
1

Churn in the Bitcoin Network
Muhammad Anas Imtiaz, David Starobinski, Ari Trachtenberg, and Nabeel Younis

Abstract—Efficient and reliable propagation of blocks
is vital to the scalability of the Bitcoin network. As
a result, several schemes, such as the compact block
protocol (BIP 152), have been proposed over the last
few years to speed up the block propagation. Even so,
we provide experimental evidence that (i) the vast ma-
jority (97%) of Bitcoin nodes exhibit only intermittent
network connectivity (i.e., churn), and (ii) this churn
results in significant number of unsuccessful compact
blocks, roughly three times the statistic for continu-
ously connected nodes. We conduct experiments on
the Bitcoin network that show that churn results in
a roughly five fold increase in block propagation time
(i.e., 566.89 ms vs. 109.31 ms) on average. To effect
our analysis, we develop a statistical model for churn,
based on empirical network data, and use this model
to actuate live test nodes on the Bitcoin network.
The performance of the system is measured within
a novel framework that we developed for logging the
internal behavior of a Bitcoin node, and which we
share for public use. Finally, to mitigate the problem
of missing transactions in churning nodes, we propose
and implement into Bitcoin Core a new synchronization
protocol, dubbed MempoolSync. Our measurements
show that churning nodes implementing MempoolSync
experience significantly better performance than stan-
dard nodes not implementing MempoolSync, including
average block propagation delay reduced by over 50%.

Index Terms—Bitcoin, blockchain, churn, propaga-
tion delay, distribution fitting, mempool, synchroniza-
tion.

I. Introduction

THE Bitcoin cryptocurrency, originally introduced
by Satoshi Nakamoto in 2008 [2] as a peer-to-peer

electronic payment system, is currently used for buying
and selling a wide variety of goods in different markets
across the globe. Together with hundreds of Bitcoin-like
derivatives, cryptocurrencies sport a total market capital-
ization of roughly 200 billion dollars [3].

Today, Bitcoin’s public ledger system, also known as
the blockchain, records all transactions that take place in
the Bitcoin network [4]. Each new transaction is broadcast
over the network, and thereafter recorded by every node
in its local memory pool (known as a mempool) for subse-
quent consensus-based validation. By design, a new block
containing transactions is created (by a mining node) and
propagated to the network’s nodes roughly once every ten
minutes. [5]

An earlier and shorter version of this paper appeared in the
proceedings of the IEEE ICBC 2019 conference [1]. This research
was supported in part by NSF under grant CCF-1563753.

The authors are with the ECE Department, Boston Univer-
sity, Boston, MA, 02215, USA. (email: {maimtiaz, staro, trachten,
nyounis}@bu.edu)

A key challenge for the Bitcoin network lies in reducing
the propagation time of blocks. One of the significant con-
sequences of slower block propagation times is an increase
of forks, wherein several blocks are mined independently
and in parallel on different nodes. This issue leads to
periods of ambiguity, during which different nodes in
the network have different views of the blockchain, and
results in orphaning of those blocks that do not end up
in the consensus chain. Orphan blocks involve a waste
of computational resources for nodes that have mined
them and their descendants. Further, an adversary may
leverage fork ambiguities to launch attacks (e.g., double-
spending [4]).

The compact block relay protocol [6] (described in
greater detail in Section II-A) was proposed to help ad-
dress this orphan challenge, and it is currently imple-
mented on the standard Bitcoin Core reference implemen-
tation. This protocol aims to decrease block propagation
time to the broader network by reducing the amount of
data propagated between nodes. However, as with other
peer-to-peer networks, it is also important that the Bitcoin
network be able to support a high rate of churn [7], that
being the rate at which nodes independently enter and
leave the network. In fact, Satoshi’s white paper envisions
that Bitcoin nodes “can leave and rejoin the network
at will”. [2] In other words, the network should be able
to quickly propagate blocks to all current nodes, even
when some of these nodes frequently enter and leave the
network.

Churn in different peer-to-peer networks has been
widely studied, characterized and modeled [7], [8], [9],
[10], [11], [12], [13]. In the context of the Bitcoin network,
previous works do consider churn in their models, analysis,
and simulation [14], [15], [16], [17], [18], [19], [20], but they
do not measure or evaluate its impact on the live network
(cf. the discussion in Section II-B). As a result, questions
remain about the extent of churn in the Bitcoin network
and its effect on block propagation.

A. Contributions
Our main contributions in this work are three-fold:

1) Systematically characterizing churn in the Bitcoin
network;

2) Experimentally evaluate the compact block protocol
under realistic churn; and,

3) Propose, implement, and evaluate a synchronization
protocol as a proof-of-concept to alleviate observed
issues and to highlight the benefits of synchronizing
mempools of churning nodes with highly-connected
nodes.

2

We next elaborate on each of these contributions.
Our first key contribution in this work systematically

characterizes churn in the Bitcoin network. Our charac-
terization is based on measurements of the duration of
time that nodes in the Bitcoin network are continuously
reachable (i.e., up session lengths) and continuously un-
reachable (i.e., down session lengths). Our data show that
out of more than 40,000 unique nodes on the network, over
97% leave and rejoin the network multiple times over a
time span of about two months. In fact, the average churn
rate in the Bitcoin network exceeds 4 churns per node
per day. Our statistical analysis in Section III-C identifies
the log-logistic distribution and the Weibull distribution
as the best fits for up session lengths and down session
lengths, respectively, among several popular distributions.
Next, we analyze churn at the level of IPv4 subnetworks
(subnets). Over the measurement period, we find that IP
addresses associated with full nodes in the Bitcoin network
belong to about 29,000 unique IPv4 /24 subnets. Our anal-
ysis further shows that for over 99% of these subnets, fewer
than 10 unique IP addresses from each subnet appear on
the Bitcoin network over the span of two months. Lastly,
we analyze churning behavior of the 10 subnets with the
largest numbers of nodes. While churning behavior of
nodes within subnets may be correlated, churning behavior
of nodes belonging to different subnets appears largely
uncorrelated.

Our second key contribution involves an experimental
evaluation of the behavior of the compact block protocol
under realistic node churning behavior, leveraging our
statistical characterization of churn to generate samples
from the above distributions. We use our samples to
emulate churn on nodes under our control in the live
Bitcoin network (i.e., on the Bitcoin mainnet), taking
these nodes off the network and bringing them back on
according to the sampled session lengths over a two week
period. Our analysis, compared against a control group
of nodes that are continuously connected to the network,
shows that the performance of the compact block protocol
significantly degrades in the presence of churn. Specifi-
cally, the churning nodes see a significantly larger fraction
of incomplete blocks as the control nodes (an average of
33.12% vs. 7.15% unsuccessful compact blocks). This is
due to an absence of about 78 transactions on average for
the churning nodes, versus less than 1 transaction for the
control nodes. The end result is that, on average, churning
nodes require over five times as much time to propagate
a block than their continuously connected counterparts
(i.e., 566.89 ms vs. 109.31 ms). The largest propagation
delay experienced by blocks received by churning nodes is
more than twice the largest propagation delay experienced
by any block received by the control nodes(i.e., 105.54 s
vs. 46.14 s). These results confirm that churn can have a
significant impact on block propagation in Bitcoin. Note
that throughout this document, we refer to the single-
hop block propagation delay, i.e., the time it takes to
completely recover and reconstruct a block once a node
receives an announcement of the block from a peer, as

block propagation delay or propagation delay.
Our third key contribution is to propose and to imple-

ment into the Bitcoin Core a synchronization protocol,
dubbed MempoolSync, that alleviates aforementioned
issues with churning nodes. MempoolSync is a protocol
in which a node periodically transmits top-ranked trans-
actions of its mempool to its peers. The goal of the pro-
tocol is to provide churning nodes with those transactions
that they may have missed during their down times and
which are likely to be included in future blocks. Our
experimental results indicate that churning nodes that
accept MempoolSync messages are able to successfully
reconstruct, on average, a larger fraction of compact blocks
than churning nodes that do not accept such messages
(i.e., 83.19% vs. 66.88%). As a result, churning nodes that
accept MempoolSync messages have significantly smaller
block propagation delays on average (i.e., 249.06 ms vs.
566.89 ms). These results show that a scheme that syn-
chronizes mempools of churning nodes with mempools of
other highly connected nodes in the Bitcoin network can
overcome performance degradation issues.

B. Roadmap
The rest of this paper is organized as follows. In

Section II, we cover background and related work. In
Section III, we describe our methodology for obtaining
and processing data on churn in the Bitcoin network, and
conduct a statistical analysis of the data. In Section IV,
we detail the experimental setup for evaluating the impact
of churn on block propagation, and present the results.
In Section V, we introduce the MempoolSync protocol
and report experimental results on the efficiency of this
synchronization protocol. We present a discussion on and
limitations of our work in Section VI. Section VII con-
cludes the paper and discusses potential areas for future
work.

II. Background and Related Work
In this section, we provide relevant background material

on the Bitcoin network followed by a discussion of related
work.

A. Bitcoin
Bitcoin’s primary record-keeping mechanism is the

block. It is a data structure that contains metadata about
the block’s position in the blockchain together with a
number of associated transactions (typically a couple
thousands [21]). A block is generated roughly every ten
minutes through the mining process, and, once generated,
the block and its transactions become a part of the Bitcoin
blockchain. It is possible that different nodes will incorpo-
rate different blocks in their version of the blockchain (a
process known as a fork). These differences are reconciled
over time in a competitive process.

In the interim time between when a transaction is
announced and when it is included in a block, transactions

3

are stored locally in the mempool. The mempool is a con-
stantly changing data set that stores all the unconfirmed
transactions waiting to be included in future blocks. It typ-
ically contains anywhere between 104 to 105 transactions,
depending on network activity. Currently the mempool
experiences as low as 1 and as high as 26 insertions per
second [22]; the arrival of a new block also instigates
many deletions from the mempool, between 2,000 to 2,700
transactions [23] per block.

Block Propagation is the process of communicating a
newly mined block to the network, and it is the backbone
of Bitcoin’s ability to maintain consensus on the current
balances of addresses (wallets). When a new block is
discovered, each Bitcoin node advertises the block to all
of its neighboring peers. There are currently two main
block protocols in Bitcoin: the original protocol developed
for the first implementation of Bitcoin and the Compact
Block Relay Protocol (BIP 152 [6]). The original protocol is
adequate for block propagation but may require significant
network resources, typically close to 1 MB per block.[24]
Since neighboring peers in the Bitcoin networks can be
geographically distant, this approach is susceptible to large
delays.[25]

The compact block relay was developed in an effort
to reduce the total bandwidth required for block prop-
agation. As the name implies, a compact block is able
to communicate all the necessary data for a node to
reconstruct and validate one standard block. The compact
block contains the same metadata as the normal block,
but it includes a hash, rather than a full copy, of each
transaction. Depending on the number of inputs and
outputs, a transaction may consist of between 500 and
800 bytes [26], whereas the hashes used for the compact
block are only 6 bytes per transaction [6]. This resulting
significant bandwidth saving relies on the assumption
that the receiver already has the relevant transactions
in its mempool and just needs to know to which blocks
they belong. This trade-off makes a compact block much
smaller in size than the original block at the cost of po-
tentially resulting in extra round-trip communications for
transactions whose hashes the receiver does not recognize
(using the getblocktxn/blocktxn messages [27]).

The compact block relay has two modes of operation:
low bandwidth relaying and high bandwidth relaying [6]. In
the former mode of operation, a node announces a block
to its peers only after fully validating the block itself. In
the latter mode of operation, however, a node announces
a block immediately to its peers upon receiving it without
any validation. Regardless of the mode of operation chosen
by two peers to exchange information in, if a receiver’s
mempool contains all the transactions whose hashes are
contained in a compact block that it received, then it
will be able to successfully reconstruct the original block.
However, if not all transactions are already in the node’s
mempool then it will fail to reconstruct the block. When
the compact block protocol fails, the extra round trips slow
down block propagation and increases the risks of a fork
in the blockchain. Fig. 1 illustrates the process.

Block x

 validate

Block x

Headers

getdata

propagate

validate

Node A Node B

Block x

 validate

cmpctblk x

Headers

getdata

propagate

validate

Node A Node B

Block x

 validate

cmpctblk x

Headers

getdata

propagate

validate

Node A Node B

getblocktxn

blocktxn

(a) (b) (c)

Block x

 validate

Node B

(d)

Node A

cmpctblk x

 validate

propagate

Block x

 validate

Node BNode A

cmpctblk x

 validate

propagate

getblocktxn

blocktxn

(e)

Fig. 1: Block propagation: (a) an Original Satoshi block,
(b) a Successful compact block (low bandwidth relay
mode), (c) an Unsuccessful compact block (low bandwidth
relay mode), (d) a Successful compact block (high band-
width relay mode), and (e) an Unsuccessful compact block
(high bandwidth relay mode). In the cases (c) and (e),
additional communications recover missing transactions
from peers.

B. Related Work
Stutzbach and Rejaie [7] study churn in several peer-to-

peer networks, specifically Gnutella, BitTorrent, and Kad.
By inserting crawlers into each network, they characterize
various metrics, such as peer inter-arrival time, session
lengths, peer up time, peer down time etc., and fit distribu-
tions to the respective metrics. The authors state that “one
of the most basic properties of churn is the session length
distribution, which captures how long peers remain in the
system each time they appear”. Our work characterizes
the statistics of session lengths and churn in the Bitcoin
network, which to our knowledge have not been studied
so far. Furthermore, our work is not limited to statistical
characterization of churn, but also evaluates the impact of
churn on the behavior of the Bitcoin network with respect
to the efficacy of the compact block protocol.

Apostolaki et al. [15] simulate partitioning attacks on
the Bitcoin network. In a partitioning attack, an attacker
divides the network into multiple disjoint components,
where no information flows between any two components.
The authors incorporate churn in their simulations and as-
sume that session lengths follow exponential distributions.
We show in our work that, on an aggregate level, session

4

lengths are better modeled by heavy-tailed distributions.
Decker and Wattenhofer [4] measure the time it takes for

a block to propagate in the Bitcoin network. They show
that the delay in propagation of blocks in the network
results in forks in the Bitcoin blockchain. Since only one
branch of the fork becomes part of the blockchain, nodes
that create blocks in the other branch(es) essentially waste
their power. Forks in the blockchain also lead to a phe-
nomenon called information eclipsing which an adversary
can leverage to perform a double spending attack. How-
ever, that work was published before the compact block
protocol was implemented, i.e., each block contained full
transactions and no reconstruction was needed. Therefore,
it does not capture the current behavior of block propa-
gation, including additional delay incurred due to missing
transactions in a compact block received by a node. We
show in this work that churn can increase propagation
delays of compact blocks received by a node in the Bitcoin
network.

Neudecker et al. [14] study churn in the Bitcoin network
from an attacker’s perspective. They vary the session
length of an attacking node in the Bitcoin network and,
through simulations, show that a network partitioning “at-
tack is sensitive to churn of the attacking node.” However,
they do not characterize churn in the network, and thus,
it is unclear what is the basis for the parameters used in
the simulations.

Karame et al. [16] study the security of using Bitcoin
in fast payments, such as paying for a meal at a fast-
food restaurant. They theorize that because of churn in
the Bitcoin network, the connectivity of a victim node
with the rest of the network varies with time. This gives
an adversarial node considerable opportunities to connect
with a victim node and perform a double spend attack.
However, the authors neither characterize churn nor take
it into account when performing analysis, measurements
and experiments.

Augustine et al. [28] and Jacobs et al. [29] propose
algorithms for efficient search and retrieval of data items
in churn-tolerant peer-to-peer networks. These algorithms
can help churning nodes retrieve transactions that they
missed while being disconnected from the network. The
algorithms assume that a churning node knows a-priori
the ID of a peer that has the required data. Such an
assumption does not hold in Bitcoin because Bitcoin is an
unstructured peer-to-peer network [2]. Specifically, a node
in Bitcoin does not know in advance which peer stores the
data that it needs, and thus it broadcasts data requests to
multiple peers [30].

Mišić et al. [31] study the improvements brought upon
by the compact block relay protocol on the Bitcoin net-
work. The queuing analysis presented by the authors
shows that while the compact block relay protocol im-
proves delivery times of blocks by up to 20% and reduces
the probability of forks occurring in the network by up
to 25%, it requires high transaction traffic to successfully
recover transactions from their hashes in the compact
blocks. However, the authors do not account for the

presence of churn in the Bitcoin network when evaluating
the performance of the compact block relay protocol.

Motlagh et al. [17], [18], [19], [20] present an analytical
model for the churning process in the Bitcoin network
using continuous time Markov chain. The authors point
out that churning nodes in the Bitcoin network not only
affect the propagation of blocks in the network, but also
consume network resources to synchronize their local copy
of the blockchain with the rest of the network upon
rejoining it. While these works complements our findings
in this paper, the authors present results from simulations
based on an assumption that all churning nodes have the
same session lengths. We present results based on data
from the live Bitcoin network where session lengths of
churning nodes are sampled from the actual distribution
of up and down time of nodes in the network.

Ozisik et al. [32] propose the Graphene protocol, which
couples an Invertible Bloom Lookup Table (IBLT) [33]
with a Bloom filter in order to send transactions in a
package smaller than a compact block. According to the
authors, the size of a Graphene block can be a fifth of
the size of a compact block, and they provide simulations
demonstrating their system. This block propagation con-
cept has recently been merged into the Bitcoin Unlimited
blockchain. However, similar to the compact block proto-
col, Graphene assumes a large degree of synchronization
between mempools of sending and receiving peers. In case
of missing transactions, the receiving peer requests larger
IBLTs from the sending peer, thus potentially adding
significant propagation delay.

Mišić et al. [34] show that synchronizing mempools of
churning nodes when they rejoin the network not only de-
creases the chances of missing transactions from compact
blocks, but also reduces unnecessary network traffic when
retrieving the aforementioned missing transactions from
peers. While this work is complementary to our findings in
this paper, the authors present simulation-based findings
whereas we report results from live Bitcoin nodes with
an implementation of a synchronization protocol in the
Bitcoin software.

Naumenko et al. [35] propose the Erlay transaction
dissemination protocol, the aim of which is to reduce
the consumption of bandwidth due to dissemination of
transactions across nodes in the Bitcoin network. The
protocol uses set sketches to perform set reconciliation
across mempools of nodes. The authors do not evaluate the
protocol in the presence of churn, and it is unclear whether
Erlay would perform efficiently when a node misses a large
number of transactions from a block that it receives. We
show in this work that a block received by a churning node
can miss as many as 2,722 transactions.

A preliminary version of this work was presented at the
2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC) [1]. The main differences between
the aforementioned prior work and this work are as follows:

1) We introduce an entirely new section, Section V,
where we propose, implement and evaluate
MempoolSync, a protocol that keeps the mempools

5

1 "220.75.229.130:3927": [
2 70015, Protocol Version
3 "/Satoshi:0.13.2/", User Agent
4 1526337217, Connected Since
5 13, Services
6 165277, Height
7 "220.75.229.130", Hostname
8 "Seoul", City
9 "KR", Country Code

10 37.5985, Latitude
11 126.9783, Longitude
12 "Asia/Seoul", Timezone
13 "AS4766", ASN
14 "Korea Telecom" Organization Name
15]

Listing 1: Part of a JSON file transmitted to a Bitcoin
node.

of churning nodes synchronized with highly connected
nodes.

2) The current paper includes, a new fined-grain anal-
ysis of churn at the level of IPv4 /24 subnetworks
(subnets) (see Section III-D).

3) The experiments of Section IV have been repeated
with larger measurement datasets and reflect the
current state of the Bitcoin network, as of 2020.
The results that we obtained from the new round
of experiments show a similar trend as those in the
original paper, i.e., churning nodes still perform worse
than non-churning nodes.

III. Churn Characterization
Nodes on the Bitcoin network may leave and rejoin the

network independently. As a result, characterizing churn
requires observation of the node activity on the network. In
this section, we first detail our methodology to obtain and
process data on churn, and then we present our statistical
analyses. In Section IV, we leverage this characterization
to run experiments on the compact block protocol with
churning nodes.

A. Obtaining and processing data
The site Bitnodes [36] continuously crawls the Bitcoin

network and provides a list of all up nodes with an ap-
proximate 5 minute resolution. Each network snapshot is
available for roughly 60 days[37], and the website provides
a rich API interface that can be used to download each
snapshot as a JavaScript Object Notation (JSON) file
containing the IP address, version of Bitcoin running,
geographic location etc., of the nodes on the network that
are up. Listing 1 shows an example of a JSON snapshot
taken by the crawler at the UNIX timestamp 1526742217.

Our analysis was based on all available JSON files from
Saturday, May 19, 2018 11:03:37 AM EST (UNIX times-
tamp: 1526742217) to Tuesday, July 17, 2018 04:06:14
PM EST (UNIX timestamp: 1531857974) including a total
of 14,674 snapshots ordered according to unique UNIX
timestamps.

We parsed each JSON file and generated a dataset of
all IP addresses that appear at any point on the Bitcoin

May 19, 2018
11:03:37

July 17, 2018
04:06:14

8500

9000

9500

10000

S
iz

e
o
f

n
e
tw

o
rk

Fig. 2: Size of Bitcoin network over the measurement
period.

network during the aforementioned time period, totalling
47,702 distinct IP addresses. We find that out of these
IP addresses, 46,520 (> 97.5%) announce that they have
the NODE_NETWORK [27], [38] service enabled, i.e., they
are able to provide a copy of the full blockchain. Out of
the about 2% remaining nodes, a large fraction (> 60%)
is running in pruned mode, i.e., they are able to provide
at least the last 288 blocks. Therefore, it is evident that
almost all nodes in our data set are comprised of full nodes
that partake in dissemination of information in the Bitcoin
network.

Given the list of IP addresses, we then ran a script
that looks for each IP address through each consecutive
network snapshot. If an IP address was found in two
consecutive network snapshots, we concluded that the IP
address was up, and thus online, for 10 minutes (recall
Bitnodes’ 5 minute resolution). Similarly, if the IP address
was found in only one of the two consecutive network
snapshots, we inferred that the node either left or rejoined
the network. Finally, if IP addresses that were not found
in any of the two consecutive network snapshots were
designated as down (i.e., offline) for 10 minutes. This
allowed us to record the networked behavior of a node, i.e.,
the duration of time it is on and off the Bitcoin network
over the 14,674 snapshots.

B. Churn Rate
Out of 47,702 distinct IP addresses observed on the

network during the aforementioned time period, only 1,154
(i.e., 2.42% of the nodes) were online at all times. Nodes
corresponding to the remaining IP addresses contributed
to churn in the Bitcoin network.

Prior work [7], [39] showed that the overall size of
peer-to-peer networks (i.e., the total number of peers)
stays relatively stable over time. Indeed, Fig. 2 depicts
the number of reachable nodes in the Bitcoin network
extracted from successive snapshots, where, on average,
there are 9,881 reachable nodes with a standard deviation
of 186. The low deviation, in addition to visual inspection
of Fig. 2, suggests that the size of the Bitcoin network is
indeed stable over the measurement period.

Next, we evaluated the churn rate, namely the rate at
which nodes oscillate between up and down sessions. More
precisely, the churn rate can be defined as 𝑅 = 1/𝑇 , where

6

10−2 10−1 100 101 102

Daily churn rate r

0.0

0.2

0.4

0.6

0.8

1.0
P

(D
a
il

y
ch

u
rn

ra
te
>

r)

Fig. 3: Daily churn rate on the Bitcoin network.

𝑇 is a random variable corresponding to the sum of the
duration of an up session and its subsequent down session.
Fig. 3 shows the CCDF of the churn rate 𝑅 as measured
across all the observed Bitcoin nodes. Note that 𝑅 exceeds
one churn per node per day, with probability greater than
45%, and that there is a 10% probability of 𝑅 ≥ 9 churns
per node per day. The average churn rate per node is �̄� =
4.16 per day.

We point out that the nodes that are always up do not
contribute to churn in the Bitcoin network. For this reason,
we filtered out data related to these nodes from our data
sets on the session lengths of a node’s up and down time on
the network. In addition, we filtered out the first and the
last session (whether up or down) of each node, because
we did not know how long a node was up or down before
we started and after we finished our measurement.

C. Statistical fitting of session lengths
Prior work [40], [41], [42], [43] showed that session

lengths in various peer-to-peer protocols exhibit a behavior
similar to a heavy-tailed distribution. Therefore, in our
statistical fitting, we focus on fitting heavy-tailed distri-
butions to the data, specifically: the generalized Pareto
distribution, the log-normal distribution, the Weibull dis-
tribution [44] and the log-logistic distribution. Nolan [45]
shows that maximum likelihood estimation (MLE) of
heavy-tailed distribution parameters is feasible. Hence,
we use MATLAB’s distribution fitting capabilities [46] to
fit distributions based on the MLE criterion. Finally, we
also consider the exponential distribution, as a basis for
comparison.

1) Up sessions: We first fit a distribution to the data
representing up session lengths. Our fitting applies to the
first 25,000 minutes, which roughly translates to 2.5 weeks.
We used the following criteria to determine the goodness-
of-fit of the various distributions to the actual data:

1) The R-squared value given by

R2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)2∑𝑛
𝑖=1 (𝑦𝑖 − �̄�) ,

where 𝑦 is the actual value, �̂� is the calculated value,
and �̄� is the mean of 𝑦 [47]. An R2 = 1 suggests a
perfect model [48].

5m10m 1h 5h 1d 1w 2w
Session length

0

20

40

60

80

100

C
D

F
 (

%
) Data

Weibull
LogNormal
LogLogistic
Generalized Pareto

Fig. 4: Distribution fits for “up session” lengths.

Distribution R2 RMSE
Weibull 0.9002 2.60e−03

Log-normal 0.9939 1.29e−06
Log-logistic 0.9907 1.80e−03
Generalized

Pareto 0.9856 2.20e−03

Exponential 0.4904 21.70e−03

TABLE I: R2 and RMSE scores of distribution fits for “up
session” lengths.

2) The root mean squared error (RMSE) given by

RMSE =

√√
1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2,

where 𝑦 is the actual value and �̂� is the calculated
value. [47] An RMSE = 0 indicates that all of the
calculated values lie on the line formed by the actual
values [49].

3) Visual inspection of the data.
We set the parameter values generated by MATLAB as

a base and performed an exhaustive search within ±10% of
the base parameters. The final results for each distribution
are the highest R2 and lowest RMSE in that range.

The results can be seen in Fig. 4, and the R2 and
RMSE scores for the fits are detailed in TABLE I. A
key observation is that the exponential distribution is a
very poor fit for the session lengths. While the log-normal
distribution performs the best in terms of R2 and RMSE
scores, Fig. 4 indicates that the log-logistic distribution fits
best the CDF of the empirical data, at least in the initial
portion where most of the data lies. Therefore, judging
from the combination of Fig. 4 and TABLE I, we conclude
that the log-logistic distribution, given by

𝐹(𝛼,𝛽) (𝑥) =
1

1 + (𝑥/𝛼)−𝛽
, (1)

where 𝛼 > 0 is the scale parameter, and 𝛽 > 0 is the
shape parameter, is the best fit for the up sessions. The

7

5m 10m 1h 5h 1d
Session length

60

70

80

90

95
C

D
F

 (
%

)

Data
Weibull
LogNormal
LogLogistic
Generalized Pareto

Fig. 5: Distribution fits for “down session” lengths.

Distribution R2 RMSE
Weibull 0.9777 3.28e−04

Log-normal 0.9694 5.36e−04
Log-logistic 0.9575 7.72e−04
Generalized

Pareto 0.9429 9.55e−04

Exponential 0 1

TABLE II: R2 and RMSE scores of distribution fits for
“down session” lengths.

parameters for the log-logistic distribution fit in Fig. 4 are
𝛼 = 11.000 and 𝛽 = 0.771.

2) Down sessions: Next, we fit distributions to the
data representing down session lengths. We employed an
approach similar to that in the previous section. We
focused on performing a statistical fitting for sessions that
are down for up to one day (representing over 93% of
the cases). Note that the mempool of a node that is
continuously off the network for a duration exceeding one
day will largely be out of synchronization with the rest of
the network.

The fitting results are shown in Fig. 5. The correspond-
ing R2 and RMSE scores are listed in TABLE II. Notice
that the exponential distribution is a very poor fit and is
never able to achieve an R2 value above 0. Observing the
combination of Fig. 5 and TABLE II, we conclude that in
this case the Weibull distribution, given by

𝐹(𝜆,𝑘) (𝑥) =
{

1 − e−(𝑥/𝜆)𝑘 𝑥 ≥ 0
0 𝑥 < 0,

(2)

where 𝜆 > 0 is the scale parameter, and 𝑘 > 0 is the
shape parameter, is the best fit for the down sessions. The
parameters for the Weibull distribution fit in Fig. 5 are
𝜆 = 0.640 and 𝑘 = 0.183.

TABLE I and TABLE II show that the exponential
distribution is not a suitable fit for either the up session
lengths or the down session lengths. This suggests that on
an aggregate level, Markov process may not be suitable

1 2 3 4 5 6 7 8 9 10
Subnet

0

50

100

150

#
o
f

n
o
d

e
s

p
e
r

su
b

n
e
t 173

162
147

136 136

115 114 107

87
78

...

Fig. 6: Largest IPv4 /24 subnets sorted in descending
order.

May 19, 2018
11:03:37

July 17, 2018
04:06:14

0

20

40

60

80

#
o
f

re
a
ch

a
b

le
n

o
d

e
s

Fig. 7: Number of reachable nodes in the largest IPv4 /24
subnet in consecutive Bitcoin network snapshots.

for performing analysis on churn in the Bitcoin network.
Instead, we believe that churn should be analyzed using
alternating renewal processes with heavy-tailed session
lengths [50].

D. Subnet Analysis
In this section, we investigate churn behavior at the

level of IP subnetworks (subnets). Our dataset contains
39,574 IPv4 nodes and 7,512 IPv6 nodes; a tiny fraction
of the remaining nodes use onion routing [51]. We first
focus our analysis on IPv4 /24 subnets, identifying 29,036
such subnets over 99% of which contain fewer than 10
Bitcoin nodes (i.e., with unique IP addresses). The average
number of Bitcoin nodes per subnet is 1.36. Fig. 6 shows
statistics for the 10 largest subnets, falling quickly from a
maximum of 173 nodes to below 100.

Fig. 7 depicts the evolution of the number of reachable
nodes over time in the largest subnet. A prominent pattern
emerges: all the nodes in the subnet are periodically
unreachable for roughly the same time duration. Another
interesting insight is that the 173 nodes recorded in this
subnet do not appear on the Bitcoin network at the same
time. In fact, at most 81 unique nodes are reachable at the
same time. We observe similar behavior in the next nine
largest subnets.

We next study the duty cycle, defined as the fraction
of time during which a node is reachable on the Bitcoin
network. Fig. 8 shows the CDF of the duty cycle of nodes
belonging to the largest subnet. The highest duty cycle of

8

0.00 0.05 0.10 0.15 0.20 0.25
Duty cycle d

0.0

0.2

0.4

0.6

0.8

1.0
P

(D
u

ty
cy

cl
e
≤

d
)

Fig. 8: CDF of duty cycle of nodes in the largest IPv4 /24
subnet. The duty cycle of a node represents the fraction
of a time it is reachable during the measurement period.

0.00 0.05 0.10 0.15 0.20 0.25
Duty cycle d

0.0

0.2

0.4

0.6

0.8

1.0

P
(D

u
ty

cy
cl

e
≤

d
)

Fig. 9: CDF of duty cycle of nodes in the 2𝑛𝑑 to 10𝑡ℎ largest
IPv4 /24 subnets.

a node in this subnet is 0.25. On average, a node in this
subnet has a duty cycle of 0.07 with a standard deviation
of 0.04. Fig. 9 shows the CDF of the duty cycle in the next
nine largest subnets, which is very similar to that shown
in Fig. 8.

The similarity between Fig. 8 and Fig. 9 raises an
important question: is churn behavior in the 10 largest
subnets correlated? We consider the 10 largest subnets
and compute the correlation of churn for nodes within the
same subnet and in different subnets. We use the Pearson
correlation coefficient [52] to measure correlation between
the presence of nodes on the Bitcoin network. Given two
data sets 𝐷1, 𝐷2, the Pearson correlation coefficient, 𝜌,
where −1 ≤ 𝜌 ≤ 1, is given by

𝜌𝐷1 ,𝐷2 =
cov (𝐷1, 𝐷2)
𝜎 (𝐷1) 𝜎 (𝐷2)

,

where cov (𝐷1, 𝐷2) represents the covariance between the
two data sets, 𝐷1 and 𝐷2, 𝜎 (𝐷1) represents the standard
deviation of the data set 𝐷1, and 𝜎 (𝐷2) represents the
standard deviation of the data set 𝐷2 [53]. Fig. 10 shows
the results in the form of a correlation matrix. While
the behavior of nodes within the same subnet may show
correlation with one another, the behavior of nodes across
subnets is largely uncorrelated. This finding indicates that
across the 10 largest IPv4 /24 subnets nodes independently
contribute to churn in the Bitcoin network.

1 2 3 4 5 6 7 8 9 10
Top 10 subnets

1

2

3

4

5

6

7

8

9
10

T
o
p

1
0

su
b

n
e
ts

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 10: Correlation matrix showing the correlation be-
tween churn behavior of nodes in the 10 largest /24 IPv4
subnets. The red line delimiters separate between different
subnets.

E. Geographic Analyses

Fig. 11 shows the geographical location of the 47,702
individual nodes discovered in the Bitcoin network during
the time period mentioned in Section III-A. Nodes that
are always up during this time period are marked white
to make them distinguishable from the remaining nodes
that contribute to churn in the network. We observe that
the majority of the Bitcoin nodes are located in the North
America and Europe. South America, North Asia, the Far
East and Oceania show a moderate presence while Africa
and Central and South Asia show a very little presence of
Bitcoin nodes. We note that the nodes that are always
connected are not co-located in one region but rather
spread out over the entire world map.

Our geographic distribution is summarized in TA-
BLE III, which shows that the North American and Euro-
pean continents have the highest percentage of nodes that
are always up. On the other hand, Africa has a very small
percentage of nodes that are always up. These results may
be related to the intermittent nature of Internet access in
parts of that continent.

IV. Experimental Analysis of Compact Block
Performance with Churn

In this section, we evaluate the performance of block
propagation, and especially the compact block protocol,
in the presence of churning nodes, to realistically reflect
the behavior of the Bitcoin P2P network. The section
details the mechanism that we developed to log events on
the Bitcoin network, the experimental setup, the method
for emulating churning nodes based on the distribution
fits performed in Section III-C, and finally, the results
obtained.

9

Fig. 11: Geographic location of individual nodes on the Bitcoin network. Nodes that are always up are marked white.
Remaining (black) nodes contribute to churn in the network.

Continent Percentage
Africa 0.051
Asia 1.138

Europe 3.239
Oceania 0.692

North America 3.414
South America 0.289

TABLE III: Percentage of continuously connected nodes
in each continent.

A. Data Collection Mechanism
To aid in understanding Bitcoin Core’s behavior, we

have developed a new log-to-file system that produces
human-friendly, easy-to-read text files. This logging sys-
tem is open-source and we have made it available to the
research community ([54]/src/logFile.*). This new
logging mechanism allows one to isolate specific behaviors
through select calls anywhere within the Bitcoin Core’s
source code, most notably information about different
protocols such as the compact block. The logging system
writes core data to a log file, and also can record various
events and the information associated with those events.
For instance, when a compact block arrives, the system
logs this event and saves the transaction hashes included
in the compact block in a separate file with a unique
identifier tying it to a log entry. We have used this system
as our primary data collection mechanism for all of our
experiments.

B. Experimental setup
The aim of the experiment is to determine the efficiency

of the compact block protocol in the presence of churn. We

achieve this by running eight nodes in the Bitcoin network.
The nodes are Dell Inspiron 3670 desktops, each equipped
with an 8th Generation Intel® Core i5−8400 processor
(9 mB cache, up to 4.0 GHz), 1TB HDD and 12GB RAM.
The nodes are each running the Linux Ubuntu 18.04.1 LTS
distribution.

We ran experiments over a period of two weeks. Four
nodes (denoted by 𝑋1, 𝑋2, 𝑋3, 𝑋4) used sampled session
lengths to emulate churn on the network. Specifically, we
generated samples of the best fit distributions given by
Eq. (1) and Eq. (2), such that the aggregate sum of the
up and down sessions is at least two weeks for each node.
We limited both the up and down session lengths from
a minimum of 1 second to a maximum of 1 day making
sure that the mean of these session lengths is within
1% of the mean of the original session lengths used to
characterize churn. The remaining four nodes (denoted by
𝐶1, 𝐶2, 𝐶3, 𝐶4) acted as control nodes that are continuously
connected to the network. Fig. 12 shows the sampled up
and down session lengths for each churning node used
in the experiments. It is clear from the figure that each
churning node emulates up and down sessions independent
from other churning nodes. In order to avoid any bias, we
used the Bitcoin RPC API setban [55], [56] to ensure
that the eight nodes are not connected to each other as
peers in the Bitcoin network. This way, our nodes did not
directly influence each other. Our experiment started on
Wednesday, May 27, 2020 12:00:00 EST and ran without
interruption for two weeks. We have made all experimental
logs publicly available on GitHub [57].

C. Statistics on compact blocks
We compare the number of compact blocks that the

churning nodes (denoted by 𝑋1, 𝑋2, 𝑋3, 𝑋4) and the (stable)

10

1000
100
10
1

0.1

0.1
1

10
100

1000

M
in

u
te

s

Churning node, X1 Churning node, X2

1000
100
10
1

0.1

0.1
1

10
100

1000

M
in

u
te

s

Churning node, X3 Churning node, X4

Lengths of down sessions Lengths of up sessions

Fig. 12: Sampled up and down session lengths.

Nodes Blocks
Received

Successful
Compact Blocks

(%)

Unsuccessful
Compact Blocks

(%)
𝐶1 1726 93.97 6.03
𝐶2 1453 91.53 8.47
𝐶3 1751 91.55 8.45
𝐶4 1899 94.05 5.95
𝑋1 1299 66.20 33.80
𝑋2 1278 73.08 26.92
𝑋3 1279 62.16 37.84
𝑋4 1198 66.03 33.97

TABLE IV: Block reception statistics for control nodes 𝐶1,
𝐶2, 𝐶3, and 𝐶4, and churning nodes 𝑋1, 𝑋2, 𝑋3 and 𝑋4.

control nodes (denoted by 𝐶1, 𝐶2, 𝐶3, 𝐶4) fail to recon-
struct. TABLE IV shows the results. The churning nodes
are unable to reconstruct a larger fraction of compact
blocks that they received as compared to the control
nodes. Indeed, of the blocks they receive, the control
nodes are able to reconstruct successfully on average
1,585.25 blocks out of 1,707.25 blocks (i.e., 92.85% of the
blocks), while the churning nodes are able to reconstruct
successfully on average only 845.00 blocks out of 1,263.50
blocks (i.e., 66.88% of the blocks). The results are quite
consistent across both the control and churning nodes.

D. Statistics on missing transactions
Churning nodes are generally missing far more trans-

actions in blocks they are unable to reconstruct than
the control nodes. We identify transactions missing from
blocks by recording the requests for missing transactions
that a node makes, upon receiving a new block. This

0 100 101 102 103

Number of missing transactions n

0.0

0.1

0.2

0.3

P
(#

m
is

si
n

g
tr

a
n

s
>

n
)

Churning nodes, Xi
Control nodes, Ci

Fig. 13: CCDF of number of missing transactions in
churning and control nodes.

is done using the log-to-file system described earlier (cf.
Section IV-A).

We find that on average a churning node misses 78.08
transactions from a block with a standard deviation of
288.04 transactions, whereas a control node misses on
average 0.87 transactions with a standard deviation of
10.78 transactions. Fig. 13 shows the CCDF of the number
of missing transactions. From the figure, we observe that
churning nodes may be missing up to thousands of transac-
tions from a block they receive, while control nodes may
miss at most a few hundred transactions. Roughly 11%
of blocks received by churning nodes miss more than 100
transactions up to as many as 2,722 missing transactions
in a block. On the other hand, only about 0.3% of blocks
received by control nodes miss more than 100 transactions
up to a maximum of only 307 missing transactions in a

11

100 101 102 103 104 105

Propagation delay t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
P

(D
e
la

y
>

t)

Control node, C1
Control node, C2
Control node, C3
Control node, C4
Churning node, X1
Churning node, X2
Churning node, X3
Churning node, X4

Fig. 14: Propagation delay across all blocks for both
churning and control nodes.

block. Therefore, our results clearly indicate that churning
nodes need to request a high number of transactions from
their peers to successfully reconstruct a block.

E. Statistics on propagation delay
Next, we investigate whether and how transactions miss-

ing in a block delay the block’s propagation. We measure
propagation delay as the difference between the time at
which a measurement node receives an announcement of
a block, i.e., an inv message with the hash of the block,
from one of its peers and the time at which the node is
able to successfully collect all missing transactions that
are included in the block.

We compare the propagation delay of blocks received
by churning nodes with the propagation delay of blocks
received by control nodes. Blocks received by the con-
trol nodes experience an average propagation delay of
109.31 ms with a standard deviation of 1,066.15 ms.
Blocks received by the churning nodes, on the other hand,
experience an average propagation delay of 566.89 ms with
a standard deviation of 3,524.78 ms.

Fig. 14 shows the CCDF of propagation delays of blocks
received by all nodes. From the figure, we observe that
blocks received by control nodes rarely have large propaga-
tion delays. On an aggregate level, only about 7% of blocks
received by control nodes have a propagation delay larger
than 100 ms with a maximum block propagation delay
of 46.14 s. By comparison, on an aggregate level, roughly
30% of blocks received by churning nodes experience a
propagation delay larger than 100 ms with a maximum
propagation delay 105.54 s, more than twice that of any
block received by control nodes.

V. MempoolSync
The experimental results from Section IV make it clear

that missing transactions add significant delay to the
propagation of blocks. This problem is especially acute
for churning nodes since their mempools often miss trans-
actions [1]. To address this issue, we propose, implement
and evaluate a new protocol to keep the mempools of
churning nodes synchronized with the rest of the net-
work. We call this protocol MempoolSync. The main

Sender Receiver

start ping
pong

select
transaction
hashes to

sync
inv

inv\mempoolgetdata
tx

wait ping
pong

select
transaction
hashes to

sync
inv

inv\mempoolgetdata
tx

wait ping
pong

select
transaction
hashes to

sync
inv

Fig. 15: Exchange of messages between the non-churning
node (sender) and the churning node (receiver) in the
MempoolSync protocol.

goal of MempoolSync is to reduce the number of missing
transactions in mempools and, consequently, the prop-
agation delay of blocks. Note that MempoolSync does
not attempt to minimize communication complexity, a
well-known problem in the distributed computing liter-
ature [58], [59], [33] whose implementation we leave for
future work. Rather, our implementation of MempoolSync
into the Bitcoin Core demonstrates the key benefits of
synchronizing the mempools of churning nodes with the
rest of the network.

A. Design of MempoolSync
MempoolSync is designed to periodically synchronize

the mempool of a churning node (receiver) with the
mempool of a non-churning node (sender). Fig. 15 shows
an overview of the synchronization protocol. The protocol
leverages Bitcoin’s existing functionality to package and
send inventory (inv) messages, as well as request and
propagate transactions. The sender selects transaction

12

hashes from its mempool and packages them in a message
(inv). The sender then sends the message to the receiver
who, upon receiving the message, computes which of the
hashes in the message are not present in its mempool.
The receiver then requests the respective transactions from
the sender (getdata), who in turn responds with the
requested transactions (tx). Note that MempoolSync,
does not require additional steps to ensure a receiving node
actually receives all transactions that it requested. Instead,
the protocol relies on the default Bitcoin behavior to send
transactions. The sender then waits for a configurable
amount of time before repeating the process.
MempoolSync is a one-way synchronization protocol,

i.e., the sender has no prior knowledge of the state of
the receiver’s mempool. Hence, an important question
arises here: which transaction hashes should the sender
select in each synchronization round? Our solution is
based on the reference implementation of the algorithm
for miners [60] in the Bitcoin Core. This reference suggests
that miners should prioritize transactions based on their
ancestor_score [61]. The ancestor_score is an
internal Bitcoin scoring mechanism that ranks a transac-
tion according to the total unconfirmed transaction fees
in its ancestor tree. The sender in the MempoolSync
protocol mimics this prioritization and likewise selects
transaction hashes based on the respective transactions’
ancestor_score. Indeed, one can expect that these
transactions are the most likely to be included in upcoming
blocks.

Fig. 16 shows a general overview of how transaction
hashes are selected and inserted in an inv message in
each round of MempoolSync. For the sake of efficiency,
the protocol ensures that the sender does not send the
same transaction hash more than once. Indeed, the sender
keeps track of the hashes it has previously sent, and
omits re-sending them again in future rounds. The sender
achieves this by storing hashes of transactions already
sent to a peer in a C++ std::map [62] data structure.
Hashes that are no longer in the mempool of the sender
are periodically removed from the data structure to avoid
memory overhead.

We next detail how the sender smartly decides the num-
ber of transaction hashes to include in an MempoolSync
inv message. Denote by N the number of transactions
that are packaged into the MempoolSync inv message.
Next, denote the number of transactions in the sender’s
mempool by NumTXsMP, and the default number of trans-
action hashes to be sent in a single MempoolSync inv
message by DefTXtoSync. Let Y represent a fraction of
the mempool size (i.e., a number between between 0 and
1).

By default, MempoolSync inv message should contain
DefTXtoSync transaction hashes. That is,

N = DefTXtoSync.

However, the sender must take care of a couple of edge
cases:

start

set 𝑁 to be the number
of transaction hashes sent

in the current round

let 𝑀 represent the set of
sorted transactions in the
sender’s mempool based

on the ancestor_score

set 𝑛 = 1, 𝑚 = 1

is 𝑛 ≤ 𝑁
and

𝑚 ≤ |𝑀 |?

let 𝑡 represent the
𝑚𝑡ℎ transaction

hash in 𝑀

has 𝑡 already
been sent?

add 𝑡 to inv

𝑛 = 𝑛 + 1

𝑚 = 𝑚 + 1

is |inv| > 0?

send inv

stop

yes

no

no

yes

yes

no

Fig. 16: Procedure for selecting transaction hashes to be
included in the inv message in each round.

1) It is possible that the number of transactions in the
sender’s mempool far exceeds the default number
of transaction hashes that the inv message should

13

contain, i.e., NumTXsMP ≫ DefTXtoSync. When
this happens, it makes sense to synchronize a larger
fraction Y of transactions hashes from the sender’s
mempool. That is,

N = max (DefTXtoSync,Y × NumTXsMP) .
2) Similarly, it is possible that the sender does not

have enough transactions in its mempool, i.e.,
NumTXsMP < DefTXtoSync. This could happen
when the sender has just joined the network, or it
has just received a new block which causes removal of
transactions from its mempool. When this happens,
the sender synchronizes its entire mempool with the
churning node. That is,

N = min (DefTXtoSync,NumTXsMP) .
Ignoring this edge case would cause exceptions when
running the Bitcoin software if the node tries to
retrieve more transactions than available in the mem-
pool.

We next provide a simple example to illustrate how
transactions are chosen to be sent in a MempoolSync
message. In this example, there are ten transactions in the
sender’s mempool, i.e., NumTXsMP = 10. The protocol has
smartly chosen the number of transactions to be included
in the MempoolSync message to be five, i.e., N = 5.
TABLE V(a) shows the hashes of transactions in the mem-
pool of the sender along with their ancestor_score
before they are sorted. TABLE V(b) shows the same
hashes sorted according to their ancestor_score in a
descending order. The sender now has to pick five hashes
from this sorted list of hashes. However, it also has to make
sure it does not re-send any hashes that have already been
sent to the receiver as shown in TABLE VI. It can be seen
that some of these hashes are in the top five positions
in the sorted list of hashes. Therefore, while picking five
transaction hashes from this list, the sender skips over any
hashes that it finds in TABLE VI, resulting in a list of
hashes as shown in TABLE VII. These hashes are packed
into a MempoolSync message and sent to the receiver.

We have added an implementation of the
MempoolSync protocol to a fork of the Bitcoin Core
software as a proof-of-concept [54]. To make sure that the
protocol does not interfere with, or worse, stall the main
thread in the software, our implementation spawns a new
thread when a Bitcoin client is started up. All operations
related to the protocol strictly take place within this new
thread.

Our implementation of the MempoolSync protocol re-
lies on a connection manager maintained by each node.
The connection manager, among other attributes, contains
a list of addresses of peers to which the node is connected.
In the MempoolSync protocol, all participating nodes
are identified by their IP addresses. A node acting as
sender transmits MempoolSync inv messages to peers
listed in the connection manager. By default, when a peer
disconnects from a Bitcoin node, the former remains in
the latter’s connection manager for up to 20 minutes even

TX hash Ancestor
Score

69dc6c 586
9d9816 34
ea844d 440
fa8082 495
a31fa4 592
824da7 16
4c09b6 212
d5a820 474
28d3b6 833
fa8ffc 504

(a)

TX hash Ancestor
Score

28d3b6 833
a31fa4 592
69dc6c 586
fa8ffc 504
fa8082 495
d5a820 474
ea844d 440
4c09b6 212
9d9816 34
824da7 16

(b)

TABLE V: An illustration of (a) Unsorted transactions in
the mempool with their ancestor scores (in satoshis), and
(b) Sorted transactions in the mempool with their ancestor
scores (in satoshis).

TX hashes
69dc6c d5a820 4c09b6

TABLE VI: An illustration of hashes of transactions al-
ready sent to a peer.

TX hashes
28d3b6 a31fa4 fa8ffc fa8082 ea844d

TABLE VII: An illustration of transaction hashes sent in
MempoolSync message when 𝑁 = 5.

after it has disconnected [63]. Note that a sender always
pings a receiver before sending to it the MempoolSync
inv message containing transaction hashes. This way, the
sender will not send inv messages to nodes that are down
or unreachable.

B. Experimental evaluation of MempoolSync in the pres-
ence of churn

We performed an empirical evaluation of the
MempoolSync protocol in the presence of churn. In
this section, we describe our experimental setup and then
present the results in the following sections.

We ran this experiment in parallel with the experiment
in Section IV-B by adding four additional nodes (denoted
by 𝑀1, 𝑀2, 𝑀3, 𝑀4) with similar hardware capabilities to
the experimental setup. Nodes 𝑀𝑖, where 𝑖 ∈ {1, 2, 3, 4},
emulated churn with up and down session lengths in-
dependently sampled from the distributions obtained in
Section III-C for each node. Fig. 17 illustrates the sam-
pled session lengths. In addition, these nodes were also
configured to accept MempoolSync messages. Note that
nodes can be configured as either senders or receivers
in the MempoolSync protocol by setting the appropri-
ate preprocessor macros to 1 as documented in the file
src/logFile.h available in our GitHub repository [54].

The control nodes 𝐶𝑖 from Section IV-B acted as the
sending nodes in the MempoolSync protocol. Each churn-
ing node 𝑀𝑖 was connected to a different sending node

14

1000
100
10
1

0.1

0.1
1

10
100

1000

M
in

u
te

s

Churning node, M1 Churning node, M2

1000
100
10
1

0.1

0.1
1

10
100

1000

M
in

u
te

s

Churning node, M3 Churning node, M4

Lengths of down sessions Lengths of up sessions

Fig. 17: Sampled up and down session lengths.

𝐶𝑖. A preliminary measurement shows that a waiting time
of 30 seconds in the MempoolSync protocol produces
the best results. Therefore, we configured all sending
nodes 𝐶𝑖 to send a MempoolSync message after every
30 seconds. The parameter Y (which controls the size of
the MempoolSync message as a fraction of the mempool
size in each control node) was set to 0.1 and the parameter
DefTXtoSync (which controls the default number of
transactions sent in a single inv message) was set to 1,000.
We found from a test measurement that some of the trans-
actions sent as part of the MempoolSync protocol may
end up as orphan. To make sure that MempoolSync does
not cause unnecessary eviction of transactions already in
the orphan pool, we increased the orphan pool size to 1,000
transactions. Prior work [64] shows that the chances of
orphan transactions getting evicted with an orphan pool
of this size are quite low.

To avoid biases, none of the nodes connected to one
another as peers in the Bitcoin network (except obviously
for the pairs (𝐶𝑖 , 𝑀𝑖)). The experiments ran without inter-
ruption from Wednesday, May 27, 2020 12:00:00 EST for
two weeks. To avoid sending unnecessary traffic to other
peers in the Bitcoin network, we made sure that each node
𝐶𝑖 only sends MempoolSync inv messages to node 𝑀𝑖.
We have made all experimental logs publicly available on
GitHub [57].

Note that the statistics for the sending nodes are the
same as nodes 𝐶𝑖 in Section IV. Similarly, statistics for
churning nodes that do not accept MempoolSync are the
same as nodes 𝑋𝑖 in Section IV. Therefore, in the following
sections, we only compare the statistics between churning
nodes that accept MempoolSync messages, i.e., nodes 𝑀𝑖,

Nodes Blocks
Received

Successful
Compact Blocks

(%)

Unsuccessful
Compact Blocks

(%)
𝑀1 1142 80.82 19.18
𝑀2 1184 84.54 15.46
𝑀3 1247 80.91 19.09
𝑀4 1270 86.30 13.70
𝑋1 1299 66.20 33.80
𝑋2 1278 73.08 26.92
𝑋3 1279 62.16 37.84
𝑋4 1198 66.03 33.97

TABLE VIII: Block reception statistics for churning nodes
𝑀1, 𝑀2, 𝑀3, and 𝑀4 that accept MempoolSync messages,
and churning nodes 𝑋1, 𝑋2, 𝑋3, and 𝑋4 that do not accept
such messages.

and churning nodes that do not accept MempoolSync
messages, i.e., nodes 𝑋𝑖.

C. Experimental Results
1) Statistics on compact blocks: TABLE VIII compares

the percentage of successful compact blocks between the
churning nodes 𝑀𝑖 and 𝑋𝑖. The data in the table shows
that churning nodes that accept MempoolSync messages
always reconstruct a larger proportion of compact blocks
that they received as compared to churning nodes that do
not accept MempoolSync messages. The churning nodes
𝑋𝑖 that do not implement MempoolSync successfully
reconstruct, on average, only 66.88% of the compact blocks
that they receive. By comparison, churning nodes 𝑀𝑖, that
do implement MempoolSync successfully reconstruct, on
average, more compact blocks i.e., 83.19%. This finding

15

0 100 101 102 103

Number of missing transactions n

0.0

0.1

0.2

0.3

P
(#

m
is

si
n

g
tr

a
n

s
>

n
)

Churning nodes without MempoolSync, Xi
Churning nodes with MempoolSync, Mi

Fig. 18: CCDF of number of missing transactions across
all blocks for all nodes.

100 101 102 103 104 105

Propagation delay t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
(D

e
la

y
>

t)

Churning node with MempoolSync, M1
Churning node with MempoolSync, M2
Churning node with MempoolSync, M3
Churning node with MempoolSync, M4
Churning node without MempoolSync, X1
Churning node without MempoolSync, X2
Churning node without MempoolSync, X3
Churning node without MempoolSync, X4

Fig. 19: CCDF of propagation delay across all blocks for
all nodes.

indicates that MempoolSync leads to significant perfor-
mance improvement.

2) Statistics on missing transactions: We next compare
the number of transactions missing from compact blocks
received by the churning nodes 𝑀𝑖 and 𝑋𝑖. Fig. 18 shows
the results obtained from the measurement. We find that
churning nodes 𝑀𝑖 that accept MempoolSync messages
miss, on average, 21.30 transactions from blocks they
received, with a standard deviation of 155.00 transactions.
Churning nodes 𝑋𝑖 that do not accept MempoolSync
messages, on the other hand, miss, on average, 78.07
transactions from blocks they received, with a standard
deviation of 288.04 transactions. While roughly 11% of
blocks received by churning nodes 𝑋𝑖 miss more than
100 transactions, just below only 3% of blocks received
by churning nodes 𝑀𝑖 miss more than 100 transactions.
Similarly, a smaller fraction of blocks received by churning
nodes 𝑀𝑖 miss more than 1,000 transactions as compared
to blocks received by churning nodes 𝑋𝑖. Thus, to a
large degree, MempoolSync successfully synchronizes the
mempools of churning nodes. This synchronization results
in far fewer missing transactions in compact blocks.

3) Statistics on propagation delay: With a smaller num-
ber of transactions missing from the compact blocks,
one can expect that churning nodes implementing
MempoolSync will have a smaller block propagation delay
than churning nodes not implementing MempoolSync.

Fig. 19 confirms this intuition. Blocks received by churning
nodes 𝑀𝑖 experience, on average, a propagation delay of
249.06 ms with a standard deviation of 2,193.32 ms. On
the other hand, blocks received by churning nodes 𝑋𝑖

experience, on average, a propagation delay of 566.89 ms
with a propagation delay of 3,524.78 ms.

On an aggregate level, roughly 80% of blocks received
by churning nodes 𝑋𝑖 have a propagation delay larger
than blocks received by churning nodes 𝑀𝑖. Indeed, on
an aggregate level, roughly 30% of blocks received by
churning nodes 𝑋𝑖 experience a propagation delay larger
than 100 ms with a maximum block propagation delay
of 105.54 s. Comparatively, only about 12% of blocks
received by churning nodes 𝑀𝑖 experience a propagation
delay larger than 100 ms with a maximum propagation
delay of 78.83 s.

VI. Discussions and Limitations
Characterization of churn. Our characterization of

churn in the Bitcoin network relies on the data obtained
from Bitnodes. To the best of our knowledge, Bitnodes
does not discover nodes behind NAT or firewalls, and,
therefore, the characterization is limited to behavior of
nodes reachable by Bitnodes. Furthermore, it is not known
what the intention of these reachable nodes is. However,
our data indicates that a large majority (> 97.5%) an-
nounces access to the entire blockchain. More than 60%
of the remaining nodes run in pruned-mode. Therefore,
it is evident that these nodes take part in disseminating
blocks through the network which can be affected when
these nodes churn. Note that the Bitcoin core is only one
implementation of the Bitcoin protocol. It is worth noting
that there are other implementations of the protocol, such
as btcd [65], Bitcoin Knots [66], [67], libbitcoin [68], bit-
coinj [69], etc., that do not fork the Bitcoin blockchain [70]
but “speak” Bitcoin and are theoretically indistinguishable
from one another.

We stress that archival nodes are necessary to allow new
nodes to download the blockchain when they rejoin the
network. Without such nodes, an adversary could force
a new node to download a false blockchain. In addition,
without non-miner nodes present in the network, it would
become centralized in the sense that miners would have
authority over consensus of new blocks.

It may be interesting to study the effects of churn in
miners (specifically, mining pools) who may implement
their own internal networks for faster block dissemination.
Nodes operating in these mining pools, therefore, may not
be reachable by Bitnodes and are, consequently, excluded
from our characterization of churn. Churn could also be
modeled as a function of the number of connections that
a node has. A node with higher number of connections
may affect more peers when it churns. However, we note
that it is not easy to measure the number of connections
of a node in the Bitcoin network without knowledge of the
full network topology, which is kept intentionally hidden.
Moreover, in our experiments, we do not artificially modify
the number of connections of nodes from the default to

16

avoid undesirable bias without prior knowledge of number
of connections of other nodes in the network. These may
be interesting follow ups to work presented in this paper
which we leave for future work.

Sampled session lengths. The session lengths sam-
pled for our experiments are capped at a maximum of
1 day. However, to make sure that our results are sta-
tistically accurate, we sampled session lengths until we
obtained a set of session lengths that had a mean within
1% of the mean of the original data set. We assume that
nodes in the Bitcoin network exhibit a homogeneous churn
behavior and follow the distributions obtained in Sec-
tion III-C. Note that the session lengths are independently
sampled for all nodes in our experiment, and each node’s
sampled session lengths are also independent from one
another as illustrated in Fig. 12 and Fig. 17.

MempoolSync. We have implemented MempoolSync
as a proof-of-concept to highlight the benefits of synchro-
nizing mempools of churning nodes with highly-connected
nodes in the Bitcoin network.

In our evaluation of MempoolSync, only one receiver
was connected to a sender. We notice that with our
current implementation, Bitcoin can easily handle the
load of MempoolSync on a peer-to-peer basis. However,
it is evident that in case of many churning nodes, one
would need to implement a load balancing mechanism to
avoid overload and network overhead at a single sender.
While a majority of nodes in the network churn, we find
that a large fraction of nodes do not churn as often as
other nodes as shown in Fig. 3. Nonetheless, there still
remains a question of how churning nodes can identify
highly-connected nodes in the network in a trustless and
decentralized manner.

We specifically did not connect the churning nodes
not configured with MempoolSync to control nodes as
opposed to connecting churning nodes configured with
MempoolSync to control nodes in our experiments. This
is because we wanted to obtain data for regular churning
nodes without interfering with how they discover and con-
nect to peers. Connecting churning nodes not configured
with MempoolSync to control nodes also creates an
edge between the former and churning nodes configured
with MempoolSync connected to the same control node.
This may introduce undesirable bias in our data. It is
also evident that since MempoolSync is not a two-
way synchronization protocol, it may cause unnecessary
network overhead if a receiver does not churn.

Finally, note that Bitcoin is not a stationary but dy-
namic system and overtime statistics will change. Hence,
it is unclear whether running experiments over longer
periods would provide more statistically meaningful data.
Therefore, we believe our choice of running experiments
over a period of two weeks is adequate. It should be
noted that results obtained from our experiments are quite
consistent across different categories of nodes, i.e., control
nodes, churning nodes not configured with MempoolSync,
and churning nodes configured with MempoolSync as
shown in Sections IV and V-B.

VII. Conclusion

In this paper, we identified and empirically demon-
strated the heretofore undocumented effect of churn on
the Bitcoin network. We performed a thorough charac-
terization of churn, including the daily churn rate and
statistical fitting of the distributions of the lengths of
up and down sessions. This statistical characterization
should prove useful to other researchers, for the purpose of
analyzing, simulating, and emulating the behavior of the
Bitcoin network.

We also used the statistical characterization to evaluate
the impact of churn on the propagation delay of blocks in
the live Bitcoin network. In the process of this research,
we developed a logging mechanism for tracing events in
Bitcoin nodes, which we have released for public use [54].
Our experiments showed that churn produces a marked
degradation in the performance of the delay-optimized
compact block protocol. This is because unsuccessful com-
pact blocks are much more prevalent in churning nodes,
and the associated incomplete blocks often miss a large
number of transactions (78.08 on average). As a result,
the propagation delay of blocks processed by churning
nodes is substantially larger, on average, than that of
nodes that are always connected. In fact, occurrences of
propagation delays that exceed one second are common.
Our measurements show that more than 6% of the blocks
processed by the churning nodes have a propagation delay
exceeding one second, compared to less than 1% of the
blocks processed by the control nodes. Note that this
corresponds to the delay over a single hop on the Bitcoin
network, and hence the end-to-end delay would be even
larger.

We have also proposed and implemented into Bit-
coin Core a proof-of-concept synchronization scheme,
MempoolSync, that sends transactions to peers in an
effort to alleviate the impact of churn and keep mempools
of nodes synchronized. Our experimental results show
that churning nodes that accept MempoolSync messages
are able to successfully reconstruct, on average, a larger
fraction of compact blocks that they receive as compared
to churning nodes that do not accept such messages. This
happens because the former miss far fewer transactions
(about 3 times less on average) from the compact blocks
that they receive. As a result, the churning nodes that
accept MempoolSync messages experience block propa-
gation delay that is, on average, slightly more than twice
smaller than that of churning nodes that do not accept
such messages.

As an outcome of this work, it is evident that there
is significant benefit in implementing efficient synchro-
nization of the mempools of Bitcoin nodes, thus keep-
ing them up-to-date with transactions that they might
have missed while being disconnected. We believe that
it should be possible to further improve the perfor-
mance of MempoolSync by engineering transaction syn-
chronization based on prioritization metrics by utilizing
difference-finding algorithms and reconciliation-optimized

17

data-structures from the synchronization literature. Po-
tential candidates include IBLT [33], due to its high
tolerance for differences, and CPISync [71], [72], [73], due
to its near-optimal communication complexity.

Acknowledgment
The authors would like to acknowledge Daniel Wilson

for help with setting up container environment for Bitcoin
experiments.

References
[1] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis,

“Churn in the bitcoin network: Characterization and impact,”
2019 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC 2019), IEEE, 2019.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
03 2009.

[3] “Cryptocurrency market capitalizations.”
https://coinmarketcap.com/all/views/all/, 2018.
Online; Accessed: May 24, 2018.

[4] C. Decker and R. Wattenhofer, “Information propagation in
the bitcoin network,” in Peer-to-Peer Computing (P2P), 2013
IEEE Thirteenth International Conference on, pp. 1–10,
IEEE, 2013.

[5] B. Wiki, “Block.” https://en.bitcoin.it/wiki/Block,
2016. Online; Accessed: November 17, 2018.

[6] M. Corallo, “Compact block relay.”
https://github.com/bitcoin/bips/blob/master/bip-
0152.mediawiki, 2016.

[7] D. Stutzbach and R. Rejaie, “Understanding churn in
peer-to-peer networks,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, pp. 189–202,
ACM, 2006.

[8] D. Stutzbach and R. Rejaie, “Towards a better understanding
of churn in peer-to-peer networks,” Univ. of Oregon, Tech.
Rep, 2004.

[9] O. Herrera and T. Znati, “Modeling churn in p2p networks,”
in Simulation Symposium, 2007. ANSS’07. 40th Annual,
pp. 33–40, IEEE, 2007.

[10] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling
heterogeneous user churn and local resilience of unstructured
p2p networks,” in icnp, pp. 32–41, IEEE, 2006.

[11] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A
measurement study of a large-scale p2p iptv system,” IEEE
transactions on multimedia, vol. 9, no. 8, pp. 1672–1687, 2007.

[12] D. Yang, Y.-x. Zhang, H.-k. Zhang, T.-Y. Wu, and H.-C.
Chao, “Multi-factors oriented study of p2p churn,”
International Journal of Communication Systems, vol. 22,
no. 9, pp. 1089–1103, 2009.

[13] F. Lin, C. Chen, and H. Zhang, “Characterizing churn in
gnutella network in a new aspect,” in Young Computer
Scientists, 2008. ICYCS 2008. The 9th International
Conference for, pp. 305–309, IEEE, 2008.

[14] T. Neudecker, P. Andelfinger, and H. Hartenstein, “A
simulation model for analysis of attacks on the bitcoin
peer-to-peer network,” in Integrated Network Management
(IM), 2015 IFIP/IEEE International Symposium on,
pp. 1327–1332, IEEE, 2015.

[15] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin:
Routing attacks on cryptocurrencies,” in Security and Privacy
(SP), 2017 IEEE Symposium on, pp. 375–392, IEEE, 2017.

[16] G. O. Karame, E. Androulaki, and S. Capkun,
“Double-spending fast payments in bitcoin,” in Proceedings of
the 2012 ACM conference on Computer and communications
security, pp. 906–917, ACM, 2012.

[17] S. G. Motlagh, J. Misic, and V. B. Misic, “Modeling of churn
process in bitcoin network,” in 2020 International Conference
on Computing, Networking and Communications (ICNC),
pp. 686–691, IEEE, 2020.

[18] S. G. Motlagh, J. Mišić, and V. B. Mišić, “Impact of node
churn in the bitcoin network,” IEEE Transactions on Network
Science and Engineering, 2020.

[19] S. G. Motlagh, J. Mišic, and V. B. Mišic, “Impact of node
churn in the bitcoin network with compact blocks,”

[20] S. G. Motlagh, J. Mišić, and V. B. Mišić, “An analytical model
for churn process in bitcoin network with ordinary and relay
nodes,” Peer-to-Peer Networking and Applications, pp. 1–12,
2020.

[21] “Average number of transactions per block.”
https://blockchain.info/charts/n-transactions-
per-block?timespan=2years, 2017. Online; Accessed:
November 17, 2018.

[22] “Transaction rate.”
https://www.blockchain.com/charts/transactions-
per-second?timespan=30days, 2017. Online; Accessed:
November 17, 2018.

[23] “Average number of transactions per block.”
https://www.blockchain.com/en/charts/n-
transactions-per-block?timespan=60days, 2017.
Online; Accessed: November 17, 2018.

[24] “Block size limit controversy.” https://en.bitcoin.it/
wiki/Block_size_limit_controversy, 2017. Online;
Accessed: November 17, 2018.

[25] G. Pappalardo, T. Di Matteo, G. Caldarelli, and T. Aste,
“Blockchain inefficiency in the bitcoin peers network,” arXiv
preprint arXiv:1704.01414, 2017.

[26] “Analysis of bitcoin transaction size trends.”
https://tradeblock.com/blog/analysis-of-bitcoin-
transaction-size-trends, 2015. Online; Accessed:
November 17, 2018.

[27] “Protocol documentation.” https:
//en.bitcoin.it/wiki/Protocol_documentation, 2018.
Online; Accessed: May 17, 2018.

[28] J. Augustine, G. Pandurangan, and P. Robinson, “Distributed
algorithmic foundations of dynamic networks,” ACM SIGACT
News, vol. 47, no. 1, pp. 69–98, 2016.

[29] T. Jacobs and G. Pandurangan, “Stochastic analysis of a
churn-tolerant structured peer-to-peer scheme,” Peer-to-Peer
Networking and Applications, vol. 6, no. 1, pp. 1–14, 2013.

[30] “How does a node get information from other nodes?.”
https://bitcoin.stackexchange.com/questions/
70621/how-does-a-node-get-information-from-
other-nodes/70623. Online; Accessed: October 17, 2019.

[31] J. Mišić, V. B. Mišić, and X. Chang, “On the benefits of
compact blocks in bitcoin,” in ICC 2020-2020 IEEE
International Conference on Communications (ICC), pp. 1–6,
IEEE, 2020.

[32] A. P. Ozisik, G. Andresen, G. Bissias, A. Houmansadr, and
B. Levine, “Graphene: A new protocol for block propagation
using set reconciliation,” in Data Privacy Management,
Cryptocurrencies and Blockchain Technology, pp. 420–428,
Springer, 2017.

[33] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom
lookup tables,” in Communication, Control, and Computing
(Allerton), 2011 49th Annual Allerton Conference on,
pp. 792–799, IEEE, 2011.

[34] J. Mišić, V. B. Mišić, and X. Chang, “Performance of bitcoin
network with synchronizing nodes and a mix of regular and
compact blocks,” IEEE Transactions on Network Science and
Engineering, 2020.

[35] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and
I. Beschastnikh, “Erlay: Efficient transaction relay for bitcoin,”
in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pp. 817–831, 2019.

[36] A. Yeow, “Bitnodes.” https://bitnodes.earn.com. Online;
Accessed: November 15, 2018.

[37] A. Yeow, “Bitnodes api v1.0.”
https://bitnodes.earn.com/api/. Online; Accessed:
December 17, 2018.

[38] “Full node, node_network_limited (1037) what does it
mean?.” https:
//www.reddit.com/r/Bitcoin/comments/8wkuod/full_
node_node_network_limited_1037_what_does_it/.
Online; Accessed: September 19, 2020.

[39] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and
T. Anderson, “Profiling a million user dht,” in Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement,
pp. 129–134, ACM, 2007.

https://coinmarketcap.com/all/views/all/
https://en.bitcoin.it/wiki/Block
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://blockchain.info/charts/n-transactions-per-block?timespan=2years
https://blockchain.info/charts/n-transactions-per-block?timespan=2years
https://www.blockchain.com/charts/transactions-per-second?timespan=30days
https://www.blockchain.com/charts/transactions-per-second?timespan=30days
https://www.blockchain.com/en/charts/n-transactions-per-block?timespan=60days
https://www.blockchain.com/en/charts/n-transactions-per-block?timespan=60days
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://bitcoin.stackexchange.com/questions/70621/how-does-a-node-get-information-from-other-nodes/70623
https://bitcoin.stackexchange.com/questions/70621/how-does-a-node-get-information-from-other-nodes/70623
https://bitcoin.stackexchange.com/questions/70621/how-does-a-node-get-information-from-other-nodes/70623
https://bitnodes.earn.com
https://bitnodes.earn.com/api/
https://www.reddit.com/r/Bitcoin/comments/8wkuod/full_node_node_network_limited_1037_what_does_it/
https://www.reddit.com/r/Bitcoin/comments/8wkuod/full_node_node_network_limited_1037_what_does_it/
https://www.reddit.com/r/Bitcoin/comments/8wkuod/full_node_node_network_limited_1037_what_does_it/

18

[40] F. E. Bustamante and Y. Qiao, “Friendships that last: Peer
lifespan and its role in p2p protocols,” in Web content caching
and distribution, pp. 233–246, Springer, 2004.

[41] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan, “Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 314–329, 2003.

[42] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek,
“Bandwidth-efficient management of dht routing tables,” in
Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pp. 99–114,
USENIX Association, 2005.

[43] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across
large networks,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, pp. 137–150, ACM, 2002.

[44] S. Foss, D. Korshunov, S. Zachary, et al., An introduction to
heavy-tailed and subexponential distributions, vol. 6. Springer,
2011.

[45] J. P. Nolan, “Maximum likelihood estimation and diagnostics
for stable distributions,” in Lévy processes, pp. 379–400,
Springer, 2001.

[46] T. M. Inc., “Fit probability distribution object to data -
MATLAB fitdist.” https:
//www.mathworks.com/help/stats/fitdist.html.
Online; Accessed: November 06, 2018.

[47] “Evaluating goodness of fit.”
https://www.mathworks.com/help/curvefit/
evaluating-goodness-of-fit.html#bq_5kwr-7. Online;
Accessed: November 18, 2018.

[48] “Coefficient of determination (r-squared) explained.”
https://towardsdatascience.com/coefficient-of-
determination-r-squared-explained-db32700d924e.
Online; Accessed: December 2, 2018.

[49] “Rms error.” http://statweb.stanford.edu/~susan/
courses/s60/split/node60.html. Online; Accessed:
December 2, 2018.

[50] S. Ross, Stochastic Processes, p. 114. Wiley series in
probability and mathematical statistics, Wiley, second ed.,
1995.

[51] M. G. Reed, P. F. Syverson, and D. M. Goldschlag,
“Anonymous connections and onion routing,” IEEE Journal
on Selected areas in Communications, vol. 16, no. 4,
pp. 482–494, 1998.

[52] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson
correlation coefficient,” in Noise reduction in speech processing,
pp. 1–4, Springer, 2009.

[53] “Pearson correlations.” https://www.spss-
tutorials.com/pearson-correlation-coefficient/.
Online; Accessed: September 23, 2020.

[54] M. A. Imtiaz, “bitcoin-releases.”
https://github.com/nislab/bitcoin-
releases/tree/tnsm-churn, 2020.

[55] “Bitcoin developer reference.”
https://bitcoin.org/en/developer-
reference#remote-procedure-calls-rpcs, 2017.
Online; Accessed: November 17, 2018.

[56] “Bitcoin core :: setban (0.16.0 rpc).” https://bitcoincore.
org/en/doc/0.16.0/rpc/network/setban/. Online;
Accessed: November 17, 2018.

[57] M. A. Imtiaz, “bitcoin-logs.”
https://github.com/nislab/bitcoin-
logs/tree/tnsm-churn, 2020.

[58] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation
with nearly optimal communication complexity,” IEEE
Transactions on Information Theory, vol. 49, no. 9,
pp. 2213–2218, 2003.

[59] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese,
“What’s the difference? efficient set reconciliation without
prior context,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 218–229, 2011.

[60] “miner.cpp.” https://github.com/bitcoin/bitcoin/
blob/master/src/miner.cpp#L321. Online; Accessed: May
11, 2020.

[61] “txmempool.h.” https://github.com/bitcoin/bitcoin/
blob/master/src/txmempool.h, 2018.

[62] “std::map.”
https://en.cppreference.com/w/cpp/container/map.
Online; Accessed: September 23, 2020.

[63] “net.h.” https://github.com/bitcoin/bitcoin/blob/
master/src/net.h#L50. Online; Accessed: May 12, 2020.

[64] M. A. Imtiaz, D. Starobinski, and A. Trachtenberg,
“Characterizing orphan transactions in the bitcoin network,”
in 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), IEEE, 2020.

[65] “btcd.” https://github.com/btcsuite/btcd. Online;
Accessed: September 23, 2020.

[66] “Bitcoin knots.” https://bitcoinknots.org/. Online;
Accessed: September 23, 2020.

[67] “Bitcoin knots (source).” https://github.com/
bitcoinknots/bitcoin/tree/v0.20.1.knots20200815.
Online; Accessed: September 23, 2020.

[68] “Libbitcoin node.”
https://github.com/libbitcoin/libbitcoin-node.
Online; Accessed: September 23, 2020.

[69] “bitcoinj.” https://bitcoinj.org/. Online; Accessed:
September 23, 2020.

[70] “5 bitcoin core alternatives that don’t fork the blockchain.”
https://bitcoin.eu/bitcoin-core-alternatives-
dont-fork-blockchain/. Online; Accessed: September 23,
2020.

[71] J. Jin, W. Si, D. Starobinski, and A. Trachtenberg,
“Prioritized data synchronization for disruption tolerant
networks,” in MILITARY COMMUNICATIONS
CONFERENCE, 2012-MILCOM 2012, pp. 1–8, IEEE, 2012.

[72] D. Starobinski, A. Trachtenberg, and S. Agarwal, “Efficient
pda synchronization,” IEEE Transactions on Mobile
Computing, vol. 2, no. 1, pp. 40–51, 2003.

[73] A. Trachtenberg, D. Starobinski, and S. Agarwal, “Fast pda
synchronization using characteristic polynomial interpolation,”
in IEEE INFOCOM, vol. 3, pp. 1510–1519, INSTITUTE OF
ELECTRICAL ENGINEERS INC (IEEE), 2002.

https://www.mathworks.com/help/stats/fitdist.html
https://www.mathworks.com/help/stats/fitdist.html
https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html#bq_5kwr-7
https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html#bq_5kwr-7
https://towardsdatascience.com/coefficient-of-determination-r-squared-explained-db32700d924e
https://towardsdatascience.com/coefficient-of-determination-r-squared-explained-db32700d924e
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html
https://www.spss-tutorials.com/pearson-correlation-coefficient/
https://www.spss-tutorials.com/pearson-correlation-coefficient/
https://github.com/nislab/bitcoin-releases/tree/tnsm-churn
https://github.com/nislab/bitcoin-releases/tree/tnsm-churn
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
https://bitcoincore.org/en/doc/0.16.0/rpc/network/setban/
https://bitcoincore.org/en/doc/0.16.0/rpc/network/setban/
https://github.com/nislab/bitcoin-logs/tree/tnsm-churn
https://github.com/nislab/bitcoin-logs/tree/tnsm-churn
https://github.com/bitcoin/bitcoin/blob/master/src/miner.cpp#L321
https://github.com/bitcoin/bitcoin/blob/master/src/miner.cpp#L321
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://en.cppreference.com/w/cpp/container/map
https://github.com/bitcoin/bitcoin/blob/master/src/net.h#L50
https://github.com/bitcoin/bitcoin/blob/master/src/net.h#L50
https://github.com/btcsuite/btcd
https://bitcoinknots.org/
https://github.com/bitcoinknots/bitcoin/tree/v0.20.1.knots20200815
https://github.com/bitcoinknots/bitcoin/tree/v0.20.1.knots20200815
https://github.com/libbitcoin/libbitcoin-node
https://bitcoinj.org/
https://bitcoin.eu/bitcoin-core-alternatives-dont-fork-blockchain/
https://bitcoin.eu/bitcoin-core-alternatives-dont-fork-blockchain/

19

Muhammad Anas Imtiaz is a Ph.D. candi-
date and Doctoral Research Fellow in Electri-
cal and Computer Engineering at Boston Uni-
versity, where he joined in 2017. At present,
his research investigates the presence and ef-
fects of churn in the Bitcoin network, and
possible improvements in the Bitcoin protocol
to help mitigate such issues. His work on or-
phan transactions in the Bitcoin network won
a best paper award at the IEEE ICBC 2020
conference. He participated as a reviewer at

IEEE TNSM and as a Shadow PC at the ACM IMC 2019 conference.
Prior to joining Boston University, Anas worked as a Software De-
velopment Engineer (2014-2016), and Senior Software Development
Engineer (2016-2017) at Mentor Graphics (now a Siemens business).
At Mentor, his responsibilities included development, maintenance
and upgrade of several automotive software and legacy products
offered by the company. He graduated cum laude with a silver
medal in BS Computer Engineering from the National University of
Computer & Emerging Sciences, Lahore, Pakistan in 2014.

David Starobinski is a Professor of Electri-
cal and Computer Engineering, Systems En-
gineering, and Computer Science at Boston
University. He received his Ph.D. in Electri-
cal Engineering from the Technion - Israel
Institute of Technology, in 1999. He was a
visiting post-doctoral researcher in the EECS
department at UC Berkeley (1999-2000), an
invited Professor at EPFL (2007-2008), and a
Faculty Fellow at the U.S. DoT Volpe National
Transportation Systems Center (2014-2019).

Dr. Starobinski received a CAREER award from the U.S. National
Science Foundation (2002), an Early Career Principal Investigator
(ECPI) award from the U.S. Department of Energy (2004), BU ECE
Faculty Teaching Awards (2010, 2020), and best paper awards at the
WiOpt 2010, IEEE CNS 2016, and IEEE ICBC 2020 conferences.
He is on the Editorial Board of the IEEE Open Journal of the
Communications Society and was on the Editorial Boards of the
IEEE Transactions on Information Forensics and Security and the
IEEE/ACM Transactions on Networking. His research interests are
in cybersecurity, wireless networking, and network economics.

Ari Trachtenberg is a Professor of Elec-
trical and Computer Engineering, Computer
Science, and Systems Engineering at Boston
University, where he has been since Septem-
ber 2000. He received his PhD and MS in
Computer Science (2000,1996) from the Uni-
versity of Illinois at Urbana-Champaign, and
his SB in 1994 from MIT. He has also been a
Distinguished Scientist Visitor at Ben Gurion
university, a visiting professor at the Technion
- Israel Institute of Technology, and worked at

TripAdvisor, MIT Lincoln Lab, HP Labs, and the Johns Hopkins
Center for Talented Youth, and has been awarded ECE Teaching
Awards (BU, 2013/2003), a Kern fellowship (BU 2012), an NSF
CAREER (BU 2002), and the Kuck Outstanding Thesis (UIUC
2000). His research interests include Cybersecurity (smartphones,
offensive and defensive), Networking (security, sensors, localization),
Algorithms (data synchronization, file edits, file sharing) and Error-
correcting codes (rateless coding, feedback).

Nabeel Younis is a recent graduate of com-
puter engineering from Boston University’s
Electrical and Computer Engineering depart-
ment. As an undergraduate at BU he piloted
the early work of studying the effects of churn
on Bitcoin’s network. Afterwards Nabeel was
a research assistant at MIT Media Lab’s Dig-
ital Currency Initiative and developed a Non-
Interactive Zero-Knowledge proof (NIZKs) li-
brary called zkSigma and worked on a use case
project called zkLedger. Currently working at

Boston-based startup Arwen, Nabeel heads API design and R&D of
new trust-less (non-custodial) trading protocols for cryptocurrencies.
Recently Nabeel was the Content Director of MIT Bitcoin Expo 2020:
Building the Stack, a 2-day conference bringing together leaders in
the Bitcoin and cryptocurreny spaces from research labs, universities
and governments.

	Introduction
	Contributions
	Roadmap

	Background and Related Work
	Bitcoin
	Related Work

	Churn Characterization
	Obtaining and processing data
	Churn Rate
	Statistical fitting of session lengths
	Up sessions
	Down sessions

	Subnet Analysis
	Geographic Analyses

	Experimental Analysis of Compact Block Performance with Churn
	Data Collection Mechanism
	Experimental setup
	Statistics on compact blocks
	Statistics on missing transactions
	Statistics on propagation delay

	MempoolSync
	Design of MempoolSync
	Experimental evaluation of MempoolSync in the presence of churn
	Experimental Results
	Statistics on compact blocks
	Statistics on missing transactions
	Statistics on propagation delay

	Discussions and Limitations
	Conclusion
	References
	Biographies
	Muhammad Anas Imtiaz
	David Starobinski
	Ari Trachtenberg
	Nabeel Younis

