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Abstract—We consider pricing secondary access to wireless
spectrum in cellular CDMA networks. We study the case for a
primary license holder interested in leasing the right of providing
service in a given geographical region of its coverage network.
The goal is to price access to the cells in that region under
heterogeneous call traffic demand with the objective of profit
maximization. While a revenue is gained from the leased region
due to the exercised price, the primary license holder incurs a
loss due to reduced spatial coverage of the network and also due
to interference effect from the leased into the retained region.
We exploit the spatial effect of interference due to geographical
locations of the cells and set a price per cell rather than pricing
the whole region by a scalar quantity. We employ reduced load
approximations which have proved useful in classical telephony
and characterize optimal prices for different pricing philosophies,
e.g., flat pricing and demand-based pricing. The obtained formula
of prices suggests charging per admitted call in proportion with
the interference that the call generates. The charged amount
balances the corresponding loss of revenue due to the influence
of an admitted call. We present an iterative price computing
technique and provide a numerical study in support of our
analytical results.

I. INTRODUCTION

As wireless communications become more ubiquitous, the
demand for frequency spectrum is in rapid increase. Recent
studies has shown that many frequency bands that have been
already assigned are in fact underutilized [1]. Therefore there
is a growing interest in improving the efficiency of spectrum
use and introducing regulatory reforms. In this direction,
the Federal Communication Commission (FCC) has lately
adopted a set of policies and procedures to enable primary
license holders to lease spectrum bands, paving the way for
the creation of spectrum secondary markets [2]. In fact, and
besides being dealing with a valuable commodity, spectrum
market regulators need to guarantee property rights in light of
the possibility of spatial interactions among service providers
caused by the electromagnetic interference. Therefore efficient
pricing lies among the major issues to be handled in this
respect.

We consider the problem of spectrum pricing in cellular
CDMA networks. In particular we focus on the problem of a
primary license holder, or in short a licensee, which aims to
abandon a subset of its coverage area and lease the right to
provide service to some secondary users, call them the lessees.

We study the pricing problem from the perspective of the
licensee for the purposes of maximizing its profit from the
lease. In fact, and while the licensee obtains a revenue due to
the exercised price, it incurs a loss due to (i) reduced spatial
coverage of its network and (ii) possible interference from the
leased into the retained region of its network.

While it seems natural to deal with the problem within
the framework of monopolistic pricing in microeconomic the-
ory [3], it is the network-wide effect of interference that makes
it hard to come up with explicit solutions for the problem.
Namely, a call in progress on a certain cell produces some
interference that affects the occupancy of some neighboring
cells due to geographical proximity. In the same time, a
reduction in the number of calls in those cells might help
some other neighboring cells to accommodate more calls, and
the effect goes further and further. This knock-on effect is
also applicable to every cell in the network. One approach
to avoid dealing with such complexities is to isolate the
secondary traffic in the network by using guardbands [4].
A guardband, however, is an unutilized resource whose cost
needs to be internalized either by the licensee or by the lessee.
The situation leads to an inevitable loss of efficiency in the
transaction which may in fact be significant. The attendant
inefficiency in turn limits the granularity and thereby liquidity
of a secondary spectrum market.

In this work, we consider optimal pricing of spectrum in
light of heterogenous call traffic demand and without resorting
to conservative methods to eliminate interference. We employ
reduced load approximations which have found application
in classical telephony to estimate blocking probabilities. The
form of optimal price suggests charging the lessee per admitted
call that generates interference for the licensee. The charged
amount is shown to depend on the extent of generated inter-
ference, namely, it balances the corresponding loss of revenue
incurred by the licensee due to the influence of an admitted
call. This effort entails convenient analytical techniques that
avoid the alluded difficulties associated with network-wide
effects of interference at the expense of reasonable loss of
modeling accuracy. We exploit the structure of the prices
to devise an iterative procedure to compute optimal prices.
Towards the end of this work we present numerical study in
support of our analytical results.



II. RELATED WORK AND SUMMARY OF CONTRIBUTIONS

Pricing for communication networks is a well-studied sub-
ject. See [5] for related topics and references in this area.
However, the setting considered in this work is in fact specific
to secondary cellular wireless markets. In related work, [6]
pursues interference based pricing in a single cell via adaptive
optimization techniques, and [7], [8] adopt a performance
oriented viewpoint in considering dynamic spectrum access
within a cell. In [9] the authors do power control by pricing
transmitted power in multicell wireless data systems, while
in [10] the authors use some auction mechanisms for sharing
spectrum access subject to some interference constraints.

Main contributions of the present paper are
1. Global consideration of network: We consider general

network topologies rather than a single cell. Rather than
lumping any portion of the network into an approximate
module, the paper accounts for sophisticated dependence
between cells due to generated interference.

2. Characterization of optimal prices: We characterize the
form of optimal prices under a general framework. Opti-
mal prices are shown to have an interpretation that offers
insight on dominant factors that in turn help determine
the value of spectrum under spatial interactions.

The work presented in this paper is a direct extension to the
approach pursued in our previous work [11]. In this work we
set a price for each cell in the region considered for lease rather
than pricing the whole region by a scalar quantity. This way
we exploit the fact that the netwok-wide effect of interference
due to an admitted call in one cell depends on the location of
the cell in the network. Therefore we have more degrees of
freedom to assign prices and consequently obtain more profit
from the transaction.

The structure of the paper is as follows: The teletraffic
operational model for CDMA networks is given in Section III.
The formulation of the profit maximization problem is the
subject of Section IV. In Section V reduced load approxima-
tions are employed and the forms of optimal prices are given
in Section VI. An iterative technique for computing optimal
prices is suggested in Section VII. In Section VIII a numerical
study is provided in support of our analytical results. The paper
concludes with final remarks in Section IX.

III. NETWORK OPERATIONAL MODEL

In this section an operational model for cellular CDMA
networks is introduced. In fact a network is represented with
a weighted graph G = (N, W ) where N refers to the set of
nodes and W refers to the set of positive edge weights. Each
node i ∈ N in the graph represents a cell. For each pair i, j of
cells the associated weight wij ∈ W is a measure of inter-cell
electromagnetic interference due to geographical proximity.
Self-loops are in fact allowed, and it will consistently be
the case that wii > 0. The example of Figure 1 illustrates
the graphical representation of a 19-cell hexagonal lattice
topology.

Let ni be the number of calls in progress at each cell i and
let n denote the cell loads (ni : i ∈ N). A call is subject
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Fig. 1. The network graph of a 19-cell hexagonal lattice topology.

to interference from other calls in the same cell, as well as
from calls in other cells in proportion with the associated
weights. We shall assume that a call can be sustained only if it
experiences small enough interference. A cell, however, may
receive unbounded interference if it does not accommodate a
call. A network load n is thus feasible if for all cells j and
certain constants κj > 0

∑

i∈N

niwij ≤ κj whenever nj > 0. (1)

Network models based on similar constraints have been con-
sidered in earlier works on cellular wireless CDMA networks.
See, for example, [12] for an in-depth discussion of this model
and specifications of model parameters wij and κj in terms
of physical layer parameters and desired quality of service
thresholds. In fact we shall assume that the model parameters
satisfy the following mild condition:

Assumption 1: For all i, j ∈ N the parameters wij and κj

are rational numbers. Hence, without loss of generality in the
feasibility condition (1), these parameters are further taken as
integers.

We adopt the following statistical traffic model where calls
arrive at each cell i according to a Poisson process of rate
νi ≥ 0. Arrival processes for different cells are mutually
independent. Each call has a holding time that is exponentially
distributed with unit mean, independently of the history prior
to its arrival. An incoming call is accepted if and only if its
inclusion in the network conserves the feasibility condition (1)
and the call is blocked otherwise. We denote the vector of call
arrival rates by ν = (νi : i ∈ N) and define Bi(ν) as the
associated probability of call blocking on cell i.

The network provider generates unit revenue per admitted
call in the network. We denote by R(ν) the long-term average
rate of revenue generation of the provider per unit time, which
is given by

R(ν) =
∑

i∈N

(1−Bi(ν))νi.



The form of the revenue in fact admits dependence on
network arrival rates ν through cell blocking probabilities.
This implicit dependence is attributed to the effect of network-
wide propagation of call interference previously described as
the knock-on effect. As will become clearer from the following
sections, it turns out that a good handling of the pricing
problem requires more insight on this dependence.

IV. PROFIT MAXIMIZATION PROBLEM

We consider the problem of the primary license holder, or
the licensee, for pricing cells comprising the region L ⊂ N .
Namely we seek optimal cell price in leasing the right to
provide service for region L. We denote the price for cell
i ∈ L by pi so that p = (pi : i ∈ L). The unit of pi is
determined by the pricing philosophy adopted by the licensee.
For example if a flat price is employed then the unit of pi is
currency per unit time, whereas for a usage-based price pi can
be expressed in currency per Erlang.

A cell price set by the licensee invokes certain call demand
from the lessee. Namely, for a given value of pi the call
demand per unit time on cell i is given by the non-increasing
function αi(pi). In this work we assume the cell price to affect
solely the demand on that cell. A more general version would
take into consideration the effect of other cell prices on local
demand. Also we assume that the call demand in the retained
region N−L after the transaction remains unaltered. Therefore
the vector of overall network demand after a transaction at
price p, denoted by λ(p) = (λi(pi) : i ∈ N), has its
components given as

λi(pi) =
{

αi(pi) if i ∈ L
νi if i ∈ N − L.

The licensee has an expected rate of revenue over the term
of the lease signed at price p. To keep the discussion general
we succinctly denote this value by F (p). For the special cases
alluded earlier in this section F (p) may take the following
forms:

a) Flat price: A flat price would be taken if it does not
exceed the valuation of the commodity by potential lessees.
Suppose that the licensee’s apriori perception of the market
value of the spectrum in cell i can be represented by a random
variable Vi. The licensee’s expected rate of revenue generation
from region L by an exercised flat price p would then be given
by

F (p) =
∑

i∈L

piP (Vi > pi).

b) Price per demand: The licensee may price the spec-
trum per unit demand generated in the region L, in which case
pi refers to the revenue of the licensee per call request in cell
i in the region L after the sale. The revenue rate F (p) of the
licensee would then be

F (p) =
∑

i∈L

αi(pi)pi. (2)

c) Price per honored demand: Alternatively, the licensee
may choose to tax the interference that the lessee generates on
the former’s (retained) network. This abstract principle may be
interpreted as imposing a tax pi per accepted call in cell i in
the region L, thereby entitling the licensee to a certain share
of the lessee’s revenue. The rate of revenue from the lease
would then be given by

F (p) =
∑

i∈L

(1−Bi(λ(p))) αi(pi)pi. (3)

On the other hand, a call in progress on a cell in the
region L affects call occupancy on other cells in the network
including possibly cells in the retained region. Therefore the
expected revenue from that region is affected. Namely, for each
nonnegative vector λ of arrival rates the long term revenue
from the retained region can be written as

Q(λ) =
∑

i∈N−L

(1−Bi(λ))νi,

where the effect of the demand in region L is captured by
the blocking probabilities Bi(λ). In particular Q(λ(p)) is the
revenue of the licensee from the retained region N − L after
leasing region L provided that the transaction is realized at
the price p.

In summary, the losses that the licensee incurs due to this
transaction are due to:

1) Reduced coverage of the served network after leasing
region L.

2) Interference from the leased to the retained region due
to interference effect.

The two components can be basically captured by the quantity

C(p) = R(ν)−Q(λ(p)).

Therefore we seek an optimal price vector p∗ to solve the
problem:

max
p

(F (p)− C(p)) . (4)

In characterizing solutions of this problem we shall assume
that the following technical condition holds:

Assumption 2: The functions F and αi, i ∈ L, are differ-
entiable.
In fact the discussion in the next section establishes that the
blocking probabilities Bi(·) are also differentiable. Hence, in
light of Assumption 2, the profit F (p)−C(p) is differentiable
in the components of p and a solution p∗ to the licensee’s
problem (4) satisfies for all i ∈ L

∂

∂pi
F (p)|p=p∗ =

∂

∂pi
C(p)|p=p∗ = − ∂

∂pi
Q(λ(p))|p=p∗ .

(5)
In this paper we seek insight on the nature of optimal prices
by focusing on characterizing solutions of the first-order
conditions (5). Existence and uniqueness of a solution depend
on further properties of the objective function; in principle a
second order analysis may be employed to obtain conditions
under which (4) has a unique solution. That direction is not
pursued in the present paper beyond assuming existence of a
solution.



V. REDUCED LOAD APPROXIMATION FOR BLOCKING
PROBABILITIES

In this section we employ a ”reduced load approximation,”
which has proved useful in analysis of blocking probabilities in
circuit switched networks [13]. First, based on the operational
model given in Section III consider the state space of feasible
cell loads given by

S = {n ∈ Z|N |+ : n satisfies condition (1)}.
Note that given any arrival rates λ the vector of cells loads
evolves according to a Markov process whose states belong
to S. This process is obtained by truncating the state space of
a reversible process that corresponds to cells loads when in-
terference limitations are ignored; in particular its equilibrium
distribution πλ is given by

πλ(n) = G
∏

i∈N

λni
i

ni!
, n ∈ S,

where G is a constant which ensures that πλ is a probability
vector.

Let e(i) = (ej(i) : j ∈ N) be such that ej(i) = 1 if j = i
and ej(i) = 0 otherwise. The blocking probabilities can then
be expressed as

Bi(λ) =
∑

n:n+e(i)6∈S

πλ(n).

However despite the appealing form, further manipulation of
the above expression is hindered by difficulties in computing
the normalization constant G.

Reduced load approximation: We shall approximate Bi(λ)
by the quantity B̂i(λ) defined by

B̂i(λ) = 1−
∏

j∈N

(1− bj(λ))wij (6)

where the numbers bj(λ), j ∈ N, satisfy the equalities

bj(λ) = E

(
(1− bj(λ))−1

∑

i∈N

wijλi

∏

k∈N

(1− bk(λ))wki , κj

)

(7)
and E(·, ·) denotes the Erlang blocking formula

E(x, y) =

(
y∑

m=0

xm

m!

)−1
xy

y!

for all x > 0 and positive integer y. The set of equations (7)
has a unique solution [13]; hence the approximation is well-
defined, and furthermore the solution is differentiable in λ [14,
Lemma 2.2]. The reduced load approximation above can be
better motivated by first replacing the feasibility condition (1)
by ∑

i∈N

niwij ≤ κj . (8)

Note that this condition is more stringent than (1) in the sense
that it limits the interference on idle cells as well. Under the

feasibility condition (8), κj can be regarded as capacity of cell
j and wij can be regarded as the units of capacity reserved
from cell j per call in progress in cell i. The expression (6)
then suggests that B̂j(λ) is the blocking probability at cell
i in a hypothetical model where each unit of capacity is
available independently with probability 1 − bj(λ) at link j,
and furthermore availability of capacity is independent from
link to link. Such a model is consistent only if the parameters
bj(λ) satisfy the fixed-point relation (7).

The approximate blocking probabilities B̂j(λ) are known
to be asymptotically exact for the feasibility condition (8)
along a limiting regime where the network arrival rates λj and
thresholds κj increase in proportion [13]. While condition (8)
leads to higher blocking than condition (1), the disparity may
arguably be expected to vanish in the same limiting regime
as increasing the arrival rates reduces the chances of finding
cells at idle state.

VI. CHARACTERIZATION OF OPTIMAL PRICES

In this section we employ the reduced load approximation
introduced in the previous section to obtain insightful forms
of optimal prices. In fact the conclusions of this section are
valid under the following simplifying assumption:

Assumption 3: (Exactness of reduced load approximation)
Bi(λ) = B̂i(λ) for each cell i and all call arrival rates λ =
(λi : i ∈ N).

Theorem 6.1: Under Assumption 3 an inner solution p∗i of
the licensee’s problem (4) satisfies

p∗i =
(
1− B̂i(λ(p∗))

)
αi(p∗i )γi(p∗) (9)

where

γi(p∗) =
εi(p∗i )

∂F (p)
∂pi

|p=p∗

∑

j∈N

wij
d

dκj
Q(λ(p∗)) (10)

and εi(p∗i ) = p∗i α′i(p
∗
i )

αi(p∗i ) is the price elasticity of demand in
cell i.
Theorem 6.1 can be interpreted for the three pricing philoso-
phies alluded in Section IV as follows:

Flat price: The form (9) suggests that optimal flat price
per unit time for cell i is the same as the revenue generated
from the cell per unit time by charging each admitted call
in the cell an amount γi(p∗). In parsing the expression (10)
for this quantity it is helpful to interpret d

dκj
Q(λ(p∗)) as the

reduction in the licensee’s revenue from the retained region
N − L due to unit reduction in the interference threshold of
cell j, or equivalently due to imposing unit interference on cell
j. An accepted call in cell i ∈ L then leads to a reduction of
wij

d
dκj

Q(λ(p∗)) in licensee’s revenue. The form (10) in turn
indicates that the per-call price γi(p∗) balances the attendant
loss of revenue, up to a multiplicative quantity that depends
on the price elasticity of demand in cell i and the revenue
function F .

Price per demand: If the licensee’s revenue is given by (2)
then for all i ∈ L

∂F (p)
∂pi

= αi(pi)(1 + εi(pi)),



and rearrangement of equalities (9) and (10) yields

p∗i =
(
1− B̂i(λ(p∗))

) (
1 + ε−1

i (p∗i )
)−1 ×

∑

j∈N

wij
d

dκj
Q(λ(p∗)).

In particular the optimal per-demand cell i price p∗i is propor-
tional to the marginal cost of the licensee due to an accepted
call, discounted at rate equal to acceptance probability.

Price per honored demand: In the case when the licensee’s
revenue is given by (3) a relatively more explicit characteri-
zation of p∗ can be obtained by defining U(p) as the overall
revenue of the licensee after the transaction at price p. That
is,

U(p) =
∑

i∈N

(
1− B̂i(λ(p))

)
λi(pi)ri(pi)

where
ri(pi) =

{
pi if i ∈ L
1 if i ∈ N − L;

and in turn

F (p)− C(p) = U(p)−R(ν).

Proposition 6.1: (Optimal price per honored demand) If F
is given by (3) then under Assumption 3 an inner solution p∗i
of the licensee’s problem (4) satisfies for all i ∈ L

p∗i =
(
1 + ε−1

i (p∗i )
)−1 ∑

j∈N

wij
d

dκj
U(λ(p∗)). (11)

Note that here the form of the optimal price does not include
a discount at the acceptance probability as the price per
demand case since the price is already applied to accepted
calls.

VII. COMPUTATION OF OPTIMAL PRICES

The sensitivities d
dκj

Q(λ(p)) in (10) and d
dκj

U(λ(p))
in (11) possess certain properties that can be useful in com-
puting optimal price p∗. Consider first the latter quantity

d
dκj

U(λ(p)) where for notational convenience we denote it by
cj(p). Notice that cj(p) is the reduction in the overall revenue
of the licensee due to a unit reduction in the interference
threshold of cell j. To obtain a more explicit characterization
of this quantity, let ηj(p) denote the unit increase in the unit
blocking probability bj(λ(p)) at cell j per unit decrease in
the interference threshold of the cell. Therefore the intensity
of calls at cell i after being thinned due to blocking at cells
other than j can be written as

ρij(p) = λi(pi) (1− bj(λ(p)))−1
∏

k

(1− bk (λ (p)))wik .

In fact, in the above expression the call is not considered
thinned at cell j because all the call units are thinned at
that cell except one. Such a call is accepted on cell i with
probability 1 − bj(λ(p)) in which case it returns revenue
ri(pi). Note that a unit decrease in κj has the effect of

increasing the unit blocking probability bj(λ(p)) by wijηj(p)
units. The reduction in revenue due to such calls is then given
by

(1− bj(λ(p)))−1
∑

i∈N

ρi(p)wijηj(p)ri(pi),

where
ρi(p) = (1− bj(λ(p)))ρij(p)

is the rate of accepted calls at cell i. By way of blocking in its
neighborhood, a call has further consequences in operation of
other cells. Since each blocked call in cell i can be associated
with increasing the threshold of each other cell l by wil units
and cell j itself by wij − 1 units, a unit decrease in κj leads
to an increase of

(1− bj(λ(p)))−1
∑

i∈N

ρi(p)wijηj(p)×

(wij − 1)cj(p) +

∑

l∈N−j

wilcl(p)




in the revenue obtained from all the cells in the network.
Therefore cj(p) can be written in the form

cj(p) = ϕj(p)
∑

i∈N

wijρi(p)×

ri(pi)− (wij − 1)cj(p)−

∑

l∈N−j

wilcl(p)


 ,

where ϕj(p) = ηj(p)(1− bj(λ(p)))−1.
A similar relation can be written for the derivatives

d
dκj

Q(λ(p)) as well. In fact the only distinction is to assume
that Q(λ(p)) is the revenue from the whole network when
ri(pi) for all i ∈ L are taken to be 0.

Moreover, it can be shown that for a fixed value of p the
above relations identify the values cj(p) uniquely [14]. Also
in cases when an inner solution p∗ exists, properly damped
versions of the recursion

pk+1
i =

(
1 + ε−1

i (pk
i )

)−1 ∑

j∈N

wijc
k
j (12)

ck+1
j = ϕj(pk)

∑

i∈N

wijρi(pk)×

ri(pk

i )− (wij − 1)ck
j −

∑

l∈N−j

wilc
k
l


 (13)

may converge, thereby yielding p∗. In fact, while we don’t
provide a convergence argument for this recursion, in Sec-
tion VIII we give a numerical example where the recursion
indeed converges.

VIII. NUMERICAL STUDY

A. Computation of Optimal Prices Using Recursion

We start our numerical study by showing an example where
recursion (12), (13) introduced in section VII proves useful in
computing optimal prices. We do first an exhaustive search
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Fig. 2. Profit of the licensee from leasing cells 1− 7 in the network shown
in Figure 1 using per honored demand pricing. Call demand on the leased
cells is taken to be as in (15). κi = 5.0, wij = 0.5, wii = 1.0, and νi as
given in (14) for all i, j.

for prices that maximize the profit of the licensee from the
network. Then we use the recursion to compute prices and
compare the results.

Namely, consider a 19-cell hexagonal lattice topology with
the corresponding network graph shown in Figure 1. The cells
are assumed to have equal interference thresholds, that is, κi =
5.0 for i ∈ N . We shall assume that a call generates half of
the interference in neighboring cells relative to its own cell.
More specifically, wij = 0.5 for each edge such that i 6= j
and wii = 1.0 for all nodes i. We are interested in computing
price per honored demand for leasing cells 1− 7. The traffic
demand of the licensee prior to the transaction is taken in call
per unit time as

νi =
{

0 if i = 1, . . . 7
1 if i = 8, . . . 19.

(14)

On the other hand, call demand by the lessee is assumed to
be following the pattern

αi(pi) = βip
−2
i i = 1, . . . 7. (15)

where
βi =

{
1 if i = 1
5 if i = 2, . . . 7.

In other words cells 2−7 experience the same demand which
is different from the demand on cell 1. Therefore by spatial
and parameter symmetry of the problem, cells 2 − 7 should
have the same price, and so there are at most two distinct cell
price values. We show the profit of the licensee in Figure 2 for
different price values for cells 1 and cells 2− 7. Profit values
represented in the figure are computed for price step of 0.1
on each axis. The highest profit is 9.42 achieved at p∗1 = 2.9
and p∗i = 2.2 for i = 2, . . . 7.

Next we compute prices for the same setup using a damped
version of recursions (12), (13) and show the convergence
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Fig. 3. Convergence paths for prices of cells 1−7 when applying per honored
demand pricing in the network in Figure 1. Call demand on the leased cells
is taken to be as in (15). κi = 5, wij = 0.5, wii = 1.0, and νi as given
in (14) for all i, j. The limits agrees with the optimal price observed from
Figure (2).

paths of the prices in Figure 3. The resulting price values
are p∗1 = 2.88 and p∗i = 2.24 for i = 2, . . . 7.

As can be seen the recursively computed limits agree with
the results from the exhaustive search. In fact prices converge
in a relatively short period in less than 20 iterations.

B. Cell vs. Region Pricing

The network effect of interference due to a call admitted
in a certain cell depends in fact on the location of that cell.
For example consider the network represented by the graph in
Figure 1. The interference from a call admitted in cell 1 affects
the call occupancy of neighboring cells 2 − 7, while a call
admitted in cell 8 affects only cells 2, 9, 19. Therefore efficient
pricing should take into consideration geometric location of
the cells and their proximity to the other cells in the network.

To support this argument we consider the same lattice model
represented in Figure 1. The capacities of the cells are taken
to be equal with value κi = 5.0 and all non-zero edge weights
are also equal with value wij = 0.5 and wii = 1.0 for
all i, j. We assume pricing per honored demand for leasing
cells 1 − 7. The demand is as given in (15) but βi = 1 for
all i. First we solve numerically for the profit maximization
problem (4) that seeks optimal price for each cell 1 − 7.
Namely we employ recursion (12), (13) to compute optimal
prices. We show the corresponding values of the profit from
the lease in Figure 4 for different traffic loads on the retained
region; i.e. cells 8 − 19. On the other hand we consider the
approach in [11] (Proposition 6.1) where the whole subregion,
i.e., cells 1 − 7, is priced by a scalar quantity. We employ
the same recursion and show the profit values in Figure 4.
As can be noticed from the figure more profit is obtained
when the pricing problem is further broken to the cell level.
In other words, exploiting the spatial effect of interference due
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Fig. 4. Profit gained from leasing cells 1−7 in the network shown in Figure 1
for different traffic loads on the retained region and when implementing per
honored demand pricing. Call demand is given in (15) with βi = 1 for
i = 1, . . . , 7. κi = 5.0, wij = 0.5, wii = 1.0 for all i, j. Profit when
pricing per cell is shown to be better than the case when the whole region is
priced by a scalar quantity.

to geographical locations of the cells helps gain more profit.

IX. CONCLUSION

We considered the problem of optimal pricing for sec-
ondary access of spectrum in CDMA-based cellular wireless
networks. We presented a network operational model and
formulated the profit maximization problem of the primary
license holder. We took into account the network-wide effect
of interference and provided a form of optimal prices based
on first order optimality analysis. Optimal prices are shown to
depend on the extent of the generated interference of accepted
calls. The from of the prices suggests that the amount charged
per admitted call should balance the corresponding loss of
revenue incurred by the licensee due to the influence of the
call. We also presented a recursive technique for computing
optimal prices and numerically solved example problems.

While the technical focus of this paper is on networks that
employ CDMA as spectrum access mechanism, narrowband
networks, in which a channel cannot be utilized simultaneously
in neighboring cells, generally appear harder to analyze due
to combinatorial consequences of interference. In fact the
techniques presented in this paper apply to certain narrowband
topologies and channel assignment policies. However a general
treatment of such networks can be a future direction for this
work.
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