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Optimal Admission Control in Two-class Preemptive Loss Systems

Aylin Turhana,∗, Murat Alanyalia, David Starobinskia

aDepartment of Electrical and Computer Engineering, Boston University, USA

Abstract

We study optimal admission control in a two-class preemptive loss system. A class-1 customer arrival aborts service of a class-2
customer if the system is full upon arrival. Each successfully serviced class-2 customer leads to a reward, whereas each aborted
class-2 customer incurs a cost. Using dynamic programming, we characterize optimal admission control for class-2 customers
that maximizes the long-run average profit. The optimal admission control policy depends only on the total occupancy and is of
threshold type.

Keywords: Revenue Maximization, Dynamic Programming, Markov Decision Process.

1. Introduction

In this paper, we study a preemptive loss system whose re-
sources are regulated with admission control. We consider two
classes of customers. Arrivals of each class are independent
Poisson processes with rate λi > 0 for class-i customers where
i = 1, 2. The system consists of C identical and parallel servers
and service rates of all customers are independent and exponen-
tially distributed with mean µ−1 unless terminated prematurely.
Upon the departure of a successfully serviced class-2 customer,
a fixed reward is earned.

We consider preemption-based prioritization between the
two customer classes. In the context of a loss network, cus-
tomers compete for a finite number of resources and preemp-
tion refers to aborting ongoing service of a low-priority cus-
tomer for the sake of admitting a high-priority customer. Such
implementation of preemption is widely used in engineering ap-
plications [1].

In our system, class-1 customers have preemptive priority
over class-2 customers. Thus, a class-2 customer is removed
from the system if the system is full (i.e. all C servers are busy)
upon a class-1 customer arrival. When a class-2 customer is
preempted, it is withdrawn from the system permanently, and
a preemption cost is incurred. Such a model is studied in [2]
where class-1 (2) customers are the primary users (secondary
users) in a cognitive radio network. The aim is to find the op-
timal admission control policy of class-2 customers that maxi-
mizes the long-run average profit.

The related work can be classified in two categories: dy-
namic control of queueing systems with an emphasis on ad-
mission control and preemption.

Admission control of queueing systems and trunk reserva-
tion models have been widely studied [3]. Earlier work in-
cludes various seminal papers such as Miller [4] and Ramjee et
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(Murat Alanyali), staro@bu.edu (David Starobinski)

al. [5], which consider a multi-class and multi-server queueing
system that uses admission control to maximize the expected
average return. Kelly [6] studies a trunk reservation model for
networked resources. Recent studies include the work of Gans
and Savin [7]. They characterize the optimal pricing policies in
a system that consists of two types of customers. None of the
mentioned work considers preemption.

One of the earliest works on preemption is the work of
Helly [8], which proposes two approaches on the control of
two-class traffic with different priorities and limited number of
servers. Garay and Gopal [9] use preemption as a control mech-
anism in networks and outline the optimal preemption decision
for greater revenue. Xu and Shanthikumar [10] present some
results on optimal admission control by using duality of two
systems one of which employs preemption. Brouns and van der
Wal [11] study the optimal termination and admission controls
in a two-class single server system. Brouns [12] extends these
results to the multi-server case, where there are only queue-
ing costs. In contrary to our system, their system does not have
preemption cost per customer. Thereafter, Zhao et al. [1] utilize
preemption to provide differentiated services to various classes
in a parallel loss network. They compute the preemption prob-
ability and the preemption rate for each class analytically but
they do not consider any type of admission control. Ulukus et
al. [13] have the closest model to our system. They prove that
preemption is optimal only when the system is full and they
characterize the optimal termination and admission policies as
state dependent threshold policies. Due to their statistical as-
sumptions, they cannot derive a threshold type policy as de-
scriptive as ours.

In this work, we formulate a two-dimensional (2D) Markov
decision process (MDP) optimization problem. Our main con-
tribution is to show that the optimal admission control policy is
of threshold type. Similar to the well-studied admission control
problem where customers are blocked when the system is full
[4, 5], the optimal threshold for our system depends only on the
total number of customers in the system, i.e. total occupancy.
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# Class 2

# Class 1

Figure 1: State diagram of 2D Markov chain for C = 3. Depending on the
admission control, the dashed transitions with rate λ2 upon class-2 arrivals may
exist or not.

This conclusion is non-trivial despite the extensive litera-
ture on optimality of threshold admission policies for non-
preemptive loss systems (see, for example, [4] for a seminal
paper on this issue). Conclusions concerning non-preemptive
systems do not immediately extend to preemptive systems be-
cause in a non-preemptive system, customers cannot be evicted
once they are admitted, and in turn, due to identical service rate
statistics, customers are indistinguishable once they are in the
system. In contrast, a preemptive system entails an asymmet-
rical situation since admission of a class-1 customer when the
system is full depends on the presence of class-2 customers in
the system at the time of its arrival. Hence, it is not clear from
the outset whether analysis of optimal profit requires consider-
ation of a multi-dimensional model.

Interestingly, although optimal admission control policies
have the same form for non-preemptive and preemptive systems
with memoryless service times, differences emerge when this
latter condition is relaxed: On the one hand, it is known that for
a two-class non-preemptive system with general service time
distribution, the optimal occupancy-based policy, i.e. the pol-
icy that depends only on the number of customers of each class,
is of threshold type [14]. On the other hand, we show here by
an example that for preemptive systems threshold type policies
are not necessarily optimal even within occupancy-based poli-
cies under general service time distributions.

The rest of the paper is organized as follows: We describe
our system model in Section 2. The model analysis and charac-
terization of admission control are given in Section 3. Finally,
we discuss general service time distributions in Section 4.

2. Model Description

Knowing that the inter-arrival and service times are expo-
nentially distributed and the service of a class-2 customer may
be interrupted at any time instant, the system behaves as a 2D
continuous-time MDP. An example state transition diagram for
2D MDP with C = 3 is given in Fig. 1. The system description
is as follows:

States: The state of the system is in the form of a tuple (x, y)
where x ≥ 0 is the number of class-1 customers and y ≥ 0 is the
number of class-2 customers in the system.

Decisions: The only decision control is the admission control
of the class-2 customers. Upon a class-2 arrival, the system
either accepts or rejects the customer. Class-1 customers are
always admitted if there are less than C class-1 customers in
the system.

Rewards and costs: r > 0 is the reward collected from a
class-2 customer per unit time. Then, R = r/µ is the average
reward per class-2 customer, which is collected after a class-2
customer leaves the system with successful completion of ser-
vice. Blocking customers upon arrival is free of charge. The
system preempts a class-2 customer whenever a class-1 cus-
tomer arrives and finds the system full and there exists a class-
2 customer in the system. Employing preemption is optimal
only when all C servers are busy [13, 15]. For every preempted
class-2 customer, a cost K > 0 is incurred.

Discounting: When we use discounting at a rate α ≥ 0, the
rewards and costs at time t are scaled by a factor of exp(−αt).
In other words, the reward gained in the present is more valu-
able than the reward gained in the future [16]. A process with
an exponential discount rate is equivalent to a process killed at
an exponential rate α [17]. There are no arrivals, departures,
preemptions, rewards or costs after the process vanishes [12].

Uniformization: The process we have is a continuous-time
Markov chain. We develop the discrete-time equivalent of this
system using a uniformization technique [18]. Without loss of
generality, we set the maximum possible rate out of any state to
1 (i.e. λ1 +λ2 +Cµ+α = 1). Hence, a class-1 (2) arrival occurs
with probability λ1 (λ2), a class-1 (2) departure occurs with
probability xµ (yµ), the process terminates with probability α
and the system stays at the same state with probability (1−λ1 −

λ2 − xµ − yµ − α) = (C − x − y)µ.

3. Model Analysis and Characterization of the Admission
Control Policy

In this section, we formulate the average profit rate of the
system and determine a method to maximize it through the op-
timal admission control of class-2 customers. We define S as
the state space for all states given that there are C channels, that
is S = {(x, y)|x+y ≤ C, ∀x, y ≥ 0}. Let S 1 ⊂ S be the sub-space
of preemptive states. Formally, S 1 = {(x, y) | x + y = C, y ≥ 1}.
We define πp(x, y) as the steady state probability that the system
is in state (x, y) under policy p. In this scheme, Jp the average
profit rate under policy p is as follows:

Jp = R
∑

(x,y)∈S

yµπp(x, y) − Kλ1

∑
(x,y)∈S 1

πp(x, y). (1)

The first term in Eq. (1) corresponds to the total average rev-
enue rate collected from class-2 customers and the second term
is the total average cost due to the preempted class-2 customers.
Their difference yields the total average profit rate.

In order to find the optimal admission control policy p∗ of
class-2 customers that maximizes the average profit rate Jp in

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Eq. (1) and yields the optimal profit J∗, the problem can be
formulated as a stochastic dynamic programming (DP) prob-
lem [16].

3.1. Dynamic Programming Formulation

In this section, we formulate the problem explicitly and pro-
vide a solution using the DP algorithm. Instead of the average
profit, we derive the maximum finite horizon discounted profit
to be able to utilize useful analysis techniques such as induc-
tion. Then, we extend our findings to the infinite horizon aver-
age profit. First, we reverse the time index n and define it as the
observation points left until the end of the horizon. We define
the profit function at this point.

Definition 1. Vn(x, y) is the maximal expected discounted profit
for the system in the current state (x, y) at time period n.

The corresponding DP equations are as follows:
For n = 0 : V0(x, y) = 0 for x, y ≥ 0
For n ≥ 1 :
• x + y < C
Vn(x, y) = λ1Vn−1(x + 1, y)

+ λ2 max{Vn−1(x, y),Vn−1(x, y + 1)} (2)
+ xµVn−1(x − 1, y) + yµ[Vn−1(x, y − 1) + R]
+ (C − x − y)µVn−1(x, y)

• x = C and y = 0
Vn(x, y) = λ1Vn−1(x, y) + λ2Vn−1(x, y) + CµVn−1(x − 1, y)

• x , C and x + y = C
Vn(x, y) = λ1[Vn−1(x + 1, y − 1) − K] + λ2Vn−1(x, y)

+ xµVn−1(x − 1, y) + yµ[Vn−1(x, y − 1) + R].

We set Vn(−1, y) = Vn(0, y) and Vn(x,−1) = Vn(x, 0) when
required. Note that there are three different equations in the DP
formulation. The first DP equation is for the case when there
are idle channels in the system for the use of all customers.
The second equation is for the case when all channels are used
by class-1 customers and there are no class-2 customers in the
system. Lastly, the third equation is for the preemption case.

3.2. Characteristics of the Optimal Admission Control Policy

In this subsection, we characterize the optimal admission
control policy of class-2 customers.

Theorem 1. The optimal admission control policy p∗ of class-2
customers is of threshold type and it depends only on the total
number of customers in the system. Thus, there exists an opti-
mal threshold T ∗ such that if a class-2 arrival finds the system
in state (x, y) and if x + y < T ∗, it is accepted. Otherwise, it is
rejected.

Suppose we have two states on the same diagonal i.e., the to-
tal occupancy is equal but the number of class-2 customers and
the number of class-1 customers are different individually. The-
orem 1 declares that the states that have the same total number
of customers must have the same admission decision upon an

arriving class-2 customer. To prove this claim, we first prove
certain monotonicity properties of the system which are given
in the following lemmas.

The following lemma sets a lower bound on the value of an
additional class-2 customer. It can be deduced from Lemma 1
in [13] where the authors study a more general model with non-
identical service rates. For the sake of completeness, we pro-
vide a full proof in the present setting.

Lemma 1. For all (x, y) with x + y + 1 ≤ C and ∀n ≥ 0:

Vn(x, y + 1) − Vn(x, y) ≥ −K. (3)

Proof. We prove this statement by a sample path argument. Let
System A and System B be two coupled systems except for
an additional class-2 customer in System A. All customers are
identical other than the extra customer. System A starts at state
(x, y + 1) where System B starts at state (x, y). Furthermore,
the inter-arrival times and service times are the same for the
systems. Assume that System B follows the optimal admission
control policy and System A imitates all decisions of System B,
i.e. if System B accepts (rejects) a class-2 customer, System A
also accepts (rejects) it.

We consider two critical cases which may alter the difference
between the profits of the systems. In the first case, the addi-
tional class-2 customer successfully leaves the system before
the total number of customers in System A reaches C, which
causes System A to earn reward R. In the second case, the total
number of customers in System A reaches C before the addi-
tional customer departs. Then, System B has C − 1 customers
in total. If a class-2 customer arrives, System A must reject this
customer whereas System B may accept it. Then, the systems
are in the same state after this point and have the same profit. If
a class-1 arrival occurs, however, System A preempts a class-2
customer by paying a cost K. System B may accept the arriving
class-1 customer and the systems couple. For all cases, Eq. (3)
holds which proves the lemma.

The next lemma declares that the value of an additional class-
2 customer is non-increasing in the number of class-1 cus-
tomers x for fixed number of class-2 customers y in the system.

Lemma 2. For all (x, y) with x + y + 2 ≤ C and ∀n ≥ 0:

Vn(x, y + 1) − Vn(x, y) ≥ Vn(x + 1, y + 1) − Vn(x + 1, y). (4)

Proof. This lemma can be proven by induction on n, the num-
ber of periods left in the horizon.
Step 1: Inequality (4) holds for n = 0 by definition.

Induction step: Assume that for n ≥ 0, inequality (4) holds.
Step 2:Assuming (4) holds for n, we show that it holds for n + 1
as well. There are two cases to consider. First, all the states in
inequality (4) are non-preemptive states, i.e. 0 ≤ x + y < C − 2.
Second, state (x + 1, y + 1), which has the greatest total number
of customers, is a preemptive state. This time, x + y = C −
2. We make these distinctions because the corresponding DP
equations depend on the type of the state. We substitute the DP
equations and use term by term comparison as follows:

3
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Case 1. 0 ≤ x + y < C − 2
Vn+1(x, y + 1) − Vn+1(x, y)
= λ1[Vn(x + 1, y + 1) − Vn(x + 1, y)]¬

+ λ2[max{Vn(x, y + 1),Vn(x, y + 2)}

− max{Vn(x, y),Vn(x, y + 1)}]



+ [xµ[Vn(x − 1, y + 1) − Vn(x − 1, y)]

+ µ[Vn(x, y + 1) − Vn(x, y)]]

®

+ yµ[Vn(x, y) − Vn(x, y − 1)]¯
+ (C − x − y − 2)µ[Vn(x, y + 1) − Vn(x, y)] + µR°

≥ λ1[Vn(x + 2, y + 1) − Vn(x + 2, y)]¶

+ λ2[max{Vn(x + 1, y + 1),Vn(x + 1, y + 2)}

− max{Vn(x + 1, y),Vn(x + 1, y + 1)}]

·

+ (x + 1)µ[Vn(x, y + 1) − Vn(x, y)]¸
+ yµ[Vn(x + 1, y) − Vn(x + 1, y − 1)]¹
+ (C − x − y − 2)µ[Vn(x + 1, y + 1) − Vn(x + 1, y)] + µRº

= Vn+1(x + 1, y + 1) − Vn+1(x + 1, y).

At this point, we explain the relations between each term pair
to complete the proof for Case 1. The relations ¬ ≥ ¶, ® ≥
¸, ¯ ≥ ¹ and ° ≥ º are direct consequences of the induction
hypothesis (4). Inequality  ≥ · is more complicated and
requires further justification.

• ≥ ·

λ2 max{Vn(x, y + 1),Vn(x, y + 2)}
− λ2 max{Vn(x, y),Vn(x, y + 1)} (5)

= λ2[max{Vn(x, y + 1),Vn(x, y + 2)} − Vn(x, y + 1)]
− λ2[max{Vn(x, y),Vn(x, y + 1)} − Vn(x, y + 1)] (6)

= λ2 max{Vn(x, y + 2) − Vn(x, y + 1), 0}
+ λ2 min{Vn(x, y + 1) − Vn(x, y), 0} (7)

(4)
≥λ2 max{Vn(x + 1, y + 2) − Vn(x + 1, y + 1), 0}

+ λ2 min{Vn(x + 1, y + 1) − Vn(x + 1, y), 0}
= λ2[max{Vn(x + 1, y + 1),Vn(x + 1, y + 2)}
− Vn(x + 1, y + 1)]
− λ2[max{Vn(x + 1, y),Vn(x + 1, y + 1)} − Vn(x + 1, y + 1)]

= λ2 max{Vn(x + 1, y + 1),Vn(x + 1, y + 2)}
− λ2 max{Vn(x + 1, y),Vn(x + 1, y + 1)}.

We add term Vn(x, y + 1) to (5) and subtract the same term
in order to obtain (6). Then we change the max to min to get
(7). When the same procedure is applied backwards to the other
side of the inequality, we verify that  ≥ · holds.

Case 2. x + y = C − 2
Vn+1(x, y + 1) − Vn+1(x, y)
= λ1[Vn(x + 1, y + 1) − Vn(x + 1, y)]¬

+ λ2[max{Vn(x, y + 1),Vn(x, y + 2)}

− max{Vn(x, y),Vn(x, y + 1)}]



+ xµ[Vn(x − 1, y + 1) − Vn(x − 1, y)]

+ µ[Vn(x, y + 1) − Vn(x, y)]

®

+ yµ[Vn(x, y) − Vn(x, y − 1)] + µR¯

≥ λ1[Vn(x + 2, y) − Vn(x + 2, y)] − Kλ1¶

+ λ2[Vn(x + 1, y + 1)

− max{Vn(x + 1, y),Vn(x + 1, y + 1)}]

·

+ (x + 1)µ[Vn(x, y + 1) − Vn(x, y)]¸
+ yµ[Vn(x + 1, y) − Vn(x + 1, y − 1)] + µR¹

= Vn+1(x + 1, y + 1) − Vn+1(x + 1, y).

¬ ≥ ¶ is true from Lemma 1. ® ≥ ¸ and ¯ ≥ ¹ can be
directly proven using inequality (4). However, we must show
that  ≥ · holds as it is not an intuitive argument.

• ≥ ·

λ2 max{Vn(x, y + 1),Vn(x, y + 2)}
− λ2 max{Vn(x, y),Vn(x, y + 1)}

= λ2 max{Vn(x, y + 2) − Vn(x, y + 1), 0}
+ λ2 min{Vn(x, y + 1) − Vn(x, y), 0}

(4)
≥λ2[0 + min{Vn(x + 1, y + 1) − Vn(x + 1, y), 0}]
= λ2[Vn(x + 1, y + 1) − Vn(x + 1, y + 1)]
− λ2[max{Vn(x + 1, y),Vn(x + 1, y + 1)} − Vn(x + 1, y + 1)]

= λ2Vn(x + 1, y + 1) − λ2 max{Vn(x + 1, y),Vn(x + 1, y + 1)}.

The following lemma states that values of an additional class-
2 customer at two neighbor states on the same diagonal, say (x+

1, y) and (x, y + 1), are equal. Consequently, all the states on the
same diagonal (i.e. with the same total number of customers)
have the same reward upon accepting a class-2 customer under
the optimal policy.

Lemma 3. For all (x, y) with x + y + 2 ≤ C and ∀n ≥ 0:

Vn(x + 1, y + 1)−Vn(x + 1, y) = Vn(x, y + 2)−Vn(x, y + 1). (8)

Proof. Similar to Lemma 2, Eq. (8) is proven by induction.
Step 1: Eq. (8) holds for n = 0 by definition.

Induction step: Assume that for n ≥ 0, Eq. (8) holds.
Step 2: Assuming Eq. (8) holds for n, we show that it holds for
n + 1. In the first case we consider, all the states in Eq. (8) are
non-preemptive states, i.e. 0 ≤ x + y < C − 2. In the second
case, states (x + 1, y + 1) and (x, y + 2) are preemptive states.
Thus, x + y = C − 2. The states have different DP equations
depending on their nature.

We find the profit functions at n + 1 in terms of the profit
functions at n by substituting the DP equations. Similar to the
proof of Lemma 2, we group and label the terms and show that
each term on the left-hand side has a corresponding term on the
right-hand side of equal value.

4
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Case 1. 0 ≤ x + y < C − 2
Vn+1(x + 1, y + 1) − Vn+1(x + 1, y)
= λ1[Vn(x + 2, y + 1) − Vn(x + 2, y)]¬

+ λ2[max{Vn(x + 1, y + 1),Vn(x + 1, y + 2)}

− max{Vn(x + 1, y),Vn(x + 1, y + 1)}]



+ (x + 1)µ[Vn(x, y + 1) − Vn(x, y)]®
+ yµ[Vn(x + 1, y) − Vn(x + 1, y − 1)]¯
+ (C − x − y − 2)µ[Vn(x + 1, y + 1) − Vn(x + 1, y)] + µR°

= λ1[Vn(x + 1, y + 2) − Vn(x + 1, y + 1)]¶

+ λ2[max{Vn(x, y + 2),Vn(x, y + 3)}

− max{Vn(x, y + 1),Vn(x, y + 2)}]

·

+ xµ[Vn(x − 1, y + 2) − Vn(x − 1, y + 1)]

+ µ[Vn(x, y + 1) − Vn(x, y)]

¸

+ yµ[Vn(x, y + 1) − Vn(x, y)]¹
+ (C − x − y − 2)µ[Vn(x, y + 2) − Vn(x, y + 1)] + µRº

= Vn+1(x, y + 2) − Vn+1(x, y + 1).

The equalities ¬ = ¶, ® = ¸, ¯ = ¹ and ° = º are direct
consequences of Eq. (8). Now, we prove  = ·.

• = ·

λ2 max{Vn(x + 1, y + 1),Vn(x + 1, y + 2)}
− λ2 max{Vn(x + 1, y),Vn(x + 1, y + 1)}

(8)
=λ2 max{Vn(x, y + 3) − Vn(x, y + 2), 0}

+ λ2 min{Vn(x, y + 2) − Vn(x, y + 1), 0}
= λ2 max{Vn(x, y + 2),Vn(x, y + 3)}
− λ2 max{Vn(x, y + 1),Vn(x, y + 2)}.

Case 2. x + y = C − 2
Vn+1(x + 1, y + 1) − Vn+1(x + 1, y)
= λ1[Vn(x + 2, y) − K − Vn(x + 2, y)]¬

+ λ2[Vn(x + 1, y + 1) −max{Vn(x + 1, y),Vn(x + 1, y + 1)}]
+ (x + 1)µ[Vn(x, y + 1) − Vn(x, y)]®
+ yµ[Vn(x + 1, y) − Vn(x + 1, y − 1)] + µR¯

= λ1[Vn(x + 1, y + 1) − K − Vn(x + 1, y + 1)]¶
+ λ2[Vn(x, y + 2) −max{Vn(x, y + 1),Vn(x, y + 2)}]·

+ xµ[Vn(x − 1, y + 2) − Vn(x − 1, y + 1)]

+ µ[Vn(x, y + 1) − Vn(x, y)]

¸

+ yµ[Vn(x, y + 1) − Vn(x, y)] + µR¹

= Vn+1(x, y + 2) − Vn+1(x, y + 1).

Note that ¬ = ¶ = −Kλ1. ® = ¸ and ¯ = ¹ are directly
proven using Eq. (8). At this point, we show that  = ·.

• = ·

λ2Vn(x + 1, y + 1) − λ2 max{Vn(x + 1, y),Vn(x + 1, y + 1)}
(8)
=λ2[0 + min{Vn(x, y + 2) − Vn(x, y + 1), 0}]
= λ2[Vn(x, y + 2) −max{Vn(x, y + 1),Vn(x, y + 2)}].

The next corollary is a natural result of Lemma 2 and Lemma
3. Adding Eq. (4) to Eq. (8), we obtain Eq. (9). The following
corollary states that the profit function is concave in the number
of class-2 customers.

Corollary 1. For all (x, y) with x + y + 2 ≤ C and ∀n ≥ 0:

Vn(x, y + 1) − Vn(x, y) ≥ Vn(x, y + 2) − Vn(x, y + 1). (9)

Theorem 1 can be inferred from Lemma 3 and Corollary 1.
For the states with the same total number of customers to have
the same admission control decision, the value of an additional
accepted class-2 customer must be identical. Lemma 3 states
that the rewards gained by accepting an additional class-2 cus-
tomer to the states with the same total number of customers
are equal. Therefore, Lemma 3 implies that the states with the
same total number of customers have the same optimal admis-
sion control decision.

Furthermore, the optimal admission control policy is of
threshold type by Corollary 1. In the DP equations, Eq.
(2) designates the admission control decision on the class-2
customers. The optimal decision d∗ in state (x, y) at time period
n is as follows:

d∗ =

{
accept if Vn−1(x, y + 1) − Vn−1(x, y) ≥ 0
reject otherwise.

For small values of y, it is optimal to accept class-2 customers
until the optimal threshold value T ∗ is reached. Then, for larger
values of y such that x + y ≥ T ∗, we always reject class-2 cus-
tomers as the profit function is concave in y.

Our results so far are proven to hold for all n ≥ 0. We can
extend these α-discounted finite horizon results to the infinite
horizon by taking n → ∞, i.e. V(x, y) = limn→∞ Vn(x, y). We
refer to [19] for the conditions that make this extension possi-
ble. In addition, the properties of the optimal admission control
policy hold for the long-run average return case since the con-
trol space and state spaces are finite. The average return case
corresponds to α→ 0 [13]. Thus, Theorem 1 holds for both the
infinite horizon discounted return and average return formula-
tions. We present an example to illustrate Theorem 1.

Example 1. We set C = 5, µ = 1, λ1 = 3, λ2 = 1, K = 10 and
R = 5. We determine the optimal admission control policy that
maximizes the long-run average profit, i.e., α = 0. The simula-
tion results are illustrated in Fig. 2. The states with the same to-
tal number of customers have the same optimal admission con-
trol decision. Furthermore, the optimal policy is of threshold
type where the optimal threshold is T ∗ = 3.

As a final remark, notice that our results also apply to systems
that incur a cost per each blocked class-2 customer, as discussed
in [20].
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Figure 2: The optimal admission control decisions at each state of the 5 channel
system in Example 1. The states with the same total occupancy have the same
optimal decision and the optimal admission control policy is of threshold type.

4. Applicability of Threshold Property to General Service
Time Distributions

In the previous sections, we have examined a system with
exponentially distributed service times with mean µ−1. In this
section, we investigate whether the threshold structure holds for
general service time distributions.

In earlier work [14], a two-class non-preemptive loss system
which employs an occupancy-based policy is studied. All cus-
tomers have the same general service time distribution. The
system operator pays a cost when a class-1 customer is blocked
due to class-2 customers. In [14], the optimal occupancy-based
policy depends only on the total occupancy for general service
time distributions. Through a counterexample, we show that
for a preemptive system, the threshold property of the optimal
occupancy-based admission control policy proven in Theorem
1 cannot be extended to general service time distributions.

Example 2. We assume that all customers have hypo-
exponential service time distribution with two phases. In the
first phase, the service time is exponentially distributed with
mean 1/µa and the customer proceeds to the second phase
where the service time is exponentially distributed with mean
1/µb. We determine the optimal occupancy-based admission
control policy of a system with C = 2, λ1 = 0.5, λ2 = 0.2,
µa = 1/3, µb = 2/3, K = 9 and R = 3. We observe that the
optimal admission decision for state (0,1) is reject whereas it
is accept for state (1,0). The optimal admission control deci-
sion at the given states had to be identical for the optimal ad-
mission control policy to depend only on the total occupancy.
Hence, unlike non-preemptive loss systems, the threshold struc-

ture does not hold for general distributions in preemptive sys-
tems.
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