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Abstract—In many services, such as cloud computing, cus-
tomers have the option to make reservations in advance. However,
little is known about the strategic behavior of customers in
such systems. In this paper, we use game theory to analyze
several models of time-slotted systems in which customers can
choose whether or not making an advance reservation of server
resources in future time slots. Since neither the provider nor the
customers know in advance how many customers will request
service in a given slot, the models are analyzed using Poisson
games, with decisions made based on statistical information.
The games differ in their payment mechanisms, and the main
objective is to find which mechanism yields the highest average
profit for the provider. Our analysis shows that the highest
profit is achieved when advance reservation fees are charged only
from customers that are granted service. Furthermore, informing
customers about the availability of free servers prior to their
decisions do not affect the provider’s profit in that case.

I. INTRODUCTION

In recent years there has been a growing interest in applying
advance reservation (AR) in cloud computing [1] and networks
[2]. Thus, several software packages for resource management,
including Haizea [3], an open source lease management archi-
tecture, and IBM Platform Computing Solutions [4], a cluster
workload management package, support AR. In both of these
packages, an administrator can decide whether or not to enable
AR and define the AR pricing scheme.

In most systems supporting AR, customers can choose
whether making AR or not. Since the payoff of each customer
is affected by decisions of other players, it is natural to
analyze the behavior of such systems as strategic games. To
our knowledge, such games have not been analyzed before
and currently there are no results on customers’ behavior in
systems that support AR.

The general framework that we consider is a slotted loss sys-
tem where customers can decide in advance whether reserving
future resources for a fee. A customer opting not to make a
reservation lowers its chance of finding a server available at
the desired time. Customers are not flexible, i.e., they leave the
system if they cannot be served at their desired time slots. For
each given slot, the number of customers requesting service
(referred to as demand) is an independent Poisson random
variable. The arrival time of a customer prior to the start of a
slot, also referred to as its lead time, is a positive, continuous
i.i.d random variable with general distribution. This model falls
under the framework of Poisson games. As shown in [5], only
in Poisson games the following properties hold: (1) each player

sees the same probability distribution of the number of players
in the game, excluding itself, as the number of players seen by
an external observer; (2) if players are randomly ascribed to
different types with fixed probabilities, the number of players
of each type is also Poisson distributed.

The provider can choose the AR mechanism and fee to
maximize its profit. In this paper, we aim to answer two main
questions: (1) Should the provider inform the customers prior
to their decisions whether there are free resources or not? (2)
Should the provider charge the AR fee in advance, even from
customers that attempt to make AR but do not get service
(which may occur if all servers in the desired slot are already
reserved)?

In order to answer those two questions, we analyze three
Poisson games that differ in their AR mechanisms. Our
main contribution is to show that, at equilibrium, informing
customers that free resources are available does not impact
the provider’s average profit. However, charging an AR fee
from all customers attempting AR (i.e., not only those granted
service) can only decrease the profit.

Once a model is chosen, another question arises: what is the
AR fee that maximizes the provider’s profit? The answer to
this question seems to be more complicated. As we observe,
there is a range of fees, such that choosing a fee within this
range leads to multiple equilibria with one of them yielding
zero profit.

The rest of the paper is organized as follows. In section II,
we briefly review related work. In Section III, we describe in
details the three different games. In Section IV, we character-
ize the different possible equilibria in all of the three games.
In Section V, we compare between the profits obtained in
the different games and determine which scheme produces the
highest profit. In the last section, we conclude the work and
suggest several directions for future research.

II. RELATED WORK

Research on queueing systems that support advance reser-
vations started over twenty years ago. Most of the research
focuses on performance evaluation and algorithmic aspects
of different AR systems. For example, in [6], a scheduling
model that supports AR is proposed and several performance
metrics are evaluated. in [7], an AR model with flexible time
window is suggested and it is shown that this model has
a lower blocking probability and a higher utilization than a



model without window. In [8], the authors analyze the effect of
AR on the complexity of path selection. In [9], the utilization
of models with and without AR are compared. A simulation
based comparison between different payment mechanisms is
reported in [10]. Algorithms for network routing that support
advance channel reservations are proposed in [2]. For a survey
on the field, see [11].

The application of game theory to analyze customers’
behavior in queues is pioneered in [12]. In this paper the
author considers an M/M/1 queue where customers observe
the queue length and then decide whether to join or bulk. The
model introduced in [12] stimulated many follow-up works.
An unobservable M/M/1 queue, where customers need to
decide whether to join or bulk without knowing the queue
state, is analyzed in [13]. An observable processor sharing
system, where customers decide whether or not to join the
system after observing the number of customers within, is
analyzed in [14]. In [15], the authors analyze an observable
M/M/1 queue with priorities, where customers decide on a
payment and accordingly priorities are assigned. In [16], the
authors analyze an unobservable M/M/N/N system that is
initially empty and customers decide whether to join or bulk
based on their arrival time. In [17], the authors introduce the
concert queueing game, where customers, interested in early
service with minimal wait, can choose their arriving time into
a system with a specific opening time. For a review of the
field see [18].

III. THE MODELS

First we describe the assumptions that are common in all
three models:

1) There are N servers.
2) The service time axis is slotted.
3) The demand, which represents the number of customers

that request service in a specific slot (each customer re-
quests one server), is an independent Poisson distributed
random variable D with parameter λ.

4) The customers arrive to the system in a random fashion.
Customer i’s lead time is denoted Ti and it is the
time between its arrival and the slot starting time. The
random variables Ti are i.i.d and continuous (supported
in [0,∞)), with cumulative distribution function (CDF)
F (t).

5) Upon arrival, each customer can choose one of two
actions: make AR or not make AR, denoted AR and
AR′ respectively.

6) If the demand for a slot is larger than N , the servers are
allocated to the first N customers that made AR. If fewer
than N customers made AR, the remaining servers are
randomly allocated between the customers that have not
made AR.

7) The customers and the provider know the number of
servers N and statistical information on the system (i.e.,
λ and F ). However, they do not know the demand and
the lead time of the rest of the customers in advance.

- Make AR Not make AR
Model Served Not

Served
Served Not

served
1 and 3 1− C 0 1 0
2 1− C −C 1 0

TABLE I: Payoff summary.

8) The provider charges a fixed reservation fee denoted by
C. All the customers have the same utility U from the
service. Without loss of generality, we set U = 1.

To illustrate the model, consider the following example: a
system with many servers has a slot duration that lasts for one
day, starting at 12:00 AM. A customer realizes on Monday
6:00 PM that it will need service on Wednesday. Thus, its
lead time is 30 hours. At that point, the customer, knowing
the statistical information, the number of servers and the AR
fee, needs to decide whether to make AR or not.

The three models differ in their reservation mechanisms as
described next:

1) Unobservable model 1: customers do not know if there
are free servers at the time of reservation. If a customer
makes an AR request, it is then informed whether a
server will be allocated at the requested slot. In the first
case a reservation fee is charged. In the second case, the
customer leaves the system with no gain or cost.

2) Unobservable model 2: customers do not know if there
are free servers at the time of reservation. A reservation
fee is charged from each customer that makes an AR
request.

3) Observable model: customers know at their arrivals
(prior to their decision) if there are free servers. A
customer that has been informed that there is no free
server leaves the system. Otherwise, it has to decide
whether to make AR or not.

The possible payoffs are summarized in Table I.

IV. EQUILIBRIA ANALYSIS

A. Classification of the equilibria

We analyze the three models as none-cooperative games
where each player (customer) aims to maximize its payoff. In
the third model, we can ignore the case where a customer is
informed that no server is available, since no decision needs
to be made in this case. Since the demand for each slot is an
i.i.d random variable, the analysis of a single slot is sufficient
for analyzing the game.

Given a lead time t, we set p = F (t) and refer to as the
normalized lead time. F (t) can be interpreted as the average
fraction of customers with lead time smaller than t. For each
game, we define a strategy function σ : p −→ τ ∈ [0, 1], which
defines the probability that a tagged customer with normalized
lead time p ∈ [0, 1] makes AR. Through conditioning, given
that there are k other customers with normalized lead times
p1...pk and that they all follow strategy function σ, the tagged
customer can find the probability of getting service (we denote



that event by S) for each action it chooses. Therefore, its prob-
ability to get service, when choosing action α ∈ {AR,AR′}
and given σ is:

P(S|σ, p, α) = P(D < N)+

∞∑
k=N

P(D = k)

1∫
p1=0

· · ·
1∫

pk=0

P(S|p, α, σ, k, p1..pk)dp1 · · · dpk.

(1)

The first term in (1) is the probability that less than N
customers arrive (beside the tagged customer), in this case
the probability to get service is one. The second term is the
weighted sum of the probabilities of getting service when the
demand is greater than N . In this case the probability to get
service depends on the actions of other customers and their
lead times.

Given a model and strategy function, one can find the
expected payoff for each action, denoted Uσ(p, α), by mul-
tiplying P(S|σ, p, α) and 1 − P(S|σ, p, α) with the relevant
payoffs, as summarized in Table I. For example, in the second
model:

Uσ(p,AR) = P(S|σ, t, AR) · (1− C)

+ (1− P(S|σ, p,AR) · (−C) (2)

and

Uσ(p,AR′) = P(S|σ, p,AR′) · 1
+ (1− P(S|σ, p,AR′) · 0. (3)

In equilibrium, each customer choses an action that maximizes
its expected payoff. Thus, we define an equilibrium strategy
(i.e., a strategy that leads to equilibrium) as follows:

Definition 1. Strategy σ is an equilibrium strategy if the
following holds for any p ∈ [0, 1]:

1) If σ(p) = 0 then Uσ(p,AR) ≤ Uσ(p,AR′).
2) If 0 < σ(p) < 1 then Uσ(p,AR) = Uσ(p,AR′).
3) If σ(p) = 1 then Uσ(p,AR) ≥ Uσ(p,AR′).

Next we define three type of equilibria followed by a lemma
stating that those are the only possible equilibria.

Definition 2. A none-make-AR equilibrium has the following
strategy function:

σ(p) = 0, ∀p ∈ [0, 1].

Definition 3. Given pe ∈ (0, 1), a threshold equilibrium pe
has the following strategy function:

σ(p) =

{
1 if p > pe
0 if p ≤ pe.

Definition 4. An all-make-AR equilibrium has the following
strategy function:

σ(p) = 1, ∀p ∈ [0, 1].

Lemma 1. The only possible equilibria are none-make-AR,
threshold and all-make-AR equilibria.

Proof: In the two unobservable games, consider a strategy
function σ and a customer with normalized lead time p. If the
customer does not make AR, its payoff does not depend on p
and Uσ(p,AR′) = a where a is some constant. On the other
hand, from assumption 6 in Section III, it can be inferred that
the payoff Uσ(p,AR) of a customer that makes AR is a non-
decreasing function of p. Based on this observation, we next
show that in any scenario, an equilibrium must be one of the
three equilibria stated in the lemma.

If Uσ(p,AR′) > Uσ(p,AR) for all p ∈ [0, 1], the given
strategy is an equilibrium strategy only if it is none-make-AR.
If Uσ(p,AR′) < Uσ(p,AR) for all p ∈ [0, 1], the strategy is
an equilibrium strategy only if it is all-make-AR.

Finally, if the two payoff functions intersect, they can either
intersect at a single point p0 or on an interval [p1, p2]. In
the first case, Uσ(p,AR′) > Uσ(p,AR) for all p < p0 and
Uσ(p,AR′) < Uσ(p,AR) for all p > p0 therefore, in this
case, σ is an equilibrium strategy only if it is a threshold
strategy p0. In the second case, Uσ(p,AR) = a for all p ∈
[p1, p2] which can only happen if σ(p) = 0 for all p ∈ [p1, p2].
Otherwise, Uσ(p,AR) would not have a fixed value in that
range (we ignore the case of σ(p) 6= 0 over a measure zero
subset of [p1, p2], since the probability that a customer will
have a normalized lead time within this subset is zero). Since
Uσ(p,AR′) > Uσ(p,AR) for all p < p1 and Uσ(p,AR′) <
Uσ(p,AR) for all p > p2, the given strategy is an equilibrium
strategy only if it is the threshold strategy p2 (or none-make-
AR if p2 = 1).

In the third model, consider a customer with normalized
lead time p and being informed that there are free servers.
The probability that these servers will be allocated to other
customers cannot decrease as p increases. Therefore, if the
customer does not make AR, its expected payoff is a con-
tinuous non-increasing function of the normalized lead time
while the payoff of making AR is always 1 − C. Thus, the
same conclusion can be drawn for this model.

B. Equilibria structure

Based on the observations we made so far, we next find the
equilibria structure for each model separately and we show
that different ranges of fees lead to different equilibria. The
results are summarized in the following theorem.

Theorem 1. For each model i = 1, 2, 3, there exist quantities
C and Ci ≥ C, such that the following holds:

• If C ≤ 0, all-make-AR is the unique equilibrium.
• If 0 < C < C, there is at least one threshold equilibrium.
• If C ≤ C < Ci, there is a none-make-AR equilibrium

and at least two threshold equilibria.
• If C = Ci, there is a none-make-AR equilibrium and at

least one threshold equilibrium.
• If C > Ci, none-make-AR is the unique equilibrium.

1) Unobservable model 1: For each type of equilibrium, we
find the range of fees in which this equilibrium may occur. We
also show that for any fee at least one equilibrium exists.



All-make-AR equilibrium. In the case C ≤ 0, making AR
is obviously a dominant strategy and therefore all-make-AR is
the unique equilibrium. However, for any C > 0, all-make-AR
equilibrium can not be formed. We show it by assuming that
all customers make AR and there is a customer with lead time
ε. As ε decreases, the probability that it is the last customer
to arrive increases. For any δ > 0, there exists ε > 0 such that
the probability that a customer with lead time ε is the last to
arrive is greater than 1 − δ. When the probability to be the
last customer to arrive tends to one, the difference between the
probability to get service with and without AR tends to zero.
Therefore, for any value of C > 0, there is a small enough ε
such that a customer with ε lead time is better off not making
AR and all-make-AR is not an equilibrium.

Threshold equilibrium. In the threshold equilibrium pe, the
number of customers making AR is Poisson distributed with
parameter λ(1−pe) and the number of customers not making
AR is Poisson distributed with parameter λpe. Furthermore,
these two random variables are independent. This follows
from the second property of Poisson games mentioned in the
introduction. We denote the probability of a customer with
normalized lead time pe ∈ [0, 1] to get service if making
AR (respectively not making AR) as pAR(pe) (respectively
pAR′(pe)). The first expression is:

pAR(pe) = e−λ(1−pe)
N−1∑
k=0

(λ(1− pe))k

k!
, (4)

which is the probability that fewer than N customers (beside
the one that arrive at the threshold) make AR. The second
expressions is:

pAR′(pe) = e−λ(1−pe)
N−1∑
k=0

(λ(1− pe))k

k!

·

e−λpe N−k−1∑
j=0

(λpe)
j

j!
+ e−λpe

∞∑
j=N−k

(λpe)
j

j!

(
N − k
j + 1

) ,

(5)

which is the sum of the probabilities that k customers (k < N)
make AR, each probability being multiplied by two terms. The
first one, covers the case of total demand smaller or equal
to N , In the second term, the demand exceeds N and the
probability to get service depends on the proportion of the
number of unreserved servers and the number of customers
that did not make AR. After some algebra we get:

pAR′(pe) = e−λ
N−1∑
k=0

(λ(1− pe))k

k!

·

N−k−1∑
j=0

(λpe)
j

j!
+

eλpe − N−k∑
j=0

(λpe)
j

j!

(N − k
j + 1

) .

(6)

In a threshold equilibrium pe, a customer with normalized
lead time pe is indifferent between the two actions. Thus, a

threshold strategy pe is an equilibrium if and only if

(1− C) · pAR(pe) = pAR′(pe), (7)

where the left hand side of Eq. (7) is the expected payoff of
making AR, and the right hand side of Eq. (7) is the expected
payoff of not making AR. Using Eq. (7), we can express the
fee as a function of the threshold:

C1(pe) = 1− pAR′(pe)

pAR(pe)
, (8)

which is defined and continuous in the range [0, 1]. We observe
that C1(0) = 0 and that C1(pe) > 0 for any pe > 0. By
defining

C1 = max
0≤pe≤1

C1(pe) (9)

we can conclude that for any C ∈ (0, C1], there is at least one
value of pe such that Eq. (7) holds and therefore there is at
least one threshold equilibrium (Note that if C1 = C1(1) and
C = C1, then by definition the equilibrium is a none-make-
AR equilibrium). Furthermore, for any C /∈ (0, C1], there is
no threshold equilibrium.

None-make-AR equilibrium. If none of the customers
makes AR, they all have the same expected payoff pAR′(1). A
customer that deviates gets service with probability 1 and its
payoff is 1−C. Thus, if the provider chooses a fee such that
1 − C ≤ pAR′(1), then none of the customers will have an
incentive to deviate. On the other hand, if 1− C > pAR′(1),
then all the customers will have an incentive to deviate. By
defining C = 1− pAR′(1) , we can conclude that if and only
if C ≥ C, none-make-AR is an equilibrium.

By definition C1 ≥ C and therefore we have shown that for
any value of C, at least one equilibrium exists. Furthermore,
if C1 > C, for any C ∈ (C,C1), the equation C = C1(pe)
must have at least two solutions. Therefore, there are at least
two different threshold equilibria in this range.

2) Unobservable model 2: In this section, we show that the
second game has the same equilibria structure as the first one
but with different ranges.

All-make-AR equilibrium. By the same reasoning as in the
first model, if and only if C ≤ 0, all-make-AR is the unique
equilibrium.

Threshold equilibrium. Given a threshold, the probability
to get service with and without making AR is equal to the
probabilities in the first model. Thus, the functions pAR and
pAR′ can be used in the analysis of this model. As in the first
game, when all behave in accordance to a threshold strategy
pe, a customer that arrives at the threshold is indifferent
between the two strategies. Thus,

pAR(pe)− C = pAR′(pe), (10)

where the left hand side of (10) is the payoff of a customer
that arrives at the threshold and makes AR, while the right
hand side of (10) is the payoff of not making AR. In this



Fig. 1: An example with N = λ = 10.

model, the fee as a function of the threshold is:

C2(pe) = pAR(pe)− pAR′(pe) (11)

and C2 is defined as:

C2 = max
0≤pe≤1

C2(pe). (12)

As is the first model, C2(0) = 0 and C2(pe) > 0 for any
pe > 0. Thus, there is a threshold equilibrium if and only if
C ∈ (0, C2].

None-make-AR equilibrium If none of the customers
makes AR, the payoffs of making and not making AR are
1 − C and pAR′(1) respectively. Which are the same as in
the first model. Therefore the range of fees that can lead to a
none-make-AR is the same as before.

In conclusion, the only difference between the analysis of
the two games is that C1 may have different value than C2. By
the definitions of C1 and C2 it can be observed that C1 ≥ C2

as illustrated in Fig. 1.
3) Observable model: In this model, customers make their

decisions not only based on the statistical information but
also based on the knowledge that servers, at the desired slot,
are currently available. Next we show that the additional
information does not affect their decisions and each fee leads
to the same equilibria as in the first unobservable model.

All-make-AR equilibrium. By the same reasoning as in the
first model, if and only if C ≤ 0 All-make-AR is the unique
equilibrium.

Threshold equilibrium. First we denote the event of being
informed that there are free servers as I1. If all the customers
that see this event follow the threshold strategy pe, then the
payoff of a customer arriving at the threshold (and seeing I1)
is 1−C if it makes AR and P(S|pe, I1, AR′) otherwise. Next
we show that

P(S|pe, I1, AR′) =
pAR′(pe)

pAR(pe)
(13)

and therefore, Eq. (7) is also valid for the third model. By
conditioning on I1 we get:

P(S|pe, I1, AR′) =
P(S ∩ I1|pe, AR′)
P(I1|pe, AR′)

. (14)

Since a customer cannot get service when observing no
free server, the nominator P(S ∩ I1|pe, AR′) is equal to
P(S|pe, AR′). Given a threshold strategy pe, if a customer

does not know whether there are free servers, its probability
to get service is the same as in the two other models. Thus,
P(S|pe, AR′) = pAR′(pe).

The denominator P(I1|pe, AR′) is the probability that a
customer that arrives at the threshold and does not make AR,
sees the event I1. This can be rephrased as the probability
that less than N servers have been reserved (the fact that the
customer does not make AR is irrelevant). This in turn can
be rephrased as the probability to get service when making
AR exactly at the threshold point without knowing if there
are free servers, which is the definition of pAR(pe). Thus,
P(I1|pe, AR′) = pAR(pe).

None-make-AR equilibrium. If none of the customers
makes AR, then the customers already know that there are
free servers. Thus, being informed by the provider that there
are free servers has no impact on customers decisions.

By noticing that the profit of the provider is defined in the
same way in both models, that is, the number of customers
that make AR and get service multiplied by C, we can infer
the following theorem:

Theorem 2. For any value of C, the first and the third models
have the same equilibria and each equilibrium yields the same
expected profit for the provider.

V. COMPARISON OF MODELS

In this section we compare the provider profit in the two
unobservable models. Since a fee may lead to more than one
equilibrium, we assume that, in this case, the provider can
choose an equilibrium. So, instead of choosing the fee, we
assume, in this section, that the provider can choose the value
of pe.

We denote the number of customers that make AR requests
as M . In the first model, the expected profit as a function
of pe is the expectation of the minimum between N and M ,
multiplied by the fee:

R1(pe) = E[min(M,N)]C1(pe). (15)

While in the second model, the provider expected profit is
the expected number of customers that make AR requests
multiplied by the fee:

R2(pe) = λ(1− pe)C2(pe). (16)

Ignoring the trivial cases of pe = 0 and pe = 1 which yield
zero profit in both models, we next state the following result:

Theorem 3. In any threshold equilibrium the first model yields
greater expected profit than the second model.

Proof: We need to show that for every value of pe ∈ (0, 1)
the following holds true:

R1(pe)

R2(pe)
> 1. (17)

From Eq. (8) and (11), we can infer that:

C1(pe)

C2(pe)
=

1

pAR(pe)
. (18)



Thus, by Eqs. (15), (16) and (18) we obtain

R1(pe)

R2(pe)
=

E[min(M,N)]

λ(1− pe)pAR(pe)
. (19)

For convenience we denote λ(1− pe) by λ̄ and get:

E[min(M,N)] =

N∑
k=0

P(M = k)k +

∞∑
k=N+1

P(M = k)N

= e−λ̄
N∑
k=0

λ̄k

k!
k + e−λ̄

∞∑
k=N+1

λ̄k

k!
N. (20)

Substituting Eq. (20) and (4) into Eq. (19), we now need to
show that:

e−λ̄
∑N−1
k=0

λ̄k

k! k + e−λ̄
∑∞
k=N

λ̄k

k! N

λ̄e−λ̄
∑N−1
k=0

λ̄k

k!

> 1 (21)

or:
N−1∑
k=0

λ̄k

k!
k +

∞∑
k=N

λ̄k

k!
N − λ̄

N−1∑
k=0

λ̄k

k!
> 0. (22)

With some arithmetic manipulations we obtain:
N−1∑
k=0

λ̄kk

k!
+

∞∑
k=N

λ̄k

k!
N − λ̄

N−1∑
k=0

λ̄k

k!

=

N−1∑
k=1

λk

(k − 1)!
−

N∑
k=1

λk

(k − 1)!
+

∞∑
k=N

λ̄k

k!
N

= − λ̄
N

N !
N +N

(
eλ̄ −

N−1∑
k=0

λ̄k

k!

)

= N

(
eλ̄ −

N∑
k=0

λ̄k

k!

)
> 0. (23)

VI. CONCLUSIONS AND FUTURE RESEARCH

We modeled a slotted system of reusable resources, where
customers are allowed to make advance reservations while
AR bears an additional fee. We considered three different AR
mechanisms and analyzed each one as a Poisson game, where
customers differ by their lead time.

We showed that in all three games, for any fee, at least one
of the following equilibria exists: all the customers make AR,
none of the customers makes AR or a threshold equilibrium
where only customers that arrive early enough make AR. We
also showed that a profit can be obtained only in the threshold
equilibrium and, by choosing the right fee, any threshold
equilibrium can be achieved. However, there may be other
equilibria for that fee.

As this research is the first to study a stochastic AR system
as a game, many directions for future research are possible.
To name a few of them: a model where customers have some
cancellation probability; generalized versions where customers
need more than one server in a slot or more than one slot; and
a model with different classes of customers.
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