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Abstract. We consider the problem of mining crytocurrencies by har-
nessing the inherent distribution capabilities of the World Wide Web.
More specifically, we propose, analyze, and implement WebEth, a browser-
based distributed miner of the Ethereum cryptocurrency. WebEth handles
Proof-of-Work (PoW) calculations through individualized code that runs
on the client browsers, and thereafter collates them at a web server to
complete the mining operation. WebEth is based on a lazy evaluation
technique designed to function within the expected limitations of the
clients, including bounds on memory, computation and communication
bandwidth to the server. We provide proofs-of-concept of WebEth based
on JavaScript and WebAssembly implementations, with the latter reach-
ing hash rates up to roughly 40 kiloHashes per second, which is only 30%
slower than the corresponding native C++-based implementation. Finally,
we explore several applications of WebEth, including monetization of web
content, rate limitation to server access, and private Ethereum networks.
Though several distributed web-based cryptominers have appeared in the
wild (for other currencies), either in malware or in commercial trials, we
believe that WebEth is the first open-source cryptominer of this type.

Keywords: crypto-currency · Ethereum · distributed computing · web-
browser computing · mining

1 Introduction

Cryptocurrencies are increasingly gaining traction as a viable form of currency.
This has been accompanied by a correspondingly increasing interest in the ef-
ficient validation of cryptocurrency transactions. Whereas initial efforts in this
domain have focused on creating dedicated hardware for this task [42], more re-
cent approaches have examined repurposing existing infrastructure. Indeed, one
such class of efforts has focused on the use of client web browsers as a platform
for distributed computing [14]. The growing popularity of CoinHive [16] is a case
in point of the potential success of distributed in-browser cryptocurrency mining
as a commercial (if malicious) enterprise.

In this work, we propose WebEth, a browser-based distributed miner for the
popular Ethereum block chain [40]. WebEth tackles the challenge of achieving a
profitable hash rate within a distributed ensemble of browsers under constrained
memory, computation and network usage. Indeed, every browser needs to store
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a data structure of at least 1 GB in memory in order to mine Ethereum. Clearly,
it is unfeasible to transfer this entire data structure every time a browser loads a
web page. Instead, WebEth employs a lazy approach to generate this data struc-
ture while mining. Through our experiments, we show that this approach takes
at most five minutes to reach a steady state hash rate – making it ideal for
web applications where users spend time, such as gaming and video streaming.
Our experiments also show that WebEth yields a hashing rate of up to 40 kilo-
Hashes/s, which, despite the overhead from running the algorithm in a browser,
is only 30% smaller than the performance of a corresponding miner running
natively.

The main contributions of this work are as follows:

– We propose WebEth [1], an open-source implementation of a distributed web-
based Ethereum cryptominer in both JavaScript and WebAssembly that can
operate under relatively resource constrained environments. Though miners
for other currencies exist in the wild (e.g. CoinHive [16]), they are all pro-
prietary and closed-source.

– We provide theoretical analysis and experimental evidence of the potential
efficacy of the lazy approach adopted by WebEth to achieve high hashing
rates.

– We propose a number of potential applications built upon WebEth, including
rate-limiting server access, usage tracking, and content monetization.

Related Work: Distribution of a common task is hardly a new concept [10–
12], but the growing popularity and efficiency of dynamic web content and
client-side scripting languages like JavaScript and WebAssembly have made
web browsers an enticing implementation option [13, 21, 14]. Coinhive [16] has
built into this environment a proprietary method for mining the Monero cryp-
tocurrency, but this is often done on the browsers of unsuspecting users. A
more ethical, open-sourced alternative, the Basic Attention Token [44], is an
Ethereum-based ERC20 token [47] currently in development to be used in con-
junction with the Brave browser [4] to generate ad revenue for website publishers
by measuring a user’s attention on an advertisement. This platform promises to
balance the ties between website users, publishers, and advertisers to ensure that
users get only ads they would accept, advertisers pay for actual users (instead of
click bots), and publishers actually get revenue instead of begging users to turn
off their ad blockers.

Roadmap: The remainder of the paper is organized as follows. In Section 2 we
cover the relevant background and related literature for our work. In partic-
ular, we provide a self-contained description of Ethash, the Ethereum mining
Proof-of-Work (PoW), and WebAssembly, the language in which we implement
an efficient miner. Section 3 describes WebEth, including its lazy approach to dis-
tributing the Ethash PoW over numerous, resource-constrained browsers. This
section also includes a performance analysis. We present the experimental results
of our implementations in Section 4. In Section 5 we discuss several potential
applications of our mining platform. We conclude in Section 6.
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2 Background

2.1 Cryptocurrencies: a general overview

Most cryptocurrencies like Ethereum involve storing transactions in blocks, and
the entire history of transactions is collated in a data structure known as a block
chain. The block chain is managed by dedicated machines called client nodes;
where each client node typically stores the entire block chain. However, because
each client node operates on its own copy of the block chain, the block chains on
different nodes may go out of sync. Hence, there needs to be an accepted mech-
anism to decide the order in which new transaction blocks are appended to this
block chain. For this, every time a new transaction takes place, the transaction
is pooled together with all other transactions that have been broadcasted to the
network, but haven’t been added to the block chain yet. For most currencies, the
data structure that stores these unconfirmed transactions is known as the mem
pool. A miner picks valid transactions from his mem pool and creates a new block
out of these transactions. Once this happens, the goal of the miner is to have
his/her block appended to the block chain, which is achieved through a process
called mining. Mining involves a race amongst miners to solve a Proof-of-Work
(PoW) puzzle, which is usually an energy intensive computation. The winner of
this race gets to have his block appended to the block chain. The winner also
receives a payout, which acts as an incentive to mine.

Ethereum uses Ethash as its PoW algorithm, which is explained in detail
below.

2.2 Ethereum Proof of Work

Ethereum is a crypto-currency that was released in July 2015 by Vitalik Bu-
terin, Gavin Wood and Jeffrey Wilcke. Ethereum uses the Ethash algorithm
(derived from the Dagger and Hashimoto algorithms [6]) for its PoW for mining
blocks. Before we discuss how mining works with Ethash, we first establish basic
terminology about the data structures involved in the PoW.

A block header contains meta-data related to the transactions of the corre-
sponding block, and it is provided as an input to the Ethash algorithm together
with an integer nonce. The nonce is chosen in a brute-force fashion in order
to hash, together with the block header, into a value that matches a specific
pattern (based on a predefined difficulty threshold). The process of finding an
appropriate nonce for a given block is known as mining.

Once a block has been mined, it is propagated to other client nodes so that
they can update their copies of the block chain. However, before each client
node does so, it must validate whether the miner is submitting a legitimate
block – i.e., check whether the miner genuinely solved the hash as claimed.
This is easily done by putting the block header and nonce associated with the
block through the Ethash algorithm and checking whether the output follows
the pattern prescribed by the difficulty threshold. Light weight client nodes do
not mine new blocks, but rather only verify whether any new block submitted
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by a miner is valid or not. Full client nodes, on the other hand, both mine and
verify new blocks.

An epoch is a unit of “time” that spans 30,000 blocks. All of the data struc-
tures in Ethash (mentioned below) need a 256 bit seed, which differs for every
epoch. For the first epoch the seed is a Keccak-256 [41] hash of a series of 32
bytes of zeros. For every other epoch it is always the Keccak-256 hash of the
previous seed hash. The seed for a particular epoch is used to compute a data
structure known as the Cache, which is an array of 4 byte integers [25]. The
Cache production process involves using the seed hash to first sequentially fill
up the Cache, then performing two passes of the RandMemoHash algorithm [15]
on top of it to get the final Cache value.

Light weight clients may use this Cache for verifying hashes, while full node
clients can use it to calculate a Directed Acyclic Graph (DAG) dataset, as de-
scribed below. A Ethereum Directed Acyclic Graph is stored as a large byte array
(around 1 GB in size on the private Ethereum Network used for our experiments)
and has the following two attributes:

1. Node: Each DAG node in this byte array spans 64 bytes, and node indices
are therefore aligned at a 64 byte boundary.

2. Page: Each DAG page spans 2 nodes, however, page accesses are not aligned
at a 2 node boundary. The mining process involves accessing some DAG
pages and hashing them together with the block header and nonce.

Each node in the DAG is generated by combining data from 256 pseudo-randomly
selected Cache nodes and hashing them together. This process is repeated to
generate all nodes in the DAG. Finally, intermediate byte arrays used to store
temporary results in the Ethash algorithm are known as Mixes.

We must point out that as time goes on, mining Ethereum becomes more
and more difficult, as the size of the Cache and DAG increases with every epoch.

Mining is performed by starting with the current block header hash and
nonce, which are combined to get a 128-byte wide Mix, as seen in step 1 of Figure
1. The Mix is then used to fetch a specific page of the DAG from memory. After
this, the Mix is updated with the fetched page of the DAG (step 2). Then, this
updated Mix is used to fetch a new page of the DAG (step 3). This process of
sequentially fetching parts of the DAG is repeated 64 times (step 4), and the
final value of the Mix is put through a transformation to obtain a 32 byte digest
(step 5). This digest is then compared to the threshold (step 6). If it is smaller
than the threshold, the nonce is valid and the block is successfully mined and can
be broadcast to the network. However, if the digest is greater than the threshold,
the nonce is unsuccessful, and the entire process must be repeated with a new
nonce [25].

It is important to note that the pages of the DAG that are used to compute
the hash for a particular block depend on the nonce used, hence there is no way
to pre-determine which pages will be useful to have in memory. This therefore
forces miners to store entire DAG in memory, making Ethereum mining “Memory
Hard”.
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Fig. 1: Ethash

Whereas mining is memory intensive, verification is relatively lightweight.
This is because of the property that each node in the DAG depends on a set
of pseudo-randomly selected items from the Cache. Hence, the Cache is used
to regenerate only the specific pages of the DAG that are needed to recalculate
the hash for the particular nonce. And so, only the Cache needs to be stored by
light weight clients that only perform verification. In fact, as we will see in the
next section, we use this property of being able to generate parts of the DAG as
needed to our advantage in order to alleviate some of the memory and network
bandwidth restrictions that browsers typically face.

2.3 JavaScript and WebAssembly

Introduced in 1995 by Netscape Communications Corporation [43], JavaScript
was a meant to be a light scripting language in order to make web content dy-
namic. Over the span of 23 years, it has grown to become one of the most popular
client-side web development languages used to make dynamic user interfaces.
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In fact, up to recently, JavaScript has been the only language available
to make dynamic client-side web content. However, the situation has changed
since the advent of WebAssembly in 2016. As per its creators, WebAssembly is
a “binary instruction format for a stack-based virtual machine” [29]. WASM is
designed to be compiled from high-level languages like C/C++/Rust, and is sup-
ported by 4 major browser platforms – Firefox, Safari, IE, and Chrome [29]. The
WebAssembly stack machine is designed to be encoded in a “size-and load-time-
efficient binary format” [29], and aims to execute near native speed by utilizing
common hardware capabilities present on a wide variety of platforms [29]. The
language is meant to improve performance for computationally intensive use
cases such as image/video editing, games, streaming, etc [29]. This makes it the
language of choice to implement a miner within a browser.

3 WebEth

In this Section, we present our Web mining architecture for Ethereum. A diagram
of the WebEth architecture is depicted in Figure 2. The architecture of the miner
itself involves the browser connecting to a central node as soon as the web page
loads (Steps 1 and 2 in Figure 2). On connecting, the browser then receives the
current block header hash and Cache (Step 3), using which it begins mining
using the lazy evaluation algorithm discussed below (Step 4). Then, the browser
could take one of two paths – it could either have solved the block (Step 5a), in
which case it sends the solution to the central node and asks for the next block
to solve. Or it could timeout (Step 5b), in which case it polls the central node
again for the current block header hash and Cache and then resumes mining.
This architecture, including the lazy evaluation mining algorithm, is described
in detail below.

Mine
Get current

block
header,

and cache

Connect to
central
node

Load Web-
page

Time out

Found  
Result

Submit  
Result

1 2 3 4

5b

5a

Fig. 2: WebEth Architecture
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3.1 Lazy Evaluation

The mining itself (Step 3) in WebEth is based on a lazy evaluation to alleviate the
network and memory requirements for mining Ethereum in a distributed scenario
on browsers. Specifically, as soon as each browser connects to the webserver, the
server sends to the browser the current block header hash and the Cache. Once
the browser receives the Cache, it allocates an array buffer to store the DAG
nodes.

Once the buffer is allocated, the browser can start iterating over nonces to
compute hashes. Since, to begin with, the browser does not store any nodes of
the DAG, it must compute each node on the fly using the Cache. However, every
node that the browser computes is stored in the buffer, for quicker access in the
future. Hence, as time passes, the buffer starts filling up, such that more and
more nodes are quickly accessed from the buffer rather than being computed
from the ground-up, which makes hash computations faster with time. This has
the effect that the longer the user remains on the web-page, the better the hash
rate gets for that user.

3.2 Implementation

The WebEth architecture is centered around a central node and client-side Ethereum
miners.

We have two implementation for the client-side miners: in JavaScript and
in WebAssembly. For our miner, we model the JavaScript implementation after
the node.js implementation of Ethash [3]. The WebAssembly version is the
JavaScript version transpiled to C++, which in turn is compiled to WebAssembly

using the Emscripten compiler [31].
The central node itself coordinates all workers (browsers). Its implementation

is based on a modified version of geth [26], a real world Ethereum miner written
in Go. geth typically runs as a standalone miner that mines on the machine on
which it is running. We modify the code so that instead of doing all the mining
all by itself, the node sends over the necessary data (namely, the hash of the
Block Header and the Cache) to any client that connects to it on port 9000

(Steps 1, 2 and 3 in Figure 2).
After receiving the necessary data, per the lazy evaluation algorithm, each

browser allocates a buffer for the DAG in order to store future DAG nodes.
(Note that the buffer for the DAG is implemented as an array of ints, so as to
make each lookup in the buffer constant in time.) Now, the client-side miner can
begin to mine (Step 4). At the beginning, the miner creates a random nonce and
computes the hash (using the Cache and the buffered DAG) as discussed in the
previous section. It continues to perform this action on new nonces until one of
two following scenarios occur (Steps 5a and 5b).

In the first scenario (Step 5a), the miner finds a nonce such that the computed
hash is below the given threshold. In that case, the browser submits the result
back to the central node and then asks the central node for the new block header
hash and the Cache. It then uses these new inputs and continues to mine.
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In the second scenario (Step 5b), the algorithm times out without finding a
result. In that case, the miner polls the central node for the current versions of
the block header hash and Cache and continues to mine using the new inputs.
This process continue until the user moves away from the website or closes the
browser. This time out is necessary since the browser should work with the
most recent block header and Cache. The block header can become stale if that
particular block has already been mined, and the Cache can become stale if the
Ethereum network transitions into a new epoch (this happens once every 30,000
blocks).

Finally, we must point out that both our current implementations in JavaScript

and WebAssembly require no external dependencies, and therefore can be directly
embedded into any website. Furthermore, the fact that the central server does
not have to keep track of each client makes the system quite scalable.

3.3 Performance Analysis

In this section, we perform a back-of-the envelope calculation for the number
of hashes needed till WebEth fills up almost all the buffer. This is important
because the hash rate reaches its maximum steady-state only once the buffer in
the browser is almost full. Specifically, we show that filling a buffer the size of
the DAG till only 5 ∗ 10−7% of it is empty should take on average about 1.85
million hashes, while filling it up till 5 ∗ 10−1% of this buffer is empty takes
much lesser – about 700 thousand hashes. The approach we take is based on the
Coupon Collector problem [36].

For simplicity, we assume that 128 nodes in the DAG are randomly sampled
in order to compute each hash, whereas, in reality, this is not entirely true. This
is because Ethash samples 128 pages per hash (rather than 128 nodes). Since
each page is two nodes wide, two neighboring DAG nodes are sampled for each
page computation. Hence, the DAG nodes are not accessed completely randomly.
Nonetheless, this estimation still provides us a good approximation.

For our analysis, we introduce the following notation. We denote by N the
total number of nodes in the DAG, by a the number of DAG nodes needed to
compute a hash, by δ the failure probability of finding a specific node in the
buffer (i.e., the buffer miss rate), by ω the failure probability of computing a
hash using nodes already stored in the buffer, by E(X) the expected number of
hashes to fill the buffer with a failure probability δ, and by Hn the n-th Harmonic
number.

Claim. For δ � 1, E(X) ≈ N
a (HN −HNδ).

Proof: The number of nodes needed in the buffer to achieve a failure probability
δ is dN(1− δ)e. This means that even though we are allocating a buffer that can
hold N nodes, we are willing to forgo bNδc nodes (to simplify notation, from
now and on, we assume Nδ is an integer).

Using results from the Coupon Collector’s problem [36], we know that the
expected number of trials for obtaining the i-th new node after having buffered
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i− 1 nodes is N/(N − (i− 1)). Thus, the expected number of trials in order to
fill up the buffer with N(1− δ) nodes is given by

E(t) = N

N(1−δ)∑
i=1

1

N − i+ 1
. (1)

Splitting this expression into two sums, we get

E(t) = N

 N∑
i=1

1

N − i+ 1
−

N∑
i=N(1−δ)+1

1

N − i+ 1

 , (2)

or

E(t) = N(HN −HNδ). (3)

We now relate the failure probability of calculating a hash using nodes already
stored in the buffer ω with the failure probability of having a specific node in
the buffer δ. By the independence assumption,

1− ω = (1− δ)a

For δ � 1, we have (1− δ)a ≈ 1− aδ. Hence,

δ ≈ ω

a
. (4)

Hence, it follows from Equation (4) that

E(X) ≈ E(t)

a
. (5)

Finally, from Equations (3) and (5) and, we obtain

E(X) ≈ N

a
(HN −HNδ). (6)

�
We use the following approximation on the Harmonic Numbers to compute

Equation (6):

Hn ≈ lnn+ γ + o(1) (7)

where γ = 0.57721566... is the Euler-Mascheroni constant.
Specifically, using Equations (6) and (7), and setting N = 16777186 (the

number of nodes in the DAG for our experiments), a = 128 and δ = 5 ∗ 10−9,
we get E(X) ≈ 1.85 million hashes. However, if we increase δ to 5 ∗ 10−3, we get
E(X) ≈ 700 thousand hashes. Hence, we see that even computing merely 700
thousand hashes fills a DAG buffer as large as the entire DAG within a margin
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of 5 ∗ 10−1%, as opposed to calculating 1.85 million to fill it within a margin of
5 ∗ 10−7%.

In fact, as we will see in the results, filling up 99.5% of a buffer as large as
the DAG already starts giving us good hash rates for a browser – 35kH/s for
the WebAssembly miner. This shows that we need to have the buffer almost –
but not completely – full in order to do well in terms of hash rates. And as
we have seen, making the buffer almost full is not nearly as hard as filling it
up entirely. This means that reaching a reasonably steady state is not as hard
as it seems at face value, making WebEth viable for web settings where users
might not stay on websites for long. However, given this, we would also like to
point out that in reality, while it takes a lot more hashes to fill up the buffer, it
does not take a lot more time to fill it up. This is because as discussed in the
next section, when the buffer gets closer and closer to being full, the hash rate
spikes up and so computing the remaining number of hashes to fill the buffer
becomes quite fast. Hence, it does not take too long to completely fill up the
buffer (around five minutes in our experimental setup), which is practical for
many web applications, such as streaming.

4 Results

4.1 Experimental set up

Our experimental set up consisted of a machine with an Intel i7-7700HQ pro-
cessor with 8 cores and 16 GB ram. These results were obtained from a pri-
vate Ethereum test network at epoch 0. The DAG size was 16777186 nodes
(1.074 GB). The cache size was 1.677 MB. We ran the implementations in
JavaScript and WebAssembly in the browser, and a native miner written in
C++ that employs the same lazy evaluation approach outside of the browser for
control results. Each miner was run till 800 kHashes were computed and the
hash rate and buffer hit rate were sampled every 10k hashes. (Note that both
the hash rate and buffer hit rate sampled at a particular time reflected the values
over the 10k most recent hashes).

4.2 Implementation Results

Figures 4, 5 and 6 below shows a heat-map of how the hash rate varies for each
of the three implementations as a function of both the size of the buffer allocated
to store the DAG (as a percentage of the size of the entire DAG) and the number
of hashes computed in the browser. Further, Figure 7 then shows a heat-map of
how the DAG buffer hit-rate varies as a function of both these parameters. As
expected, both the hash rate and the buffer hit rate increases with the buffer
size and the number of hashes computed for all three miners. We must also note
that the experimental results suggest that it takes 700 kHashes to reach a buffer
hit rate of 99.5%, which agrees with our predicted value from the mathematical
analysis in the previous section. In fact, we can validate that our experimental
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results are typically in agreement with the predicted results for all other hit rates
as well.

In order to closely examine the relationship between the hash rate and the
hit rate, we show the correlations between the two parameters for all 3 miners
in Figure 3. It is interesting to see how the hash rate drastically spikes after the
hit rate surpasses 95%. This suggests that accessing DAG pages from the buffer
is orders of magnitude faster than computing them, so much so that even a few
computations bring down the hash rate drastically. Most importantly, from the
experiments, the time it takes to reach this steady state hash rate is not long
(about 5 minutes) thereby making this approach ideal for streaming/gaming
websites. Furthermore, WebEth is also ideal as a web miner as it is not very
resource intensive – throughout the experiments, it did not use more than 12.5%
of the CPU of our testing machine (the utilization value is normalized over 8
cores).

One might think that a way to reach the steady state hash rate faster for a
given sized buffer would be to start out with a partially filled out buffer instead
of an empty one. The only way this could work is by sending over part of the
DAG over the network to the client. However, as it turns out, this is not feasible
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Table 1: Performance variations across different Implementations

WASM/JS Native/JS Native/WASM
% Diff in smallest hash rates 35.9% 55.0% 38.9%
% Diff in peak hash rates 73.2% 81.3% 30.2%
Min perf % diff 24.4% 47.2% 23.9%
Max perf % diff 73.3% 82.0% 40.5%
Avg. Hash Rate % diff

(averaged over all buffer sizes
and buffer hit rates) 30.6% 55.6% 35.9%

since, for a DAG with 16777186 nodes (1.074 GB) sending even 10% of the DAG
would be sending roughly 100 MB of data. With the global average download
speed for desktops and smart phones being around 5.34 MBps and 2.77 MBps
respectively [32], the web page load time would be in the order of 20 seconds to
a minute – which is too long to get a mere 10% boost in the buffer storage.

Table 1 shows us how the performance of each of the miners compare. In-
terestingly, the performance variation between different implementations is not
uniform across different buffer sizes and hit rates. For instance, the variation be-
tween the WebAssembly and JavaScript miners is only 35.9% when the buffer
hit rate is 0, but the performance difference increases to 73.2% when the hit
rate becomes greater than 0.99. We also see that for obvious reasons, the native
miner outperforms both the JavaScript and the WebAssembly miner. However,
the WebAssembly miner is at most 40.5% slower than the native miner – which is
not very far off considering the overhead of running programs within browsers.
The JavaScript miner, on the other hand, is at least 47.2% slower (and at
most 82.0% slower), making WebAssembly the better of the two candidates for
WebEth.

Finally, we tabulate the most important results from our analysis in Table
2. We see that it takes all miners only a few hundred seconds to fill the buffer
up, which is good considering the fact that most users don’t stay on a particular
website for very long. Furthermore, we see that the WebAssembly miner is the
better of the two miners, since it gives a better terminal hash rate of 40 kH/s.
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Table 2: Main Results

Native JavaScript WebAssembly
Median Hash Rate

(for a buffer the size of the DAG)
15278 H/s 5290 H/s 10504 H/s

Peak Hash Rate 56800 H/s 10626 H/s 39651 H/s
Time taken to 99.76%
buffer hit rate

163.601 s 879.857 s 257.7692 s

Avg. Hash Rate % diff with Native Miner
(averaged over all buffer sizes)

NA 55.6% 35.9%

5 Potential Applications

We envision that WebEth could be used for a variety of applications.

Web Content Monetization: With the growth in global Internet usage, hosting
websites has become a lucrative business. As a result, new methods of monetiz-
ing electronic content have surfaced with time. Though some are more successful
than others, all of them have associated issues. For instance, selling advertise-
ment space is now resulting in declining revenue for website owners due to the
advent of new technologies such as AdBlock [2], Brave Browser [4, 5]; when cou-
pled with an increased load time, browser slow-down, and placement challenges,
online ads adversely affect user experience. Thus, we envision that website con-
tent can be monetized through client-size coin mining, utilizing techniques such
as those presented in this work. Note though that earning real cash requires a
significant subscriber base or a large amount of time spent on the website, mak-
ing this an ideal approach for video streaming/gaming websites. In fact, with a
hash rate of 40 kH/s, a website would need to have around 8000 users at any
given time in order to obtain around $500 per month [48].

Web Authentication Rate Limiting: Another potential application relates to rate
limiting of web-authentication. Many tools are openly available for brute forcing
web login pages [33, 34]. Currently, the way website owners mitigate these attacks
is by locking out a user for a certain amount of time after a fixed number of
unsuccessful login attempts or presenting a captcha [37]. Lock out presents a
Denial of Service potential by locking out legitimate users as a consequence
of an attack. Captcha techniques can be used for third-party value [38] and
have been successfully attacked through machine learning techniques [45] and
crowdsourcing [46].

We posit a more user-friendly approach to this problem involving embedding
a Proof-of-Work computation in a web page, e.g., using WebEth, that the user’s
browser needs to successfully solve in order to be able to login. The PoW would
amplify the computational power needed for brute force attempts, thereby se-
lectively thwarting any attacker that attempts to brute force the login without
significantly penalizing the legitimate user. WebEth is an especially good candi-
date for such an implementation because one could manually set the difficulty
to obtain a balance between user experience and security.
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Proof of Web Traffic: Another use-case of WebEth involves website advertisement
companies. Today, website advertising sponsors decide on the remuneration for
a website based on summarized server logs as a measure for site traffic. These
logs can be manipulated by a website owner to generate the impression of a large
amount of traffic [35] or by ad injectors [39]. As a solution to this, WebEth could
be embedded by a website owner within the website, thereby making the site
visitors compute PoW hashes. The advertiser would then ask the website owner
to submit hashes that pass a certain difficulty threshold (i.e., the value of the
hash being less than a certain number), and the larger the number of hashes
that the website owner can provide, the more the remuneration the site receives.
This would be more difficult for the website owners to fake since they would
have to compute hashes themselves, an endeavor that might be more expensive
than the potential ad payout.

Private Ethereum Test Networks: Finally, we would also like to note that Ethereum
is an extremely flexible currency in the sense that it allows for private coin net-
works – i.e., networks that do not mine the public Ethereum block-chain, but
rather a private (and often smaller) instance of the cryptocurrency. WebEth can
be used on any such private network to serve the network owner’s specific inter-
ests.

6 Conclusion

We have designed and implemented WebEth, an open-source and distributed web-
based Ethereum miner, with potential applications toward monetizing electronic
content, rate limiting, private test networks, user tracking for advertisers, and the
like. WebEth is standalone, implemented in both JavaScript and WebAssembly,
and requires no external dependencies, meaning that both of these implemen-
tations can be readily embedded within many existing websites. We have also
provided analyses and experimental data to help in engineering our proposed
applications.

Future Work: Many interesting issues remain open. For one, our current imple-
mentation is still slower than traditional mining methods. One way to speed this
process up is to tap into the client machine’s GPU. There is a JavaScript li-
brary called WebCL that binds to the OpenCL library which allows JavaScript
to interact directly with the GPU to achieve better parallel performance. Know-
ing that Ethereum was created for GPU mining, it should provide a substantial
improvement.

Another interesting issue is whether the server should notify the clients once
a new valid hash is found. One may expect that with a sufficiently large number
of clients, this may lead to better performance than waiting for a timeout.

The Ethereum Foundation is also currently developing Casper, a Proof-of-
Stake algorithm, which has already been deployed in private testnets. Since
Casper is open-source, it should be possible to create a Proof-of-Stake distributed
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browser miner implementation. However, users would most likely have to provide
“stakes” in order for such an implementation to be possible [24]. Further research
will be necessary to determine whether browser mining for Casper is viable or
not, as the final form of Casper is still uncertain and exactly how much “stake”
is required to successfully mine is unknown.
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