
Churn in the Bitcoin Network:
Characterization and Impact

Muhammad Anas Imtiaz
ECE Department
Boston University

Boston, MA 02215, USA
maimtiaz@bu.edu

David Starobinski
ECE Department
Boston University

Boston, MA 02215, USA
staro@bu.edu

Ari Trachtenberg
ECE Department
Boston University

Boston, MA 02215, USA
trachen@bu.edu

Nabeel Younis
ECE Department
Boston University

Boston, MA 02215, USA
nyounis@bu.edu

Abstract—Efficient and reliable propagation of blocks is vital
for ensuring the scalability of the Bitcoin network. As a result,
several schemes have been proposed over the last few years
to speed up the block propagation, most notably the compact
block protocol (BIP 152). Despite this, we show experimental
evidence that (i) the vast majority (97%) of Bitcoin nodes
exhibit intermittent network connectivity (churn), and (ii) this
churn results in significant numbers of unsuccessful compact
blocks, roughly twice the figure for continuously connected nodes.
Specifically, we conduct experiments on the Bitcoin network that
show that churn results in a 135% average increase in block
propagation time (i.e., 336.57 ms vs 142.62 ms), and can lead
to as high as an 800-fold increase in the worst case. To effect
our analysis, we develop a statistical model for churn based on
empirical network data, and use this model to actuate the live
test nodes on the Bitcoin network. The performance of the system
is measured by means of a novel framework that we develop for
logging the internal behavior of a Bitcoin node and share for
public use.

Index Terms—Bitcoin, blockchain, churn, propagation delay,
distribution fitting

I. INTRODUCTION

The Bitcoin cryptocurrency, originally introduced by
Satoshi Nakamoto in 2008 [1] as a peer-to-peer electronic
payment system, is currently used for buying and selling a
wide variety of goods in different markets across the globe.
Combined with hundreds of derivative cryptocurrencies, the
total market capitalization of these electronic payment systems
is roughly 200 billion dollars [2].

Bitcoin’s public ledger system, also known as blockchain,
records all transactions that take place in the Bitcoin net-
work [3]. Each new transaction is broadcast over the network,
and thereafter recorded by every node in its local memory
pool (known as a mempool) for subsequent consensus-based
validation. By design, a new block containing transactions is
created (by a mining node) and propagated over the network’s
nodes roughly once every ten minutes [4].

A key challenge in this context lies in reducing the prop-
agation time of blocks. The consequences of slower block
propagation times include an increase of forks, wherein several
blocks are mined independently and distributed before the

network nodes accept one of the blocks as the head of the
blockchain while the other blocks become orphan. This issue
leads to periods of ambiguity, during which different nodes
in the network have different views of the blockchain. An
adversary may leverage such ambiguities for certain attacks,
such as a double-spending attack [3]. Orphan blocks also lead
to a waste of computational resources for nodes that have
mined them and nodes that have mined on top of them.

To address this challenge, the compact block relay proto-
col [5], described in greater detail in Section II-A, has been
proposed and is currently implemented on the standard Bitcoin
Core reference implementation. This protocol aims to decrease
the propagation time to the broader network by reducing the
amount of data propagated between nodes.

Yet, like any peer-to-peer network, it is also important that
the Bitcoin network be able to support a high rate of churn [6],
that being the rate at which nodes independently enter and
leave the network. In fact, Satoshi’s white paper envisions that
Bitcoin nodes “can leave and rejoin the network at will” [1]. In
other words, the network should be able to quickly propagate
blocks to all current nodes, even when some of these nodes
frequently enter and leave the network.

Churn in different peer-to-peer networks has been widely
studied, characterized and modeled [6]–[12], though it has
received little attention in relation to the Bitcoin network.
While some previous works on Bitcoin do consider churn in
their models [13]–[15], they do not seek a full characterization
and evaluation of its impact (cf. discussion in Section II-B).
Undeniably, questions remain about the extent of churn in the
Bitcoin network and its effect on block propagation.

Our first key contribution in this work is to systematically
characterize churn in the Bitcoin network. Our characterization
is based on measurements of the duration of time that nodes in
the Bitcoin network are continuously reachable, i.e., up session
lengths, and continuously unreachable, i.e., down session
lengths. Our data show that out of more than 40,000 unique
nodes on the network, over 97% leave and rejoin the network
multiple times over a time span of about two months. In fact,
the daily average churn rate in the Bitcoin network (i.e., the
rate of oscillations between up and down sessions) exceeds 4
times per node. Our statistical analysis in Section III-B2 points
out that, among several possible distributions, the log-logistic978-1-7281-1328-9/19/$31.00 ©2019 IEEE
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distribution and the Weibull distribution are the best fits for
up session lengths and down session lengths, respectively.

Our second key contribution is an experimental evalua-
tion of the behavior of the compact block protocol under
realistic node churning behavior. We leverage our statistical
characterization of churn to generate samples from the above
distributions. We then use these samples to emulate churn on
nodes of ours running in the live Bitcoin network, taking these
nodes off the network and bringing them back on according
to the sampled session lengths over a two week period.
Our analysis, compared against a control group of nodes
that are continuously connected to the network, shows that
the performance of the compact block protocol significantly
degrades in the presence of churn. Specifically, the churning
nodes see roughly twice as many incomplete blocks as the
control nodes, that is, on average 26.78% versus 13.16% of
incomplete blocks (i.e., unsuccessful compact blocks). This is
due to an absence of about 312 transactions on average for
the churning nodes, versus slightly less than 3 transactions for
the control nodes. The end result is that, on average, churning
nodes require over twice as much time to propagate a block
than their continuously connected counterparts (i.e., 336.57 ms
vs. 142.62 ms, which represents an increase of about 135% in
the delay). When comparing incomplete blocks from churning
nodes to complete blocks from control nodes, the former have
an average delay about 17 times larger than the latter (the
worst case is about an 800-fold difference). These results show
that churn has indeed a major impact on block propagation in
Bitcoin.

The rest of this paper is organized as follows. In Section II,
we cover background and related work. In Section III, we
describe our methodology for obtaining and processing data
on churn in the Bitcoin network, and conduct a statistical
analysis of the data. In Section IV, we detail the experimental
setup for evaluating the impact of churn on block propagation,
and present the results. Section V concludes the paper and
discusses potential areas for future work.

II. BACKGROUND AND RELATED WORK

In this section, we provide relevant background material on
the Bitcoin network followed by a discussion of related work.

A. Bitcoin Background

1) Blocks and the mempool: Bitcoin’s primary record-
keeping mechanism is the block. It is a data structure that
contains metadata about the block’s position in the blockchain
together with a number of associated transactions (typically a
couple thousands [16]). A block is generated roughly every
ten minutes through the mining process, and, once generated,
the block and its transactions become a part of the Bitcoin
blockchain. There is a probability that different nodes will
incorporate different blocks in their version of the blockchain
(a process known as a fork). These differences are reconciled
over time in a competitive process.

In the interim time between when a transaction is announced
and when it is included in a block, transactions are stored

locally in the mempool. The mempool is a constantly changing
data set that stores all the unconfirmed transactions waiting to
be included in future blocks. It typically contains anywhere be-
tween 104 to 105 transactions, depending on network activity.
Currently the mempool experiences as low as 1 and as high as
17 insertions per second [17]; the arrival of a new block also
instigates many deletions from the mempool, between 1,300
to 2,400 transactions [18] per block.

2) Block propagation: Block Propagation is the process of
communicating a newly mined block to the network. It is the
backbone of Bitcoin’s ability to maintain consensus on the
current balances of address (wallets). When a new block is
discovered, each Bitcoin node advertises the block to all of its
neighboring peers.

There are currently two main block protocols in Bitcoin:
the original protocol developed for the first implementation of
Bitcoin and the Compact Block Relay Protocol (BIP 152) [5].
The original protocol is adequate for block propagation but
may require significant network resources, typically close
to 1 MB per block [19]. Since neighboring peers in the
Bitcoin networks can be geographically distant, this approach
is susceptible to large delays [20].

The compact block relay was developed in an effort to
reduce the total bandwidth required for block propagation. As
the name implies, the compact block is able to communicate
all the necessary data for a node to reconstruct and validate
one standard block. The compact block contains the same
metadata as the normal block, but instead of sending a
full copy of each transaction, it sends only a hash of the
transaction. Depending on the number of inputs and outputs,
a transaction is between 500 and 800 bytes [21], whereas
the hashes used for the compact block are only 6 bytes
per transaction [5], a significant bandwidth saving that relies
on the assumption that the receiver already has the relevant
transactions in its mempool and just needs to know in which
blocks they belong. This trade-off makes a compact block
much smaller in size than the original block at the cost
of potentially needing extra round-trip communications for
transactions whose hashes the receiver does not recognize
(using the getblocktxn/blocktxn messages [22]).

If a receiver’s mempool contains all the transactions whose
hashes are contained in a compact block that it received, then
it will be able to successfully reconstruct the original block.
However, if not all transactions are already in the node’s
mempool then it will fail to reconstruct the block. When the
compact block protocol fails, the extra round trips slow down
block propagation and increases the risks of a fork in the
blockchain. Fig. 1 illustrates the process.

B. Related Work

Stutzbach and Rejaie [6] study churn in several peer-to-
peer networks, specifically Gnutella, BitTorrent, and Kad. By
inserting crawlers into each network, they characterize various
metrics, such as peer inter-arrival time, session lengths, peer
up time, peer down time etc., and fit distributions to the
respective metrics. The authors state that “one of the most
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Fig. 1: Block propagation: (a) an Original Satoshi block, (b) a
Successful compact block, (c) and an Unsuccessful compact
block. In the last case, additional communications recover
missing transactions from peers.

basic properties of churn is the session length distribution,
which captures how long peers remain in the system each
time they appear”. Our work characterizes the statistics of
session lengths and churn in the Bitcoin network, which to
our knowledge have not been studied so far. Furthermore,
our work is not limited to statistical characterization of churn,
but also evaluates the impact of churn on the behavior of the
Bitcoin network with respect to the efficacy of the compact
block protocol.

Apostolaki et al. [14] simulate partitioning attacks. The
authors incorporate churn in their simulations and assume that
session lengths follow exponential distributions. We show in
our work that, on an aggregate level, session lengths are better
modeled by heavy-tailed distributions.

Decker and Wattenhofer [3] measure the time it takes for
a block to propagate in the Bitcoin network. They show that
delay in propagation of blocks in the network results in forks
in the Bitcoin blockchain. Since only one branch of the fork
becomes part of the blockchain, nodes who create blocks in
the other branch(es) essentially waste their power. Forks in
the blockchain also lead to a phenomenon called information
eclipsing which an adversary can leverage to perform a double
spending attack. However, the work in [3] was published
before the compact block protocol was implemented, i.e., each
block contained full transactions and no reconstruction was
needed. Therefore, their work does not capture the current
behavior of block propagation, including additional delay in-
curred due to missing transactions in a compact block received
by a peer.

Neudecker et al. [13] study churn in the Bitcoin network
from an attacker’s perspective. They vary the session length
of an attacking node in the Bitcoin network and through
simulations, show that a network partitioning “attack is sen-
sitive to churn of the attacking node”. However, they do not
characterize churn in the network, and thus, it is unclear what
is the basis for the parameters used in the simulations.

Karame et al. [15] study the security of using Bitcoin
in fast payments, such as paying for a meal at a fast-food
restaurant. They theorize that because of churn in the Bitcoin
network, the connectivity of a victim node with the rest of

the network varies with time. This gives an adversarial node
considerable opportunities to connect with a victim node and
perform a double spend attack. However, the authors neither
characterize churn nor take it into account when performing
analysis, measurements and experiments.

Ozisik et al. [23] propose the Graphene protocol, which
couples an Invertible Bloom Lookup Table (IBLT) [24] with a
Bloom filter in order to send transactions in a package smaller
than a compact block. According to the authors in [23], the
size of a Graphene block can be a fifth of the size of a
compact block, and they provide simulations (but not an actual
implementation) demonstrating their system. Yet, similar to the
compact block protocol, the Graphene protocol also assumes a
large degree of synchronization between mempools of sending
and receiving peers. In case of missing transactions, the
receiving peer requests larger IBLTs from the sending peer,
thus significantly adding to the propagation delay.

III. CHURN CHARACTERIZATION

Nodes on the Bitcoin network may leave and rejoin the
network independently. Characterizing churn requires obser-
vation of the node activity on the network. In this section,
we first detail our methodology to obtain and process data on
churn. Next, we present our statistical analysis. In Section IV,
we leverage this characterization to run experiments of the
compact block protocol with churning nodes.

A. Obtaining and processing data

Bitnodes [25] continuously crawls the Bitcoin network and
provides a list of all up nodes with an approximate 5 minute
resolution. Each network snapshot is available for roughly 60
days [26]. The website provides a rich API interface that can
be used to download each snapshot as a JavaScript Object
Notation (JSON) file. Each JSON file contains information,
such as IP address, version of Bitcoin running, geographic
location etc., of the nodes on the network that are up. Listing 1
shows an example from a JSON file representing a snapshot
taken by the crawler at the UNIX timestamp 1526742217.

1 "220.75.229.130:3927": [
2 70015, Protocol Version
3 "/Satoshi:0.13.2/", User Agent
4 1526337217, Connected Since
5 13, Services
6 165277, Height
7 "220.75.229.130", Hostname
8 "Seoul", City
9 "KR", Country Code

10 37.5985, Latitude
11 126.9783, Longitude
12 "Asia/Seoul", Timezone
13 "AS4766", ASN
14 "Korea Telecom" Organization Name
15 ]

Listing 1: Part of a JSON file transmitted to a Bitcoin node.



We download all available JSON files from Saturday, May
19, 2018 11:03:37 AM EST (UNIX timestamp: 1526742217)
to Tuesday, July 17, 2018 04:06:14 PM EST (UNIX times-
tamp: 1531857974) with a total of 14,674 snapshots ordered
according to unique UNIX timestamps.

Next, we parse each JSON file and generate a data set of all
IP addresses that appear at any point on the Bitcoin network
during the aforementioned time period. We find a total of
47,702 distinct IP addresses.

Given the list of IP addresses, we run a script that looks for
each IP address through each consecutive network snapshot.
If an IP address is found in two consecutive network snap-
shots, we can conclude that the IP address was up, and thus
online, for 10 minutes (recall Bitnodes’ 5 minute resolution).
Similarly, if the IP address is found in only one of the two
consecutive network snapshots, we can infer that the node
either left or rejoined the network. Finally, if the IP address
is not found in any of the two consecutive network snapshots,
we deduce that the IP address was down, and thus offline, for
10 minutes. This allows us to record the behavior of a node,
i.e., the duration of time it is on and off the Bitcoin network
over the 14,674 snapshots.

B. Statistical Analysis

1) Churn Rate: We discover that out of 47,702 distinct IP
addresses observed on the network during the aforementioned
time period, only 1,154 are always up, i.e., only about 2.42%
of the nodes are online at all times. Nodes corresponding to
the remaining IP addresses contribute to churn in the Bitcoin
network.

Next, we evaluate the churn rate, namely the rate at which
nodes oscillate between up and down sessions. For this pur-
pose, let T be a random variable corresponding to the sum of
the duration of an up session and its subsequent down session.
We then define the churn rate as R = 1/T . Fig. 2 shows the
CCDF of the churn rate R as measured across all the observed
Bitcoin nodes. With probability greater than 45%, R exceeds
one churn per node per day. In fact, there is a 10% probability
that R ≥ 9 churns per node per day. The average churn rate
per node is R̄ = 4.16 per day.

Note that nodes that are always up do not contribute to churn
in the Bitcoin network. Therefore, we filter out data related
to these nodes from our data sets on the session lengths of
a node’s up and down time on the network. In addition, we
filter out the first and the last session, whether up or down, of
each node. This is because we do not know how long a node
was up or down before we started and after we finished our
measurement.

2) Statistical fitting of session lengths: Prior work [27]–
[30] showed that session lengths exhibit a behavior similar
to a heavy-tailed distribution. Therefore, in our statistical
fitting, we focus on fitting heavy-tailed distributions to the
data, namely the generalized Pareto distribution, the log-
normal distribution, the Weibull distribution [31] and the log-
logistic distribution. Nolan [32] shows that maximum likeli-
hood estimation (MLE) of heavy-tailed distribution parameters

10−2 10−1 100 101 102

Daily churn rate r

0.0

0.2

0.4

0.6

0.8

1.0

P
(D

a
il
y

ch
u

rn
ra

te
>

r)

Fig. 2: Daily churn rate on the Bitcoin network.

is feasible. Hence, we use MATLAB’s distribution fitting
capabilities [33] to fit distributions based on the MLE criterion.
Finally, we also consider the exponential distribution, as a
basis for comparison.

Up sessions: We first fit a distribution to the data rep-
resenting up session lengths. Our fitting applies to the first
25,000 minutes, which roughly translates to 2.5 weeks. We
use the following criteria to determine the goodness-of-fit of
the various distributions to the actual data: 1) The R-squared(
R2
)
, which is given by

R2 = 1 −
∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ȳ)

where y is the actual value, ŷ is the calculated value, and ȳ is
the mean of y [34]. An R2 value of 1 would indicate a perfect
model [35]. 2) The root mean squared error (RMSE), which
is given by

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2

where y is the actual value and ŷ is the calculated value [34].
An RMSE score of 0 indicates that all of the calculate values
lie on the line formed by the actual values [36]. 3) Visual
inspection of the data.

We set the parameter values generated by MATLAB as a
base and perform an exhaustive search within ±10% of the
base parameters. The final results for each distribution are the
highest R2 and lowest RMSE in that range.

The results can be seen in Fig. 3. The R2 and RMSE scores
for the fits are detailed in TABLE I. A key observation is that
the exponential distribution is a very poor fit for the session
lengths. While the log-normal distribution performs the best
in terms of R2 and RMSE scores, Fig. 3 indicates that the
log-logistic distribution fits best the CDF of the empirical
data, at least in the initial portion where most of the data
lies. Therefore, judging from the combination of Fig. 3 and
TABLE I, we conclude that the log-logistic distribution, given
by

F(α,β) (x) =
1

1 + (x/α)
−β , (1)
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Distribution R2 RMSE
Weibull 0.9002 2.60e−03

Log-normal 0.9939 1.29e−06
Log-logistic 0.9907 1.80e−03
Generalized

Pareto 0.9856 2.20e−03

Exponential 0.4904 21.70e−03

TABLE I: R2 and RMSE scores of distribution fits for “up
session” lengths.

where α > 0 is the scale parameter, and β > 0 is the shape
parameter, is the best fit for the up sessions. The parameters
for the log-logistic distribution fit in Fig. 3 are α = 11.000
and β = 0.771.

Down sessions: Next, we fit distributions to the data
representing down session lengths. We employ an approach
similar to that in the previous section. We focus on performing
a statistical fitting for sessions that are down for up to one
day (which represents over 93% of the cases). Note that
the mempool of a node that is continuously off the network
for a duration exceeding one day will largely be out of
synchronization with the rest of the network.

The fitting results are shown in Fig. 4. The corresponding
R2 and RMSE scores are listed in TABLE II. Notice that the
exponential distribution is a very poor fit and is never able to
achieve an R2 value above 0. Observing the combination of
Fig. 4 and TABLE II, we conclude that in this case the Weibull
distribution, given by

F(λ,k) (x) =

{
1 − e−(x/λ)k x ≥ 0

0 x < 0,
(2)

where λ > 0 is the scale parameter, and k > 0 is the shape
parameter, is the best fit for the down sessions. The parameters
for the Weibull distribution fit in Fig. 4 are λ = 0.640 and
k = 0.183.

3) Geographical Analysis: Fig. 5 shows the geographical
location of the 47,702 individual nodes discovered in the

5m 10m 1h 5h 1d
Session length

60

70

80

90

95

C
D

F
 (

%
)

Data
Weibull
LogNormal
LogLogistic
Generalized Pareto

Fig. 4: Distribution fits for “down session” lengths.

Distribution R2 RMSE
Weibull 0.9777 3.28e−04

Log-normal 0.9694 5.36e−04
Log-logistic 0.9575 7.72e−04
Generalized

Pareto 0.9429 9.55e−04

Exponential 0 1

TABLE II: R2 and RMSE scores of distribution fits for “down
session” lengths.

Bitcoin network during the time period mentioned in Sec-
tion III-A. Nodes that are always up during this time period
are marked white to make them distinguishable from the
remaining nodes that contribute to churn in the network. We
observe that the majority of the Bitcoin nodes are located in
the North America and Europe. South America, North Asia,
the Far East and Oceania show a moderate presence while
Africa and Central and South Asia show a very little presence
of Bitcoin nodes. We note that the nodes that are always
connected are not co-located in one region but rather spread
out over the entire world map.

TABLE III indicates that North America and Europe are the
continents with the highest percentage of nodes that are always
up. On the other hand, Africa has a very small percentage of
nodes that are always up. These results may be due to the
more intermittent nature of Internet access in that continent.

IV. EXPERIMENTAL ANALYSIS OF COMPACT BLOCK
PERFORMANCE WITH CHURN

In this section, we evaluate the performance of block
propagation, and especially the compact block protocol, in the
presence of churning nodes, to realistically reflect the behavior
of the Bitcoin P2P network. The section details the mechanism
that we developed to log events on the Bitcoin network, the
experimental setup, the method for emulating churning nodes
based on the distribution fits performed in Section III-B2, and
finally, the results obtained.



Fig. 5: Geographic location of individual nodes on the Bitcoin network. Nodes that are always up are marked white. Remaining
(black) nodes contribute to churn in the network.

Continent Percentage
Africa 0.051
Asia 1.138

Europe 3.239
Oceania 0.692

North America 3.414
South America 0.289

TABLE III: Percentage of continuously connected nodes in
each continent.

A. Data Collection Mechanism

To aid in understanding Bitcoin Core’s behavior, we have
developed a new log-to-file system that produces human-
friendly, easy-to-read text files. This logging system is open-
source and we have made it available to the research com-
munity ([37]/src/logFile.*). This new logging mech-
anism allows one to isolate specific behaviors through select
calls anywhere within the Bitcoin core’s source code, most no-
tably information about different protocols such as the compact
block. The logging system writes core data to a log file, and
also can record various events and the information associated
with those events. For instance, when a compact block arrives,
the system logs this event and saves the transaction hashes
included in the compact block in a separate file with a unique
identifier tying it to a log entry. We have used this system
as our primary data collection mechanism for all of our
experiments.

B. Experimental setup

The aim of the experiment is to determine the efficiency
of the compact block protocol in the presence of churn. We
achieve this by running five nodes in the Bitcoin network. The
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nodes are Dell Inspiron 3670 desktops, each equipped with an
8th Generation Intel® Core i5−8400 processor (9 mB cache,
up to 4.0 GHz), 1TB HDD and 16GB RAM. The nodes are
each running the Linux Ubuntu 18.04.1 LTS distribution.

We run experiments over a period of two weeks. Three
nodes use sampled session lengths to emulate churn on the
network. Specifically, we generate samples of the best fit
distributions given by Eq. (1) and Eq. (2), such that the
aggregate sum of the up and down sessions is at least two
weeks for each node. We limit both the up and down session
lengths from a minimum of 1 second to a maximum of
1 day. The remaining two nodes act as control nodes that
are continuously connected to the network. Fig. 6 shows the
sampled up and down session lengths used in the experiments.
In order to avoid any bias, we use the Bitcoin RPC API
setban [38], [39] to ensure that the five nodes are not
connected to each other as peers in the Bitcoin network.
This way, our nodes do not directly influence each other. Our
experiment runs without interruption from Friday, November



Nodes Blocks
Received

Successful
Compact Blocks

(%)

Unsuccessful
Compact Blocks

(%)
S1 1826 87.84 12.16
S2 1815 85.84 14.16
C1 1430 72.03 27.97
C2 1455 72.44 27.56
C3 1454 75.17 24.83

TABLE IV: Block reception statistics for control nodes S1 and
S2 and churning nodes C1, C2, and C3.
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Fig. 7: CCDF of number of missing transactions in churning
and control nodes.

09, 2018 18:18:41 to Sunday, November 25, 2018 23:30:24.

C. Experimental results

1) Statistics on compact blocks: We compare the num-
ber of compact blocks that the churning nodes (denoted by
C1, C2, C3) and the (stable) control nodes (denoted by S1, S2)
fail to reconstruct. TABLE IV shows the results. The churning
nodes are unable to reconstruct roughly twice as many blocks
as the control nodes (i.e., 26.78% vs. 13.16%). Indeed, of the
blocks they receive, the control nodes are able to reconstruct
successfully on average 1,581.00 blocks out of 1,820.50
blocks (i.e., 86.84% of the blocks), while the churning nodes
are able to reconstruct successfully on average only 1,059.00
blocks out of 1,446.30 blocks (i.e., 73.22% of the blocks).
The results are quite consistent across both the control and
churning nodes.

2) Statistics on missing transactions: Churning nodes are
generally missing far more transactions in blocks they are
unable to reconstruct than the control nodes. We find that
on average a churning node misses 312.02 transactions from
a block with a standard deviation of 591.70 transactions,
whereas a control node misses on average 2.91 transactions
with a standard deviation of 7.97 transactions. Fig. 7 shows
the CCDF of the number of missing transactions. From the
figure, we observe that churning nodes may be missing up
to thousands of transactions, while control nodes may miss
at most a few hundred transactions. Indeed, in 12% of the
cases, churning nodes may miss between 1,000 transactions
and a maximum of 3,167 transactions, while control nodes
have a probability of 12% to miss between 3 and a maximum

Nodes Mean (ms) Std Dev (ms)
S1 120.62 686.05
S2 164.75 789.59
C1 299.99 1445.80
C2 288.37 1279.13
C3 450.76 2631.69

TABLE V: Propagation delay statistics of received blocks for
control nodes S1 and S2 and churning nodes C1, C2, and C3.

102 103 104 105

Propagation delay t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
(D

e
la

y
>

t)

Churning node, C1

Churning node, C2

Churning node, C3

Control node, S1

Control node, S2

Fig. 8: Propagation delay across all blocks for both churning
and control nodes.
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Fig. 9: Propagation delay for blocks that are unsuccessful in
both churning and control nodes.
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Fig. 10: Propagation delay for blocks that are successful in
control nodes but unsuccessful in churning nodes.

of 145 transactions. Therefore, our results clearly indicate that
churning nodes need to request a high number of transactions
from their peers to successfully reconstruct a block.



3) Statistics on propagation delay: TABLE V shows the
propagation delay statistics for each of the churning and
control nodes, across all received blocks. Blocks received by
the control nodes experience an average propagation delay of
142.62 ms whereas blocks received by the churning nodes
experience an average propagation delay of 336.57 ms (i.e., an
increase of about 135%). Fig. 8 shows that, for each churning
node, the CCDF of the propagation delay for each churning
node is almost always above the CCDF of the propagation
delay for each control node.

Fig. 9 shows the propagation delays of all unsuccessful
blocks in both churning and control nodes. We see that overall,
the propagation delay of such blocks in churning nodes is
higher. In fact, unsuccessful blocks in control nodes have a
propagation delay of 525.31 ms with a standard deviation
of 1,995.18 ms, and the unsuccessful blocks in the churning
nodes have a propagation delay of 796.45 ms with a standard
deviation of 2,336.13 ms.

In Fig. 10, we show the CCDF of the propagation delay
for the blocks that were successful in all control nodes but
unsuccessful in all churning nodes. When a block cannot be
reconstructed successfully, a recipient has to request missing
transactions from its peers, thus increasing the propagation
delay. Successful blocks in the control nodes have a propaga-
tion delay of 96.98 ms on average with a standard deviation
of 32.78 ms, whereas unsuccessful blocks in churning nodes
experience a propagation delay of 1,331.43 ms on average
with a standard deviation of 3,373.47 ms. In 33% of the cases,
the propagation delay of blocks received by churning nodes
exceeds 1000 ms up to a maximum of 42,539.53 ms, while the
propagation delay in 33% of blocks received by the control
nodes exceeds 110 ms to a maximum of 194.13 ms.

V. CONCLUSION

In this paper, we identified and empirically demonstrated
the heretofore undocumented effect of churn on the Bit-
coin network. We performed a thorough characterization of
churn, including the daily churn rate and statistical fitting
of the distributions of the lengths of up and down sessions.
This statistical characterization should prove useful to other
researchers, for the purpose of analyzing, simulating, and
emulating the behavior of the Bitcoin network.

We used the statistical characterization to evaluate the
impact of churn on the propagation delay of blocks in the
live Bitcoin network. In the process of this research, we
developed a logging mechanism for tracing events in Bitcoin
nodes, which we have released for public use [37]. Our
experiments showed that churn produces a marked degradation
in the performance of the delay-optimized compact block
protocol. This is because unsuccessful compact blocks are
much more prevalent in churning nodes, and the associated
incomplete blocks often miss a large number of transactions
(312.02 on average). As a result, the propagation delay of
blocks processed by churning nodes is substantially larger on
average than that of nodes that are always connected. In fact,
occurrences of propagation delays that exceed one second are

common. Our measurements show that about 14.51% of the
blocks processed by the churning nodes have a propagation
delay exceeding one second, compared to 5.72% of the blocks
processed by the control nodes. Note that this corresponds to
the delay over a single hop on the Bitcoin network, and hence
the end-to-end delay would be even larger.

As an outcome of this work, it is evident that there should
be significant benefit in implementing efficient synchronization
of the mempools of Bitcoin nodes, thus keeping them up-to-
date with transactions that they might have missed while being
disconnected. We believe that it should be possible to engineer
transaction synchronization based on prioritization metrics
by utilizing difference-finding algorithms and reconciliation-
optimized data-structures from the synchronization literature.
Potential candidates include IBLT [24], due to its high toler-
ance for differences, and CPISync [40]–[42], due to its near-
optimal communication complexity.
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distributions,” in Lévy processes, pp. 379–400, Springer, 2001.

[33] T. M. Inc., “Fit probability distribution object to data - MATLAB fitdist.”
https://www.mathworks.com/help/stats/fitdist.html.
Online; Accessed: November 06, 2018.

[34] “Evaluating goodness of fit.” https://www.mathworks.com/
help/curvefit/evaluating-goodness-of-
fit.html#bq_5kwr-7. Online; Accessed: November 18, 2018.

[35] “Coefficient of determination ( r-squared) explained.”
https://towardsdatascience.com/coefficient-of-
determination-r-squared-explained-db32700d924e.
Online; Accessed: December 2, 2018.

[36] “Rms error.” http://statweb.stanford.edu/˜susan/
courses/s60/split/node60.html. Online; Accessed:
December 2, 2018.

[37] N. Younis, “Bitcoin.” https://github.com/Nabeelperson/
bitcoin, 2017.

[38] “Bitcoin developer reference.” https://bitcoin.org/en/
developer-reference#remote-procedure-calls-rpcs,
2017. Online; Accessed: November 17, 2018.

[39] “Bitcoin core :: setban (0.16.0 rpc).” https://bitcoincore.org/
en/doc/0.16.0/rpc/network/setban/. Online; Accessed:
November 17, 2018.

[40] J. Jin, W. Si, D. Starobinski, and A. Trachtenberg, “Prioritized data
synchronization for disruption tolerant networks,” in MILITARY COM-
MUNICATIONS CONFERENCE, 2012-MILCOM 2012, pp. 1–8, IEEE,
2012.

[41] D. Starobinski, A. Trachtenberg, and S. Agarwal, “Efficient pda syn-
chronization,” IEEE Transactions on Mobile Computing, vol. 2, no. 1,
pp. 40–51, 2003.

[42] A. Trachtenberg, D. Starobinski, and S. Agarwal, “Fast pda synchroniza-
tion using characteristic polynomial interpolation,” in IEEE INFOCOM,
vol. 3, pp. 1510–1519, INSTITUTE OF ELECTRICAL ENGINEERS
INC (IEEE), 2002.

https://www.blockchain.com/charts/transactions-per-second?timespan=30days
https://www.blockchain.com/charts/transactions-per-second?timespan=30days
https://www.blockchain.com/en/charts/n-transactions-per-block?timespan=60days
https://www.blockchain.com/en/charts/n-transactions-per-block?timespan=60days
https://www.blockchain.com/en/charts/n-transactions-per-block?timespan=60days
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
https://tradeblock.com/blog/analysis-of-bitcoin-transaction-size-trends
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://bitnodes.earn.com
https://bitnodes.earn.com/api/
https://bitnodes.earn.com/api/
https://www.mathworks.com/help/stats/fitdist.html
https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html#bq_5kwr-7
https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html#bq_5kwr-7
https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html#bq_5kwr-7
https://towardsdatascience.com/coefficient-of-determination-r-squared-explained-db32700d924e
https://towardsdatascience.com/coefficient-of-determination-r-squared-explained-db32700d924e
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html
https://github.com/Nabeelperson/bitcoin
https://github.com/Nabeelperson/bitcoin
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
https://bitcoincore.org/en/doc/0.16.0/rpc/network/setban/
https://bitcoincore.org/en/doc/0.16.0/rpc/network/setban/

	Introduction
	Background and Related Work
	Bitcoin Background
	Blocks and the mempool
	Block propagation

	Related Work

	Churn Characterization
	Obtaining and processing data
	Statistical Analysis
	Churn Rate
	Statistical fitting of session lengths
	Geographical Analysis


	Experimental Analysis of Compact Block Performance with Churn
	Data Collection Mechanism
	Experimental setup
	Experimental results
	Statistics on compact blocks
	Statistics on missing transactions
	Statistics on propagation delay


	Conclusion
	References

