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Abstract— We consider a service provider that accommodates
two classes of users: primary users (PUs) and secondary users
(SUs). SU demand is elastic to price whereas PU demand is
inelastic. When a PU arrives to the system and finds all channels
busy, it preempts an SU unless there are no SUs in the system.
Call durations are exponentially distributed and their means
are identical. We study the optimal pricing policy of SUs by
using dynamic programming to maximize the total expected
discounted profit over finite and infinite horizons, and the
average profit. Our main contribution is to show that although
the system is modeled as a two-dimensional Markov chain, the
optimal pricing policy depends only on the total number of
users in the system (PUs and SUs), i.e. the total occupancy.
We also demonstrate that optimal prices are increasing with
the total occupancy. Finally, we describe applications of these
results to the special case of admission control and show that
the optimal pricing policy structure of the original system is
not preserved for systems with elastic PUs.

I. INTRODUCTION

Commercially available wireless spectrum has become
drastically scarce because of the increasing use of wireless
devices, such as smartphones and tablets. According to a
recent study conducted on 2G, 3G and 4G networks by Er-
icsson, mobile data traffic will increase tenfold by 2016 and
there will be 5 billion subscribers by then [1]. Although the
market is in desperate need of additional spectrum, studies
show that the spectrum allocated to license holders is often
underutilized in space and time [2]. To improve spectrum
utilization, cognitive radio (CR) technologies enable smart
use of the spectrum through opportunistic spectrum hand-off
and secondary market usage.

In CR systems, there are two classes of users: primary
users (PUs) which have permanent license to access the
spectrum and secondary users (SUs) which are temporarily
accepted if the system is underutilized. A service provider
(SP) serving both PUs and SUs must maximize its profit
by attracting as many SUs as possible while ensuring that
the performance perceived by PUs is not affected by the
presence of SUs. We consider the PUs as higher priority
users whereas the SUs are lower priority users. We use a
preemption mechanism that aborts an SU call when a PU
needs to make a call and there are no idle channels. As a
practical application of preemption, FCC Block D at 700
MHz employs such a termination model where public safety
services are the PUs and commercial services are the SUs [3].
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Our motivation is to characterize the structure of the
optimal pricing policy in a preemptive system with inelastic
PUs and elastic SUs. PUs have a constant demand whereas
SU demand depends on the price advertised. A pricing policy
enforces the prices advertised to the SUs. The rewards are
collected upon the arrival of SUs and there is a cost per
preempted SU.

In this work, we formulate a finite horizon discounted
return dynamic programming (DP) problem to determine
the optimal pricing policy that maximizes the profit. Then,
we demonstrate that the value of an additional SU in the
system depends only on the total occupancy, i.e. the total
number of users in the system. Our main result is proving
that the optimal pricing policy of SUs depends only on the
total number of users (PUs and SUs) in the system for
both infinite horizon and finite horizon profits. This property
provides a simple and efficient way to determine the optimal
pricing policy. Next, we establish a relationship between the
optimal pricing policy and the total occupancy. We provide
an average return DP formulation of the system using the
total occupancy and demonstrate that relative rewards are
decreasing and concave in total occupancy. Using these
results, we deduce that the optimal prices increase with the
total occupancy. Lastly, we discuss the application of our
results to the special case of admission control. We also
present a numerical counter-example to obtain the optimal
pricing policy of a variant system with elastic PUs.

II. RELATED WORK

In this section, we present a literature review under three
main categories: congestion-dependent pricing, dynamic con-
trol of networks and preemption.

Paschalidis and Tsitlikis [4] analyze congestion-dependent
pricing of a multi-class network, where all classes have expo-
nentially distributed call durations with different means and
elastic arrival rates. Mutlu et al. [5] investigate the optimal
dynamic pricing policy of a system consisting of inelastic
PUs and elastic SUs with identical mean call durations. Gans
and Savin [6] characterize a system consisting of two types
of users within the context of a rental management problem
which resemble the PUs and SUs in our model. Dube et al.
[7] study the dynamic pricing of a single server system with
identical and parallel queues.

The work of Miller [8] stands out as a seminal work in the
field of admission control by considering a multi-class and
multi-server queueing system. Ramjee et al. [9] study the two
class version of the model of Miller. Ormeci et al. [10] study
a two class loss system where the classes have different mean
service rates. They deduce that the joint optimal admission



control policy of two classes is of threshold type and depends
on the number of users of each class.

The literature we have mentioned so far considers systems
where users are only throttled upon arrival. The work after
this point uses preemption. One of the earliest works on
preemption is the work of Helly [11], which proposes
approaches on the control of two class traffic with different
priorities and limited capacity. Garay and Gopal [12] inves-
tigate the use of preemption control in high speed networks
and analyze call preemption. Next, Xu and Shanthikumar
[13] examine a first-come first-served non-identical multi-
server system and determine its optimal admission control
policy using duality and preemption. Brouns and van der Wal
[14] study admission and preemption control of a two class
single server queue with identical service rates. Brouns [15]
extends these results to a multi-server system where there
are no preemption costs. Finally, Ulukus et al. [16] consider
the admission and preemption controls of a system with two
classes, non-identical service rates and different priorities.

Our work differs from the preceding work, since we study
pricing control in a preemptive system. Previous work on
network control or pricing does not consider preemption,
whereas previous work that utilizes preemption considers
only preemption and/or admission control.

III. MODEL DESCRIPTION

In this section, we describe our model and statistical
assumptions. We assume that there are C identical and
parallel channels which are allocated for the use of the calls
of users of two classes: PUs and SUs.

We assume that each call requests the same amount of
bandwidth corresponding to a single channel. PUs have
preemptive priority over the SUs. In our case, a channel is
allocated to a higher priority call even if a lower priority call
is in progress. When the lower priority call is preempted, it
is withdrawn from the system permanently.

Regardless of the class type, call durations are independent
and exponentially distributed with mean µ−1 unless termi-
nated prematurely. We model our system as a finite state
two-dimensional (2D) continuous-time MDP. The rest of the
system description is as follows:

States: The state of the system is in the form (x, y) where
x ≥ 0 is the number of PU calls in the system and y ≥ 0 is
the number of SU calls in the system.

Rewards and costs: u(x, y) is the reward per SU call
at state (x, y). The reward is collected upon arrival. A
pricing policy is the set of rules which determines the price
advertised by the SP at any given time, depending on the
current state [4]. We denote the pricing policy as u, and it is
defined for the states within the range of the capacity limit
C, i.e. 0 ≤ x + y < C. The prices at each state are chosen
from an interval U = [0, umax] where a definition of umax is
provided below. We discretize U with a step size ∆u in order
to obtain a finite control space. Then, the number of possible
prices becomes |U| = bumax/∆uc+1. From now on, we will
use the discrete version of U. If a PU call arrives and finds
all the channels busy, then the system preempts an SU call

exists any. The preemption mechanism is active only when
all channels are busy. Whenever an SU call is preempted,
the SP pays a cost K > umax. A call is blocked only if an
arriving user finds all channels busy and preemption is not
possible. For PUs, this corresponds to the case when all the
calls in the system belong to PUs. For an incoming SU to
be blocked, it is sufficient to have all C channels busy. A
blocked call receives a busy signal and is dropped. Blocking
calls of any class is free of charge.

Arrival rates: PU calls arrive according to a Poisson
process with a constant rate λ1 > 0. SU calls, however,
arrive according to a Poisson process and pay a fee u(x, y)
upon arrival when the state is (x, y). The average arrival rate
of SUs at state (x, y) is related to the price u(x, y) via a
demand function λ2(u(x, y)) ≥ 0. We will use the following
assumptions in all of our formulations:

Assumption 1: There exists a price umax for which
λ2(u(x, y)) = 0 when u(x, y) ≥ umax.

Assumption 2: λ2(u(x, y)) is a strictly decreasing differ-
entiable function of u(x, y) over the interval [0, umax].

Assumption 2 implies that the maximum possible arrival
rate of SUs corresponds to the lowest possible price, i.e.
λ2,max = λ2(0).

The objective of the SP is to maximize the average profit
collected from SUs per unit time. The corresponding optimal
pricing policy is denoted u∗.

IV. ANALYSIS AND CHARACTERIZATION OF THE
OPTIMAL PRICING POLICY

In this section, we derive the average profit rate of SUs
given a policy u. Then, we present a finite horizon discounted
return maximization problem formulation to compute the op-
timal pricing policy. Afterwards, we determine the structure
of the optimal pricing policy that maximizes the discounted
profit and extend our findings to the infinite horizon.

A. Formulation of the Profit Maximization Problem
In this section, we first introduce state space definitions

and then develop a formula to calculate the average profit
rate collected from SUs.

We start by defining state spaces. The entire state space
is denoted as S = {(x, y) | x+ y ≤ C , ∀x, y ≥ 0}. Let
S1 ⊂ S be the sub-space of states where all the channels
are busy and at least one SU call is present in the sys-
tem. According to our system description, S1 denotes the
states at which an SU can be preempted and is formally
defined as S1 = {(x, y) | x+ y = C , ∀x ≥ 0 , ∀y > 0}.
Lastly, we define S2 ⊂ S which corresponds to all states
where an SU arrival may enter the system, i.e. S2 =
{(x, y) | x+ y < C , ∀x, y ≥ 0}. We denote πu(x, y) to be
the steady state probability that the system is in state (x, y)
under the pricing policy u. Note that u represents an arbitrary
pricing policy that may not be necessarily optimal. The
average profit rate under policy u, is expressed as follows:

Ju =
∑

(x,y)∈S2

λ2(u(x, y)) u(x, y) πu(x, y)−Kλ1
∑

(x,y)∈S1

πu(x, y).

(1)



The first term in (1) represents the average revenue rate
collected from SUs. The second term stands for the average
cost rate due to preempted SU calls. The optimal pricing
policy u∗ is the policy which maximizes (1) and it yields
optimal profit J∗. We formulate stochastic dynamic pro-
gramming (DP) problem [17] which determines the optimal
pricing policy u∗ of the system.

B. Characteristics of the Optimal Pricing Policy

In this section, we present a finite horizon expected
discounted return DP formulation to find and characterize
the optimal pricing policy. We start with some definitions:

Discounting: Our system has an exponential discount rate
with parameter α ≥ 0 which implies that the reward gained
in the present is more valuable than future rewards [17].
The discount rate is considered to be the rate by which the
process vanishes [18].

Uniformization: Our current model is a continuous-time
MDP. To convert the system to its discrete-time equivalent
using uniformization, every rate coming out of a state is
normalized by the maximum transition rate possible denoted
v = λ1 + λ2,max + Cµ+ α. Without loss of generality, we
set v = 1. We scale every rate of the continuous-time MDP
with v which gives the probability of every transition.

Criterion: We aim to maximize the total expected dis-
counted profit of the SP over a finite horizon. We derive the
optimal pricing policy u∗ which achieves this goal.

We define n as the number of observation points left until
the end of the time horizon. The price decision for an SU at
state (x, y) and time period n is defined as u.

Definition 1: Vn(x, y) is the maximal expected discounted
profit for the system in state (x, y) at time period n.

The finite horizon DP optimality equations are as follows:
For n = 0: V0(x, y) = 0 for x, y ≥ 0
For n ≥ 1:

Vn(x, y)

= max
u∈U
{λ1Vn−1(x+ 1, y)1{x+ y < C}

+ λ1(Vn−1(x+ 1, y − 1)−K)1{x+ y = C}1{y > 0}
+ λ1Vn−1(x, y)1{x+ y = C}1{y = 0}
+ λ2(u)(Vn−1(x, y + 1) + u)1{x+ y < C}
+ λ2(u)Vn−1(y, c2)1{c2 − y = 0}
+ xµVn−1(x− 1, y)

+ yµVn−1(x, y − 1)

+ (1− λ1 − λ2(u)− xµ− yµ− α)Vn−1(x, y)

× 1{x+ y < C}
+ (1− λ1 − Cµ− α)Vn−1(x, y)1{x+ y = C}}.

We set Vn(−1, y) = Vn(0, y) and Vn(x,−1) = Vn(x, 0)
when required. The value of u that maximizes discounted
profit is denoted u = u∗n(x, y) which is the optimal pricing
decision of state (x, y) at time period n.

Our analysis is based on the difference between two
systems where the first one has one more SU than the second
one. The former starts in state (x, y+1) where the latter starts

in state (x, y) at time period n. Vn(x, y+1)−Vn(x, y) is the
net benefit of an additional SU when there are n periods left
in the horizon which is defined as the value of an additional
SU [16]. The next lemma states that the value of an additional
SU is a function of (x+ y), i.e. total occupancy.

Lemma 1: The value of an additional SU at time period
n is a function of the total occupancy for every (x, y) such
that x+ y + 1 ≤ C, i.e.

Vn(x, y + 1)− Vn(x, y) = fn(x+ y), (2)

where fn(·) is recursively defined for each n as:

fn(k) = max
u1∈U
{min
u2∈U
{f̃n(k, u1, u2)}} and f0(·) = 0, (3)

and
f̂n(k, u1, u2)

=



λ2(u1)(fn−1(k + 1) + u1)
−λ2(u2)(fn−1(k) + u2)
+λ1fn−1(k + 1)
+kµfn−1(k − 1)
+(1− λ1 − (k + 1)µ− α)fn−1(k) , k < C − 1

−λ2(u2)(fn−1(C − 1) + u2)
+(C − 1)µfn−1(C − 2)
+(1− λ1 − Cµ− α)fn−1(C − 1)−Kλ1 , k = C − 1.

Proof: We prove this result by induction on n. Although
the DP equations of Vn(x, y) depend on the value of y when
x + y = C, we prove that this is not the case for the value
of an additional SU. We start the induction from the end of
the horizon n = 0, i.e. V0(x, y + 1) − V0(x, y) = 0. Thus,
Lemma 1 holds for n = 0 by definition.

Induction step: Assume that for n > 0, (2) holds. We
show that the value of an additional SU at time period n+ 1
is a function of (x+ y) only as well, i.e.

Vn+1(x, y + 1)− Vn+1(x, y)

= fn+1(x+ y) = max
u1∈U
{ min
u2∈U
{ f̃n+1(x+ y, u1, u2)}}.

(4)

We need to consider two distinct cases. In the first case,
x + y < C − 1 hence, both (x, y + 1) and (x, y) are
non-preemptive states. In the second case, we consider
x + y = C − 1 where (x, y + 1) is a preemptive state
since all channels are busy and there is at least one SU in
the system. We analyze these cases separately because the
corresponding DP equations are different.

Case 1. x+ y < C − 1

Vn+1(x, y + 1)− Vn+1(x, y)

= max
u1∈U
{λ2(u1)(Vn(x, y + 2)− Vn(x, y + 1) + u1)}

+ λ1Vn(x+ 1, y + 1) + xµVn(x− 1, y + 1)

+ (y + 1)µVn(x, y)

+ (1− λ1 − xµ− (y + 1)µ− α)Vn(x, y + 1)

−max
u2∈U
{λ2(u2)(Vn(x, y + 1)− Vn(x, y) + u2)}

− λ1Vn(x+ 1, y)− xµVn(x− 1, y)− yµVn(x, y − 1)

− (1− λ1 − xµ− yµ− α)Vn(x, y).



By substituting (2) to the above expression and rearranging
the terms, we obtain the following:

Vn+1(x, y + 1)− Vn+1(x, y)

= max
u1∈U
{ min
u2∈U
{λ2(u1)(fn(x+ y + 1) + u1)

− λ2(u2)(fn(x+ y) + u2) + λ1fn(x+ y + 1)

+ (x+ y)µfn(x+ y − 1)

+ (1− λ1 − (x+ y + 1)µ− α) fn(x+ y)}}
= max
u1∈U
{ min
u2∈U
{f̃n+1(x+ y, u1, u2)}} = fn+1(x+ y),

which proves the induction for this case.

Case 2. x+ y = C − 1

Vn+1(x, y + 1)− Vn+1(x, y)

= λ1(Vn(x+ 1, y)−K) + xµVn(x− 1, y + 1)

+ (y + 1)µVn(x, y)

+ (1− λ1 − xµ− (y + 1)µ− α)Vn(x, y + 1)

−max
u2∈U
{λ2(u2)(Vn(x, y + 1)− Vn(x, y) + u2)}

− λ1Vn(x+ 1, y)− xµVn(x− 1, y)− yµVn(x, y − 1)

− (1− λ1 − xµ− yµ− α)Vn(x, y).

Similar to Case 1, we substitute (2) and rearrange the terms
which results in the following expression:

Vn+1(x, y + 1)− Vn+1(x, y)

= min
u2∈U
{−λ2(u2)(fn(C − 1) + u2)−Kλ1

+ (C − 1)µfn(C − 2) + (1− λ1 − Cµ− α) fn(C − 1)}
= min
u2∈U
{f̃n+1(C − 1, u1, u2)} = fn+1(C − 1),

which concludes the proof.
Combining the two cases we have examined, the induction

hypothesis given in (4) is correct and we have proven that
Vn(x, y + 1)− Vn(x, y) depends only on (x+ y) for all n.

The following theorem establishes the relationship be-
tween the optimal pricing policy and the total occupancy.

Theorem 1: The optimal price in state (x, y) at time
period n depends only on the total number of users in the
system, i.e.

u∗n(x, y) = gn(x+ y), (5)

where gn(·) is recursively defined for each n > 0 as:

gn(k) = argmax
u∈U

{λ2(u)(fn(k)+u)} for 0 ≤ k ≤ C−1.

(6)
Proof: The optimal price u∗n(x, y) maximizes the right-

hand side of the DP equations. If we discard the terms that
do not include the price variable u, u∗n(x, y) becomes the
following:

u∗n(x, y)

= argmax
u∈U

{λ2(u)(Vn−1(x, y + 1)− Vn−1(x, y) + u)}.

(7)

From Lemma 1, we know that Vn−1(x, y + 1) −
Vn−1(x, y) = fn(x + y). When we substitute it to (7), we
obtain the following result:

u∗n(x, y) = argmax
u∈U

{λ2(u)(fn(x+ y) + u)} = gn(x+ y).

Theorem 1 provides a drastic simplification in the deter-
mination of the optimal pricing policy. In Theorem 1, we
have proven that the optimal pricing policy depends only on
the total occupancy which illustrates an interesting result.
The optimal pricing policy is a function of only the total
occupancy although the profit function does not depend only
on the total occupancy. The reason is that the optimal pricing
policy is not determined by the profit function itself; rather
it depends on the value of an additional SU.

So far, we have proven our results for the finite horizon
discounted profit to use induction on n. Since our system
satisfies the standard conditions given in [19], all conclusions
apply to the infinite horizon α-discounted case by taking
the limit n → ∞. Furthermore, the average profit can be
computed considering the case α→ 0.

C. Infinite Horizon Average Return DP Formulation of the
Simplified System

Now that we have shown that the optimal pricing policy
depends only on the total occupancy, we formulate an infinite
horizon average return problem for additional results. We
cannot reduce our original model to a one-dimensional (1D)
MDP since the profit function does not depend only on the
total occupancy. Instead of using the original system, we
utilize an auxiliary system in the infinite horizon average
return formulation of the original system. The model of the
auxiliary system is the same as the original system with one
exception: the system imposes a punishment K when all
channels are busy and a PU arrival occurs, regardless of the
presence of SUs, i.e. the auxiliary system is exactly the same
as the original system other than the fact that a cost K occurs
if a PU gets blocked because of other PUs in the system. The
profit function and optimal pricing policy depend only on the
total occupancy and it has the same optimal pricing policy
as the original system.

Let Qu denote the average profit rate of the auxiliary
system under policy u. The relationship between the profit
functions Qu and Ju is given by:

Ju = Qu +Kλ1E(λ1/µ,C). (8)

E(λ1/µ,C) is the blocking probability of a PU when
there are no SU arrivals, which corresponds to the Erlang-B
formula:

E(λ1/µ,C) =
(λ1/µ)

C

C!∑C
n=0

(λ1/µ)n

n!

.

Thus, for any policy u, Ju and Qu differ by the constant
Kλ1E(λ1/µ,C). Consequently, the policy that maximizes
Qu is the same as the policy that maximizes Ju in the
average return case.



Fig. 1. 1D continuous-time MDP representation of the auxiliary system

For the simplified model which considers the total occu-
pancy to determine the optimal policy, we define new system
parameters. Let 0 ≤ i ≤ C denote the occupancy levels of
the auxiliary system which is the sum of PUs and SUs in the
system, i.e. i = x+ y. Our system parameters are the same
as before: We still have Poisson arrivals and exponentially
distributed call durations with mean µ−1. Thus, we still
consider a continuous-time birth-death Markov Process. The
only modification is that we replace the definition of state
(x, y) with i. Prices are chosen from the discrete set U
which is defined earlier. Price advertised to SUs at the total
occupancy level i is u(i). The arrival rate of SUs is a function
of the price denoted by λ2(u(i)). Then, the total arrival rate
to any state i is λ(u(i)) = λ1 + λ2(u(i)).

Next, we provide an average return DP formulation
of the auxiliary system using Bellman’s equations [17]
in order to obtain the optimal price vector u∗ ,
(u∗(0), u∗(1), ..., u∗(C − 1)), which provides the optimal
price at each occupancy level of the original system as well.

We model the auxiliary system as a 1D MDP where
the total occupancies are considered as the states, which
is illustrated in Fig. 1. Qu, the average profit rate of the
auxiliary system under policy u, is as follows:

Qu =

C−1∑
i=0

λ2(u(i)) u(i) πu(i)−Kλ1πu(C). (9)

Under the same optimal pricing policy, the relationship
between the optimal average profit functions Q∗ and J∗ is
unchanged and given in (8).

Next, we formulate the average return DP problem for the
auxiliary system. The use of Bellman’s equations is possible
in this system, since all the states in the Markov chain are
recurrent [17]. We need convert the continuous-time Markov
chain to its discrete-time equivalent using uniformization.
We normalize every rate coming out of each state by the
maximum rate possible, which is v′ = λ1 + λ2,max + Cµ.
Without loss of generality, we set v′ = 1. The corresponding
Bellman’s equations are as follows:

Q∗ + h(i) =max
u∈U

[λ2(u)u+ h(i+ 1)λ(u) + h(i− 1)iµ

+ h(i)(1− λu− iµ)] for i = 0, 1, ..., C − 1

Q∗ + h(C) =− λ1K + h(C − 1)Cµ+ h(C)(1− Cµ).

The optimal prices and the optimal average profit are
found by solving the given Bellman’s equations. We set
h(C) = 0, so h(i) is the relative reward of state i with
respect to h(C). Then, h(i) is the average expected differ-
ence of the rewards of two processes where the former starts
from state i and the latter starts from state C.

Optimal price of SUs is 2.5

#PUs

#SUs

Optimal price of SUs is 3
Optimal price of SUs is 4

Fig. 2. The optimal pricing policy of SUs in the system of Example 1,
with inelastic PUs. The advertised price is constant on diagonal states on
which the total occupancy is the same.

D. Monotonicity Properties of the Optimal Pricing Policy

In this section, we emphasize some monotonicity proper-
ties of the simplified system. The proofs of these properties
follow similar lines as [4] and [20]. The main differences
are that our system is preemptive and has a different cost
structure.

The following two lemmas denote that the relative reward
is a decreasing and concave function of the total occupancy.

Lemma 2: As total occupancy increases, the value of
relative reward decreases i.e., h(i+ 1)− h(i) ≤ 0 for
0 ≤ i < C.

Lemma 3: The relative rewards are concave in occupancy
i.e., h(i)− h(i− 1) ≥ h(i+ 1)− h(i) for 0 < i < C.

Lemmas 2 and 3 lead to the next theorem on the relation-
ship between occupancy and the optimal pricing policy.

Theorem 2: As total occupancy increases, optimal price
increases as well i.e., u∗(i+1) ≥ u∗(i) for 0 ≤ i < C−1.

Now that we have specified the properties of the optimal
pricing policy, we present an example to illustrate the results
of Theorem 1 and Theorem 2.

Example 1: In this example, we set C = 7, µ = 1, λ1 =
3, K = 10, ∆u = 0.5, U = [0, 4] and the demand function
is λ2(u) = (4− u)+ where (·)+ = max(·, 0). The resulting
optimal pricing policy is illustrated in Figure 2.

We observe that the states with the same occupancy have
the same optimal pricing decision. Furthermore, the optimal
prices increase with the total occupancy.

V. SPECIAL CASES

In this section, we examine some special cases of the
optimal pricing policy we have characterized.

A. Optimal Admission Control Policy of SUs

In admission control, the SP either accepts a user upon
arrival or rejects it by following an admission control policy
a. If an SU call is accepted, a constant reward of R > 0
is charged per call and the corresponding arrival rate is
λ2(R). If a call is rejected, the SP sets the price to umax,
hence the arrival rate of SUs λ2(umax) drops to 0. We
consider admission control as a special case of pricing which
includes two possible prices in the control set. There is a



Optimal price of SUs is 2.5
Optimal price of SUs is 3
Optimal price of SUs is 3.5

#PUs

#SUs

Fig. 3. The optimal pricing policy of SUs in the system of Example 2,
with elastic PUs. The advertised price is not constant on the diagonal states.

mapping between the pricing decision and admission control
decision at state (x, y). We define a new control parameter
a(x, y) which is a restricted binary version of u(x, y) (i.e.
a(x, y) ∈ {0, 1}). a(x, y) is the admission control decision
of an arriving SU when the current state is (x, y).

The following corollary applies theorems 1 and 2 to the
optimal admission control problem.

Corollary 1: The optimal admission control policy a∗ of
SUs is of threshold type and it depends only on the total
number of users in the system. Thus, there exists an optimal
occupancy threshold T ∗ for a system at state (x, y) such that
0 ≤ x + y < T ∗. If the total occupancy is less than T ∗, an
incoming SU call is accepted. Otherwise, it is rejected.

Note that, the very same result is obtained in Theorem 1
of [21] using a different analysis method. Hence, we have
corroborated our findings using two different methods.

B. Discussion of the Optimal Pricing with Elastic PUs

Assume that every definition and parameter in the original
system model stays the same except the PU arrival rates. In
the original model, PUs have inelastic Poisson arrival rates
with mean λ1. We consider a variant of the original system
where the PUs are elastic to price and a price û(x, y) is
advertised to PUs at state (x, y). Furthermore, the PUs have a
demand function λ1(û(x, y)), which follows the assumptions
1 and 2. We would like to determine the optimal pricing
policies of both PUs and SUs to maximize the overall profit
by solving a joint maximization problem. The next example
demonstrates that Theorem 1 does not apply to the optimal
pricing policy of SUs.

Example 2: Set C = 7, µ = 1, K = 7, ∆u = 0.5, ∆û =
1 and the demand functions for PUs and SUs are λ1(û) =
(10 − û)+ and λ2(u) = (4 − u)+. The resulting optimal
pricing policy is demonstrated in Figure 3.

Notice that Theorem 1 does not apply to the optimal
pricing policies of SUs. For instance, for x + y = 4, we
have different optimal pricing decisions for different states.

VI. CONCLUSIONS

In this paper, we analyze the profit maximization problem
of preemptive systems. Inelastic PUs and elastic SUs coexist
in a system where PUs have preemptive priority over SUs.

We propose a 2D Markov chain model and formulate the
average profit rate. Our main contribution is to analytically
prove that the optimal pricing policy depends only on the
total occupancy. Our results provide a simplification in
determination of the optimal pricing not only in CR networks
but also for any preemptive system, such as wireless medium
access control protocols, Multi-Protocol Label Switching
networks and multitasking in operating systems [22].
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