
On the Channel-Sensitive Delay Behavior of

LIFO-Backpressure

Wei Si and David Starobinski

Dept. of Electrical and Computer Engineering, Boston University, USA

{weisi, staro}@bu.edu

Abstract—In this paper, we study the delay performance
of backpressure routing algorithms using LIFO schedulers
(LIFO-backpressure). We uncover a surprising behavior in
which, under certain channel conditions, the average delay of
packets decreases as the traffic load in the network increases.
We propose and analyze a queueing-theoretic model under
which the scheduler can transmit packets only if the queue
length (i.e., the number of packets in the queue) meets or
exceeds a threshold, and we show that the model analytically
bears out the observed phenomenon. Using matrix geometric
methods, we derive a numerical solution for the average packet
delay in the general case, and, using z-transform techniques, we
further provide closed-form solutions for the average delay in
special cases. Our analysis indicates that when the threshold
is fixed (as may happen under lossless channel conditions),
the average delay increases with increasing traffic load, as
expected. On the other hand, when the threshold fluctuates
(as may happen under changing, lossy channel conditions),
the average delay may decrease, sometimes substantially, with
the traffic load. We corroborate these findings with TOSSIM
simulations using real channel traces and run on different types
of networks.

Keywords—Backpressure algorithms, queueing theory, data
collection protocols, wireless sensor networks.

I. INTRODUCTION

Backpressure routing algorithms promise throughput-
optimal performance and provide elegant cross-layer solu-
tions for a wide range of networking problems [1]. Yet,
they also notoriously suffer from high end-to-end packet
delays. This problem is exacerbated at low traffic load due to
the lack of sufficient pressure to drive packets toward their
destinations.

The work in [2] proposes an elegant solution to the delay
problem by replacing the standard first-in-first-out (FIFO)
queueing schedulers at routing nodes by last-in-first-out
(LIFO) schedulers. LIFO-backpressure traps a few packets
at each queue to establish a routing gradient and ensures fast
delivery of most other packets. This joint routing-scheduling
policy has been analytically demonstrated to achieve an
optimal utility-delay tradeoff [3].

LIFO-backpressure has been implemented in the form of a
data collection protocol for wireless sensor networks, called
the Backpressure Collection Protocol (BCP) [2]. Unlike
minimum-cost tree routing algorithms (e.g., [4]), BCP makes
routing and forwarding decisions based on local information
and does not need to explicitly compute paths. Extensive
simulations and testbed experiments show that LIFO-BCP
drastically improves delay performance over the FIFO-based
version of BCP.

0 10 20 30 40
0

50

100

150

200

Load (pkts/sec/node)
A

v
e
ra

g
e
 d

e
la

y
 (

m
s
)

(a) Lossless channel

0 5 10 15 20
0

200

400

600

800

1000

Load (pkts/sec/node)

(b) Lossy channel

Fig. 1. Average end-to-end packet delay of LIFO-backpressure in a five-
node wireless sensor network simulation under lossless and lossy channels.

Nevertheless, our own TOSSIM simulations show that
LIFO-backpressure can exhibit intriguing delay behavior in
certain conditions, as illustrated in Fig. 1 (the simulation
set-up, which uses real RSSI traces, is described in detail
in Section VI). Under lossless channel conditions as shown
in Fig. 1(a), the average delay of packets increases with
the traffic load, in a manner that is consistent with standard
queueing models, such as M/M/1. On the other hand, under
lossy channel conditions, wherein a non-negligible fraction
of packets get lost and require re-transmissions, we observe
an opposite trend: the end-to-end average delay of delivered
packets decreases with the traffic load, at least initially. Thus,
Fig. 1(b) indicates that the average delay of packets when
packets are generated at a rate of one per second at each node
is four times higher than that when packets are generated at
rate of seven per second at each node (i.e., 1000 ms in the
former case versus 250 ms in the latter case).

The goal of this paper is to explain this strange be-
havior within the context of understanding the impact of
channel and traffic conditions on the delay behavior of
LIFO-backpressure schedulers. We introduce and analyze
a queueing-theoretic model that qualitatively captures the
behavior of LIFO-backpressure. Specifically, we focus on
a two-node network consisting of one source node and
one destination node. This simple network turns out to be
sufficient to reproduce the observed effects.

The behavior of the LIFO-backpressure scheduler at the
source node is modelled using a single-queue system with
threshold. The threshold may change over time, depending
on channel conditions. The scheduler can transmit packets
only if the queue length (i.e., the number of packets in the
queue) meets or exceeds the threshold. Under appropriate

statistical assumptions on the traffic and channel dynamics,
the evolution of such a system can be described using a
multi-dimensional continuous-time Markov chain (CTMC).
We derive a numerical solution for the general case us-
ing matrix geometric methods [5]. Furthermore, using z-
transform techniques [6], we provide closed-form solutions
for the special cases where the threshold oscillates between
0 and 1 and between 0 and ∞.

Our analysis indicates that the counter-intuitive delay
behavior, whereby the average delay initially decreases with
the traffic load, occurs due to threshold changes. The anal-
ysis further reveals that this effect gets more pronounced
as the rate of threshold changes becomes slower. On the
other hand, if the threshold is fixed (e.g., if the channel is
lossless), then the average delay increases with the traffic
load as expected.

The rest of this paper is organized as follows. In Section II,
we review related work on backpressure routing algorithms.
In Section III, we detail the BCP protocol, upon which our
analytical model is based. In Section IV, we formulate our
CTMC model and provide a matrix geometric method for
numerically solving the general model. Next, in Section V,
we derive closed-form expressions of the average delay in
some special cases. Section VI presents simulation results
for larger networks to support our analytical findings. Sec-
tion VII concludes the paper.

II. RELATED WORK

The origin of backpressure algorithms lies in the seminal
work of Tassiulas and Ephremides [7]. A backpressure
algorithm is mathematically constructed by minimizing the
Lyapunov drift that represents the difference between the
values of the Lyapunov function at the current time slot
and at the next time slot. This leads to a problem, known
as MaxWeight, of maximizing the weighted sum of link
rates, in which the weights are represented by backlog
differentials. Intuitively, data packets are sent over links with
high rates and to neighbors with low backlog, thus achieving
a load balancing effect.

The chief advantages of backpressure algorithms are to
avoid explicit path computations and achieve throughput-
optimal performance. However, backpressure algorithms
suffer from high end-to-end packet delays, due to lack
of backpressure to push packets toward their destinations,
sometimes leading to packet looping. These problems are
more severe at light load. An extreme case is of a packet
entering an empty network and engaging into some kind of
random walk until reaching its destination.

Several approaches have been proposed to solve the delay
problem of backpressure algorithms [8–11]. Instead of using
queue differentials as weights of the MaxWeight problem,
[9] proposes representing weights with delay information
of packets in the queues. The idea is that packets that
have already experienced high delays are more likely to be
scheduled for transmission in the next time slot, whereas the
original backpressure algorithm would give longer queues
higher priority irrespective of the delay experienced by
packets. The authors in [10] describe a novel backpressure-
based per-packet randomized routing framework. It lever-
ages a shadow queue structure that lowers complexity of
maintaining queues. By minimizing the number of hops by
packets, their routing algorithms reduce delay drastically.

Based on the original backpressure algorithms, Neely et
al. developed so-called quadratic Lyapunov function based
algorithms (QLA) for general stochastic network utility
optimization problems [1]. Instead of purely minimizing
the Lyapunov drift, QLA is constructed by minimizing
the Lyapunov drift plus a penalty (or the negative of a
utility), in which the penalty is weighted by a parameter
V . As V gets larger, the algorithm puts more emphasis
on the resulting penalty and less on network stability. The
performance results of QLA are given in the following
[O(1/V), O(V)] utility-delay tradeoff form: backpressure
is able to achieve a utility that is within O(1/V) of the
optimal utility for any scalar V ≥ 1, while guaranteeing
an average network delay that is O(V). Although QLA
does not emerge specifically as a solution for the delay
problem of the original backpressure algorithms, QLA can
inherently prevent packet looping when the penalty function
is related to the number of transmissions since looping adds
transmissions. However, a large delay may still prevail at
low load due to the lack of backpressure to push packets
toward their destinations.

Much effort has been spent to reduce the large O(V)
delay of QLA. The authors in [12] prove that under QLA,
the network backlog stays close to a fixed value (called
attractor), which is the dual optimal solution of a determin-
istic optimization problem. While the attractor has order of
O(V), the fluctuation of the network backlog around the

attractor is bounded by O(log2(V)) with high probability.
The authors, therefore, propose an algorithm that pre-fills
queues with null packets that play the role of attractor.
Hence, the real packets arrive into a queue whose length
is bounded by O(log2(V)), and the algorithm achieves an

optimal [O(1/V), O(log2(V))] utility-delay tradeoff.
Motivated by practical implementations of backpressure

routing algorithms, the authors in [3] prove that LIFO-
backpressure achieves the optimal [O(1/V), O(log2(V))]
utility-delay tradeoff. Note that FIFO-backpressure would
achieve a [O(1/V), O(V)] utility-delay tradeoff since pack-
ets need to traverse a whole queue in order to get transmit-
ted. The idea behind LIFO-backpressure is straightforward:
packets constituting the attractor are trapped in the queue
forever and serve the same role as that of null packets in
the algorithm described above. The delay improvement of
LIFO over FIFO is shown both through real experiments
[2] and theoretical studies [3].

Most of the above studies focus on the optimal utility-
delay tradeoff in terms of the scalar parameter V (or when
the parameter V becomes large). Little study has been
conducted on the effects of other network parameters on the
delay performance of backpressure routing algorithms, in-
cluding channel dynamics and traffic load in the network. As
we have shown in Section I, even though LIFO-backpressure
achieves an optimal utility-delay tradeoff performance, its
delay at low load may be very high. The observed delay
behavior can hardly be explained by the previous theoretical
studies. This work serves the goal of better understanding
the behavior of LIFO-backpressure and shedding light on
the effects of network parameters (channel conditions and
network traffic) on its delay performance.

1234
Packet

arrival

Packet

service

Dynamic threshold

Fig. 2. Illustration of queueing system with dynamic threshold. In this
example, the threshold has the dynamic range [2,6] and the current threshold
is 3. Due to LIFO policy and threshold range, packet 1 and packet 2 will
never have chance to be served and stay in the queue forever.

III. BCP EXPLAINED

In this section, we describe the design of the BCP protocol
[2], since it serves as the basis of our queueing-theoretic
model. BCP is a practical, distributed QLA implementation,
where nodes independently make routing decisions based on
local information. The routing decisions are made per packet
instead of routing all packets through the same computed
path.

Next, we explain how BCP make routing decisions. Let
Qi represent the backlog at node i. Then ∆Qi,j = Qi−Qj

is the queue differential (backpressure) between node i and
its neighbor node j. Let Ri→j denote the estimated link

rate from i to j and ETXi→j be the average number of
transmissions for a packet to be successfully sent over the
link. In the routing policy of BCP, node i calculates the
following backpressure weight for each neighbor j:

wi,j = (∆Qi,j − V · ETXi→j) · Ri→j .

The routing decision (next hop of the packet) is deter-
mined by finding the neighbor j∗ with the highest weight.
Then the node needs to make the forwarding decision: if
wi,j∗ > 0, the packet is forwarded to node j∗, else the packet
is held until the metric is recomputed. In other words, if the
weights for all neighbour nodes are zero or negative, the
node will do nothing but wait till the next recomputation.

As a QLA algorithm, BCP aims to minimize the number
of packet transmissions (ETX) while guaranteeing network
stability. The parameter V represents the weight of the
penalty (ETX) in the optimization problem. When V = 0,
the algorithm reverts to the original backpressure algorithm.

Due to the routing policy of BCP, the queue dynamics at a
node is subject to the queue dynamics and link dynamics to
all neighbors. Instead of studying large networks, we focus
our efforts on a simple two-node network. In this network,
packets are injected into the source node s and forwarded to
the destination node t. Under BCP, the source node simply
calculates the weight:

ws,t = (∆Qs,t − V · ETXs→t) · Rs→t

= (Qs − V · ETXs→t) · Rs→t.

The second equation comes from the fact that Qt = 0. Since
s only has t as its neighbor node, s does not need to choose
the next hop and only needs to make forwarding decisions.
Furthermore, we can drop Rs→t because it does not affect
the sign of the backpressure weight. For ease of discussion,
we discard the subscripts in the formula. Based on BCP and
the form of backpressure weight, the source node forwards
a packet only when Q > V · ETX . When Q ≤ V · ETX ,
the source node is waiting either for the queue Q to grow

3945 3950 3955 3960 3965 3970
Time (seconds)

2

3

4

5

6

7

8

Queue length

V·ETX

Fig. 3. Simulated evolution of queue length and ETX of BCP over time
with V = 2. This illustrates the role of V · ETX as the threshold on the
queue.

or ETX to become smaller. Thus, the value of V · ETX
serves as a threshold on the queue.

First, let’s take a look at the scenario of a lossless channel
or more generally a static channel with fixed ETX . In this
case, the threshold is static with value V · ETX . Due to
the forwarding policy of BCP, Q will be lower bounded by
V · ETX . Under FIFO, the average delay is D = Q

λ
≥

V · ETX
λ

by Little’s Law, where λ denotes the packet arrival
rate. This lower bound is consistent with the O(V) delay
result in theoretical analysis. As the load λ increases, the
lower bound decreases. Under LIFO, a fraction of packets,
the number of which is equal to the threshold V ·ETX , is
trapped in the queue forever. Ignoring these packets, the rest
of the queue is equivalent to an M/M/1 queue, for which
the average delay increases as load increases.

Next, let’s suppose the channel has a dynamic
ETX in the range of [ETXmin, ETXmax]. Corre-
spondingly, the threshold is dynamic within range [V ·
ETXmin, V · ETXmax], which we further simply denote
by [Kmin,Kmax]. Then Q will be lower bounded by Kmin

due to the threshold range. Under FIFO, the average delay

is D = Q

λ
≥ Kmin

λ
= V · ETXmin

λ
. However, under LIFO,

the bottom Kmin packets are trapped in the queue forever
and the rest of the queue will be equivalent of a queue
with dynamic threshold in the range of [0,Kmax −Kmin].
For example, in Fig. 2, the threshold range is [2, 6]. Under
FIFO, the packet needs to go through all the queue to get
served and the queue length is at least 2 due to the range of
threshold. However, under LIFO, packet 1 and packet 2 are
in the queue forever. Thus the rest of the queue is equivalent
to a queue with threshold range [0, 4]. Fig. 3 illustrates the
threshold effect of ETX on the queue length.

IV.GENERAL MODEL AND NUMERICAL METHOD

In this section, we construct a system-level queueing
model with dynamic threshold based on the routing policy
of LIFO-backpressure (LIFO-BCP) and represent it with a
CTMC. Meanwhile, we provide a matrix geometric method
to numerically solve the CTMC and obtain the average delay
of packets in the queueing system.

A. Queueing model

Assume that the arrival process of packets is Poisson with
rate λ. The channel is represented by the Gilbert model [13],
a Markov chain that transits between two states, namely,

0,1 1,1

K+1,0

K+1,1

K+2,0

K+2,1

Good channel

Bad channel

System state: Queue length, channel state

0,0 K-1,01,0 ...

... K-1,1

K,0

K,1

...

...2,1

2,0

Fig. 4. Markov chain of the single-queue system.

good state and bad state. The transition rate from good state
to bad state is σ1 and the transition rate from bad state
to good state is σ2. Under the good channel, the threshold
is 0 and service time is exponentially distributed with rate
µ1 while under the bad channel, the threshold is K and
the service time is exponentially distributed with rate µ2

(usually, µ1 ≥ µ2). Thus in association with the channel
model, the threshold dynamic can also be represented by
a two-state Markov chain. Let (n, 0) and (n, 1) represent
the system states of n packets in the queue under good and
bad channels, respectively. Then Fig. 4 depicts the whole
Markov chain for the queueing system.

Although the simplistic Gilbert channel model assumes
that the channel can only be in two different states, it is
sufficient for qualitatively capturing the temporal dynamics
and correlation of more complex channel models. We also
note that under lossless channel with fixed threshold, the
system state can have transitions restricted to the half of the
Markov chain under good channel, which is the same as
M/M/1.

B. Probability generating function

The steady state probability of (n, 0) and (n, 1) are

denoted by Pn,0 and Pn,1. Define Pn , [Pn,0, Pn,1]
T . Then

the steady state distribution of the queue length is

πn = Pn,0 + Pn,1 = e
TPn. (1)

We define the following probability generating functions
using z-transform: G0(z) =

∑∞

n=0 z
nPn,0, G1(z) =

∑∞

n=0 z
nPn,1, and

G(z) =

[

G0(z)
G1(z)

]

=
∞
∑

n=0

zn
[

Pn,0

Pn,1

]

=
∞
∑

n=0

znPn. (2)

The probability generating function of the steady state
distribution of queue length N is

FN (z) =
∞
∑

n=0

znπn =
∞
∑

n=0

zneTPn = e
TG(z). (3)

Then the average number of packets in the queue can
be obtained from FN (z) and the average delay can be
calculated by Little’s Law:

E[N] =

∞
∑

n=0

nπn (4)

=
d

dz
FN (z)

∣

∣

∣

∣

z=1

, (5)

E[T] = E[N]/λ. (6)

Next we develop a matrix geometric method [5] for solv-
ing the steady state distribution of the CTMC and calculating
the average delay by (4) and (6). In Section V, we will
derive closed-form solutions for the probability generating
functions, (2) and (3), and compute the average delay based
on (5) and (6) for two special cases.

C. Matrix geometric method

Based on the balance equations and the normalization
condition, we aim to obtain the steady state distribution,
Pn.

We first derive the balance equations at each state of the
CTMC. The balance equations at states (0, 0) and (0, 1) are:

(σ1 + λ)P0,0 = σ2P0,1 + µ1P1,0,

(σ2 + λ)P0,1 = σ1P0,0.

Define Q ,

[

σ1 −σ2

−σ1 σ2

]

, Λ ,

[

λ 0
0 λ

]

, M1 ,

[

µ1 0
0 0

]

,

then the above balance equations can be simplified as:

(Q+ Λ)P0 = M1P1.

The balance equations at states (n, 0) and (n, 1) (1 ≤ n <
K) are:

(λ+ µ1 + σ1)Pn,0 = λPn−1,0 + µ1Pn+1,0 + σ2Pn,1,

(λ+ σ2)Pn,1 = λPn−1,1 + σ1Pn,0,

⇒ (Λ +M1 +Q)Pn = ΛPn−1 +M1Pn+1.

The balance equations at states (K, 0) and (K, 1) are:

(λ+ µ1 + σ1)PK,0 = λPK−1,0 + µ1PK+1,0 + σ2PK,1,

(λ+ σ2)PK,1 = λPK−1,1 + µ2PK+1,1 + σ1PK,0.

Define M2 ,

[

µ1 0
0 µ2

]

, then

(Λ +M1 +Q)PK = ΛPK−1 +M2PK+1.

The balance equations at states (n, 0) and (n, 1) (n > K)
are:

(λ+ µ1 + σ1)Pn,0 = λPn−1,0 + µ1Pn+1,0 + σ2Pn,1,

(λ+ µ2 + σ2)Pn,1 = λPn−1,1 + µ2Pn+1,1 + σ1Pn,0,

⇒ (Λ +M2 +Q)Pn = ΛPn−1 +M2Pn+1.

In summary, the balance equations are the following:


















(Λ +Q)P0 = M1P1,

(Λ +M1 +Q)Pn = ΛPn−1 +M1Pn+1, 0 < n < K

(Λ +M1 +Q)PK = ΛPK−1 +M2PK+1,

(Λ +M2 +Q)Pn = ΛPn−1 +M2Pn+1, n > K.

(7)

(8)

(9)

(10)

Now we choose P1 as an unknown vector and express Pn

as a linear transform of P1. By (7), we have

P0 = (Q+ Λ)−1M1P1 , T1P1.

We express Pn in the matrix geometric form:

Pn =

{

Rn−1
1 P1, if 1 ≤ n < K,

Rn−K
2 PK , if n ≥ K.

Then by taking PK+1 = R2PK into (9), we have:

PK = (Λ +M1 +Q−M2R2)
−1ΛPK−1

= (Λ +M1 +Q−M2R2)
−1ΛRK−2

1 P1

, T2P1.

The steady state distribution can now be expressed as
follows:

Pn =







T1P1, if n = 0,
Rn−1

1 P1, if 1 ≤ n < K,
Rn−K

2 T2P1, if n ≥ K.
(11)

The sum of Pn from 0 to ∞ is

[
∑∞

n=0 Pn,0
∑∞

n=0 Pn,1

]

= (T1 +
K−1
∑

n=1

Rn−1
1 +

∞
∑

n=K

Rn−K
2 T2)P1.

Based on the normalization condition and the two-state
channel model, we have the following equation, from which
P1 can be solved:

[

1 1
σ1 −σ2

] [
∑∞

n=0 Pn,0
∑∞

n=0 Pn,1

]

=

[

1
0

]

. (12)

Before solving (12), we need to determine R1 and R2.
They can be solved numerically as follows. By (8), we have

(Λ +M1 +Q)R1P1 = ΛP1 +M1R
2
1P1. (13)

A sufficient condition to satisfy (13) is

(Λ +M1 +Q)R1 = Λ+M1R
2
1. (14)

To find R1, we can iteratively calculate the following until
convergence:

R1(j) = (Λ +M1 +Q)−1(Λ +M1R
2
1(j−1)),

where R1(j) is the approximation to R1 at the j-th step.
[5] has shown that by starting with R1(0) = 0, the

sequence {R1(0),R1(1),R1(2), ...} is a monotonically in-
creasing sequence that converges to the minimal nonnegative
solution to (14).

Similarly, R2 can also be found through iteratively calcu-
lating

R2(j) = (Λ +M2 +Q)−1(Λ +M2R
2
2(j−1)).

With R1, R2 and P1 known and by (1), (4), (6), and (11),
the average delay of packets in the queueing system is

E(T) = e
T (

K−1
∑

n=1

nRn−1
1 +

∞
∑

n=K

nRn−K
2 T2)P1/λ. (15)

The computation of the geometric sum in (15) can be
conveniently carried out through diagonalization and eigen-
decomposition of R1 and R2. The method we describe here
applies directly for the case of K ≥ 2. The average packet

delay when K = 1 can also be numerically computed using
the matrix geometric method with minor change. However,
we will instead provide a closed-form analysis in the next
section. Numerical results obtained by the matrix geometric
method will be presented in Section VI.

V. ANALYSIS OF SPECIAL CASES

In this section, we provide analytical results of two special
cases of the general model. First, we analyze the case
where the threshold varies between 0 and 1. This represents
our main result as it explains the counter-intuitive delay
behavior of LIFO-backpressure under lossy channels. Then,
we analyze the case where the threshold varies between 0
and ∞, which turns out to have a similar delay behavior as
M/M/1.

A. K = 1

When K = 1, the balance equations are:











(Λ +Q)P0 = M1P1,

(Λ +M1 +Q)P1 = ΛP0 +M2P2,

(Λ +M2 +Q)Pn = ΛPn−1 +M2Pn+1, for n ≥ 2

(16)

(17)

(18)

Multiplying both sides of (17) and (18) with zn and
summing from n = 1 to ∞, we can get

(Λ +M2 +Q)

∞
∑

n=1

znPn = z(M2 −M1)P1

+ Λz
∞
∑

n=1

zn−1Pn−1 +M2
1

z

∞
∑

n=1

zn+1Pn+1,

According to definition of G(z) in (2),

(Λ +M2 +Q)[G(z)− P0] = z(M2 −M1)P1 + ΛzG(z)

+M2
1

z
[G(z)− P0 − zP1].

We then replace P0 by (Q+ Λ)−1M1P1 from (16):

[z2Λ− z(Λ +M2 +Q) +M2]G(z) =

(1− z)[M2(Q+ Λ)−1M1 + z(M2 −M1)]P1. (19)

To simplify, we rewrite (19) as:

A(z)G(z) = (1− z)B(z)P1,

where

A(z) = z2Λ− z(Λ +M2 +Q) +M2,

B(z) = M2(Q+ Λ)−1M1 + z(M2 −M1).

Then

G(z) =
adjA(z)

detA(z)/(1− z)
B(z)P1. (20)

In order to obtain G(z), we need to solve P1. Since
it is a two-dimension vector, we need to find two equa-
tions. The first equation is the normalization condition, i.e.,
FN (z)|z=1 = 1, and by (3), we have

e
T adjA(z)|z=1

[detA(z)/(1− z)]z=1
B(z)|z=1P1 = 1. (21)

The second equation is obtained by finding a root of
detA(z) = 0 such that the root z0 satisfies 0 < z0 < 1.
Then the second equation is

adjA(z0)B(z0)P1 = 0. (22)

Assuming σ1 = σ2 = σ, µ1 = µ2 = µ, we have

adjA(z) =
[

µ− (λ+ µ+ σ)z + λz2 −σz
−σz µ− (λ+ µ+ σ)z + λz2

]

,

detA(z) = (1− z)(µ− λz)[µ− (λ+ µ+ 2σ)z + λz2],

and

z0 = (2σ + λ+ µ−
√

(2σ + λ+ µ)2 − 4µλ)/2λ.

By solving (21) and (22), we obtain

P1 =
λ(µ− λ)

µ

[

1
µ
− 2λ2

µE1

2λ
E1

]

, (23)

where

E1 = λµ+ 4λσ + 2µσ − (λ+ 2σ)E2 + 3λ2 + 4σ2,

E2 =
√

(λ+ µ+ 2σ)2 − 4µλ.

By substituting (23) into (20) and using (3), (5), and(6),
the average delay of packets in the queueing system when
K = 1 is

E[T] =
1

µ− λ
+

2λ

3λ2 + (µ+ 4σ)λ− E2λ− 2E2σ + (2µσ + 4σ2)
.

(24)
Expanding the Maclaurin series of (24) on λ, we obtain the

following approximation of the average delay at low load:

E[T] = (
2

µ
+

1

2σ
)−

(µ+ 4σ)(µ+ σ)

2µσ2(µ+ 2σ)
λ+ o(λ). (25)

By (25), the first order derivative of the average delay on
the load is strictly negative. Thus the average delay decreases
with load under light traffic. This is consistent with the
counter-intuitive behavior of LIFO-backpressure observed
in simulations. The trend of delay decreasing at low load
is more apparent when σ is small, i.e., the rate at which
the threshold varies between good and bad states is low.
As σ grows larger, both the zeroth and first order derivative
become smaller, which leads to the interesting conclusion
that the delay performance of a fast-varying channel is better
than that of slow-varying channel. As we will show in
Section VI, the counter-intuitive delay trend indeed vanishes
when σ gets large.

An intuitive explanation of the counter-intuitive delay be-
havior is that the packet at the bottom of queue gets stuck
when the threshold is 1 and gets served when the threshold
returns to 0. Thus the queueing delay of the stuck packet
is mostly determined by the transition time of the threshold
from 1 to 0, which could be very large. When the traffic load
increases, the probability that the queue length is strictly
larger than one in the bad state increases and the proportion
of stuck packets decreases, thus reducing the overall average
delay.

B. K = ∞

When K = ∞, there will be no packet service when the
channel is in a bad state. Then the balance equations are:
{

(Λ +Q)P0 = M1P1,

(Λ +M1 +Q)Pn = ΛPn−1 +M1Pn+1, for n ≥ 1

(26)

(27)

By multiplying both sides of (27) with zn and summing
up, we have

(Λ+M1+Q)(G(z)−P0) = zΛG(z)+
M1

z
(G(z)−P0−zP1).

Using (26), we have

[z2Λ− z(Λ +M1 +Q) +M1]G(z) = (1− z)M1P0

= (1− z)

[

µ1P0,0

0

]

.

and we further rewrite it as:

A(z)G(z) = (1− z)

[

µ1P0,0

0

]

,

where

A(z) = z2Λ− z(Λ +M1 +Q) +M1.

Then the probability generating function can be expressed
as follows:

G(z) =
adjA(z)

detA(z)/(1− z)

[

µ1P0,0

0

]

, (28)

where

adjA(z) =
[

(λ+ σ2)z − λz2 σ2z
σ1z µ1 − (λ+ µ1z + σ1)z + λz2

]

,

detA(z) = z(1− z)[λµ1 + µ1σ2 + λ2z2

− λ(λ+ µ1 + σ1 + σ2)z].

In order to obtain G(z), we need to determine the unknown
variable, P0,0. Since there is only one variable, we only need
one equation. Using the normalization condition and (3), the
solution is

P0,0 =
σ2

σ1 + σ2
−

λ

µ1
. (29)

By substituting (29) into (28) and using (3), (5), and (6),
the average delay of packets in the queueing system when
K = ∞ is

E[T] =
[

1 +
σ1µ1

(σ1 + σ2)2

]/[σ2

σ1 + σ2
µ1 − λ

]

. (30)

Therefore, when K = ∞, the average delay is a mono-
tonically increasing function on the load, and behaves in a
manner similar as the average delay in an M/M/1 queue.
The result is not surprising since the queue can only be
served during a fraction of the time, i.e., σ2

σ1+σ2

, which does
not depend on other system parameters such as the arrival
rate and service rates.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we provide numerical results obtained
by the matrix geometric method and z-transform method
described in Sections IV and V. We also provide simulation
results of LIFO-BCP to verify the existence of the counter-
intuitive delay behavior of LIFO-backpressure in large net-
works.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

A
v
e

ra
g

e
 d

e
la

y

λ

σ=0.01

σ=0.05

σ=0.1

σ=1

(a) K = 1 by z-transform method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

A
v
e

ra
g

e
 d

e
la

y

λ

σ=0.01

σ=0.05

σ=0.1

σ=1

(b) K = 10 by matrix geometric method

Fig. 5. Average packet delay versus packet arrival rate (traffic load) λ for different threshold transition rates σ and fixed service rate µ = 1.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Load (pkts/sec/node)

A
v
e
ra

g
e
 d

e
la

y
 (

m
s
)

α=0.9

α=0.95

(a) Lossy channel (Received power = -80 dBm)

0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

Load (pkts/sec/node)

A
v
e
ra

g
e
 d

e
la

y
 (

m
s
)

α=0.9

α=0.95

(b) Lossless channel (Received power = -75 dBm)

Fig. 6. Average delay versus load with fixed noise power -85 dBm in a 25-node grid network.

A. Numerical results

Numerical results for the average packet delay in the
queueing model are depicted in Fig. 5 (a) and (b), for the
cases K = 1 and K = 10, respectively. The results for
K = 1 show that the average delay decreases with traffic
at low load. This phenomenon gets more pronounced as
the transition rates between different channel states become
slower (i.e., σ → 0). On the other hand, for K = 10, the
average delay generally increases with the traffic load, unless
the transition rates between different channels states are very
slow (e.g., σ = 0.01). This result is consistent with our
analysis for K = ∞. For both cases K = 1 and K = 10,
all the curves merge as λ → 1. This means that temporal
channel dynamics do not have as much effect at high load.

B. Simulation results

We next describe simulations of the BCP protocol. Our
goal is to verify that our analysis qualitatively captures the
behavior of this protocol under different channel conditions.
Our simulation is run on TOSSIM [14], the standard TinyOS
simulator for wireless sensor networks. The simulated net-
work consists of a root node and some sensor nodes, both
of which use the sensor model MICAz. In a simulation, the

sensor nodes are first initialized uniformly randomly within
one second. After initialization, all the sensor nodes peri-
odically generate packets and inject them into the network
layer, where BCP routes the packets toward the root node.
The goal of the random initialization is to reduce the amount
of MAC contention and MAC delays that would occur if all
the nodes generated packets at the same time.

Our first set of simulations are performed on a five-
node network. The results are depicted in Fig. 1, shown
in the introduction of the paper. The simulations use real
RSSI (received signal strength) traces collected from a
vehicular environment, where each sensor node is attached
to a different wheel of a car and the root node is placed on
the driver seat [15]. For the lossless channel, we configure
the noise power to be -95 dBm, while for the lossy channel,
we use real noise traces collected from the Meyer Library
of Stanford [16]. These traces exhibit complex temporal
dynamics, wherein the noise floor is at about -98 dBm and
spikes are at about -86 dBm. The results are consistent
with our analytical findings, that is, the initial decrease
of the delay with traffic load occurs under bursty channel
conditions, but not under perfect channel conditions.

Our second set of simulations are conducted for a network

consisting of 24 sensor nodes and one root node. The
topology is a 5 × 5 grid where the root node is located
at the center. In this topology, a link only exists between
direct neighbors. In other words, nodes that are two hops
away cannot hear each other. We fix the noise power to
be -85 dBm while we test different received signal powers,
namely -80 dBm and -75 dBm. The packet error probability
at signal-to-noise-ratio (SNR) of 10 dB is close to zero while
that at SNR of 5 dB is varying in the range between 0 and
1/2 in the simulator. Therefore, the two different received
powers represent lossless and lossy channels.

Simulations are run for different values of the parameter α
used by the BCP protocol in its estimation of the expected
number of transmissions ETX . This estimation is based
on a exponential moving weighted average, where ETX
is updated as follows whenever a new sample of ETX is
obtained: ETXnew = αETXold + (1− α)ETX .

Fig. 6 shows results for the two different received powers.
In Fig. 6(a), when the channel is lossy and the threshold
is dynamic, the average delay decreases with the load. In
Fig. 6(b), on the other hand, when the channel is lossless
and the threshold is static, the average delay increases with
the load. We note that the average delay at low load in the
dynamic case is at least two orders of magnitude larger than
in the static case. This phenomenon occurs even though
the average number of transmissions in the dynamic case
is only at most twice larger than that in the static case.
These results showcase the manifestation and significance
of channel-sensitive delay behaviors of LIFO-backpressure
in large networks. We note that increasing the value of
α somewhat helps to alleviate this problem, but does not
eliminate it.

VII. CONCLUSION

We developed a queueing-theoretic model and solved it
using matrix geometric numerical methods, to elucidate the
channel-sensitive delay behavior of LIFO-backpressure. We
also provided closed-form analytical results on the average
delay in two special cases. Our results show that the counter-
intuitive delay behavior is most pronounced when the chan-
nel is slowly-varying and changes in the threshold value are
not large. We verified the existence and significance of the
channel-sensitive delay behaviors of LIFO-backpressure in
large networks through simulations.

Our analysis is tied to the Backpressure Collection Proto-
col (BCP), which aims to minimize the number of transmis-
sions over a long horizon. Since BCP roots in the stochastic
network utility optimization framework, the phenomenon
uncovered in this paper and the analysis associated with it
may apply to other network optimization problems solved
using threshold-based algorithms with time-varying thresh-
old. A possible example includes network economics where
the price for each bit changes over time and acts as a
dynamic threshold on the queue length [1, 17].

A natural solution to improve the delay performance of
LIFO-backpressure at low load is to inject additional traffic
in the network. This can be achieved by allowing nodes
to transmit duplicates or encoded linear combinations of
previous packets. However, redundant traffic may exacerbate
congestion at high load. Thus, such a solution must be be
carefully engineered and is left as an interesting area for
future work.

ACKNOWLEDGEMENTS

This work was supported in part by NSF under grant
CCF-0916892.

REFERENCES

[1] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation

and Cross-Layer Control in Wireless Networks. Foundations and
Trends in Networking, 2006.

[2] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali,
“Routing without routes: the backpressure collection protocol,” in
IPSN, 2010.

[3] L. Huang, S. Moeller, M. Neely, and B. Krishnamachari, “Lifo-
backpressure achieves near-optimal utility-delay tradeoff,” Network-

ing, IEEE/ACM Transactions on, vol. 21, no. 3, pp. 831–844, 2013.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection tree protocol,” in SenSys, 2009.

[5] M. F. Neuts, Matrix Geometric Solutions in Stochastic Models. The
Johns Hopkins University Press, Baltimore, 1981.

[6] J. N. Daigle, Queueing Theory for Telecommunications. Addison-
Wesley Publishing Company, Inc., 1992.

[7] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput
in multihop radio networks,” Automatic Control, IEEE Transactions

on, vol. 37, no. 12, pp. 1936–1948, 1992.

[8] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M. Neely,
“Backpressure with adaptive redundancy (bwar),” in INFOCOM,
2012.

[9] B. Ji, C. Joo, and N. Shroff, “Delay-based back-pressure scheduling
in multi-hop wireless networks,” in INFOCOM, 2011.

[10] E. Athanasopoulou, L. Bui, T. Ji, R. Srikant, and A. Stolyar, “Back-
pressure-based packet-by-packet adaptive routing in communication
networks,” Networking, IEEE/ACM Transactions on, vol. 21, no. 1,
pp. 244–257, 2013.

[11] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining
shortest-path and back-pressure routing over multihop wireless net-
works,” Networking, IEEE/ACM Transactions on, vol. 19, no. 3, pp.
841–854, Jun. 2011.

[12] L. Huang and M. Neely, “Delay reduction via lagrange multipliers
in stochastic network optimization,” Automatic Control, IEEE Trans-

actions on, vol. 56, no. 4, pp. 842–857, 2011.

[13] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell System

Technical Journal, vol. 39, pp. 1253–1265, Sep. 1960.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and
scalable simulation of entire tinyos applications,” in SenSys, 2003.

[15] M. Hashemi, W. Si, M. Laifenfeld, D. Starobinski, and A. Tracht-
enberg, “Intra-car Wireless Sensors Data Aggregation: A Multi-hop
Approach,” in VTC, 2013.

[16] H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation
through noise modeling,” in IPSN, 2007.

[17] P. Marbach and R. Berry, “Downlink resource allocation and pricing
for wireless networks,” in INFOCOM, 2002.

