-vector routing. We addressed this problem using the recent DIV
loop-prevention algorithm that lends itself to various routing optimization
metric. Specifically, we defined the intermediate variables of DIV structure
(called values) to be two-element tuples. The first element reflects path band-
width and the second element, which has a lower priority than the first, re-
flects path length. The rationale behind our choice is that we first consider
path bandwidth because of widest path routing and then path length to break
uniformity of values (loop-prevention of DIV requires that the value of every
node is larger than that of its successor).

We proved that our loop-free routing module SSM, based on DIV, converges
to widest routing within finite time. Our proofs exploit the property of loop-
freedom resulting from DIV. The DAR algorithm uses the route tables computed
by SSM to find the earliest schedule for connections.

While the focus of our paper is on distributed advance reservation, our re-
sults have broader scope. Thus, SSM can be used for the design of on-demand
distance-vector QoS algorithms. Such algorithms can serve as the basis for
inter-domain routing protocols, since they avoid the need of sharing global
topology information. Another broader contribution is in the formal descrip-
tion of SSM using states, transitions (events) and procedures, since [31] did not
provide such.

The paper opens interesting avenues for future work, such as the prob-
lem of handling link failures. While SSM addresses the impact of link failures
on routing tables, such failures may also force rescheduling of on-going and
future connections. Thus, how to implement such rescheduling in a localized
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and efficient manner is an important topic left for future work. Besides, ear-
lier work, for centralized advance network reservation, shows that multi-path
routing (i.e., the ability of setting-up a connection across multiple paths) can
lead to significant performance gains [9]. It would, therefore, be of interest to
investigate ways of extending DAR to support multi-path routing. Finally, DAR
could be extended to handle requests with different priorities [19].
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