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1 Introduction

One area of agreement among economists at universities, central banks, and Wall Street is that

forecasting economic activity is hard. While the existing methods give us some ability to forecast

economic developments for the current quarter and perhaps the quarter after that, their predictive

power is modest at best and deteriorates rapidly as the forecast horizon extends beyond the very

near term. Moreover, what little predictability there seems to be appears to be captured about

as well by simple models—such as a univariate autogression—as by the large number of complex

statistical and DSGE forecasting methods that have been proposed in the literature (cf. Sims [2005];

Tulip [2005]; Faust and Wright [2009]; and Edge and Gürkaynak [2010]).

Economists have long sought to improve on this record by using information from financial

markets. Because they are inherently forward looking, the argument goes, financial market prices

should impound information about investors’ expectations of future economic outcomes.1 From

a theoretical perspective, default-risk indicators such as credit spreads—the difference in yields

between various corporate debt instruments and government securities of comparable maturity—

are particularly well suited for forecasting economic activity. Philippon [2009], for example, presents

a model in which the decline in investment fundamentals, owing to a reduction in the expected

present-value of corporate cash flows, leads to a widening of credit spreads prior to a cyclical

downturn. As emphasized by Bernanke et al. [1999] and Gilchrist and Zakraǰsek [2010], increases

in credit spreads can also signal disruptions in the supply of credit resulting from the worsening

in the quality of corporate balance sheets or from the deterioration in the health of financial

intermediaries that supply credit.

The empirical success of default-risk indicators as predictors of economic activity is decidedly

mixed, however, with results varying substantially across various credit spread indexes and different

time periods. For example, the “paper-bill” spread—the difference between yields on nonfinancial

commercial paper and comparable-maturity Treasury bills—had substantial forecasting power for

economic activity during the 1970s and the 1980s, only to see its predictive ability vanish in the

subsequent decade. In contrast, credit spreads based on indexes of speculative-grade (i.e., “junk”)

corporate bonds, which contain information from markets that were not in existence before the

mid-1980s, have done particularly well at forecasting output growth during the 1990s, according

to Gertler and Lown [1999] and Mody and Taylor [2004]. Stock and Watson [2003], however, show

that the forecasting ability of this default-risk indicator is considerably more uneven.

In a recent paper, Gilchrist et al. [2009] (GYZ hereafter) argue that these mixed results may be

1Financial indicators considered in this vast literature include stock prices (Fama [1981] and Harvey [1989]);
spreads between long and short-term risk-free interest rates (Harvey [1988]; Estrella and Hardouvelis [1991];
Estrella and Mishkin [1998]; and Hamilton and Kim [2002]); the term structure of interest rates more generally
(Ang et al. [2006]); spreads between rates on short-term commercial paper and rates on Treasury bills (Bernanke
[1990]; Friedman and Kuttner [1992, 1998]; and Emery [1999]); and yield spreads on longer-term corporate debt
(Gertler and Lown [1999]; King et al. [2007]; Mueller [2007]; Gilchrist et al. [2009]; and Gilchrist and Zakraǰsek
[2010]).
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due to the fact that the credit spread indexes used by researchers tend to be based on aggregates

of returns on a mishmash of bonds with different duration, credit risk, and other characteristics.

In part to address these problems, GYZ constructed 20 monthly credit spread indexes for different

maturity and credit risk categories using secondary market prices of individual senior unsecured

corporate bonds.2 Their findings indicate that these credit spread indexes have substantial pre-

dictive power, at both short- and longer-term horizons, for the growth of payroll employment and

industrial production. Moreover, they significantly outperform the predictive ability of the stan-

dard default-risk indicators, a result that suggests that using “cleaner” measures of credit spreads

may, indeed, lead to more accurate forecasts of economic activity.

This paper extends the analysis of GYZ in several dimensions. Most importantly, we provide

a thorough evaluation of the marginal information content of credit spreads in real-time economic

forecasting. Given the extensive and ongoing search for consistent predictors of U.S. economic

activity, the macroeconomics profession runs a substantial risk that results like those of GYZ are

due to researchers stumbling on variables that just happen to fit the existing sample, but which,

in reality, have no true predictive power. The regular breakdown of new forecasting relationships

soon after they are documented confirms that this risk is real. Thus, it is especially important that

any such analysis takes into account model search and selection issues.

To guard against the problem of selecting financial indicators that just happen to fit our sample,

we adopt a Bayesian Model Averaging (BMA) approach. As explained more fully below, we add

the new credit spread indexes to a predictor set containing over 100 financial indicators, as well

as a large number of real variables, and begin with a prior that each predictor is equally likely to

be useful in forecasting future economic activity. The posterior weight assigned to each predictor

in period t is then based on a Bayesian updating scheme that uses only the information available

at time t. While our BMA scheme has, under certain conditions, a formal Bayesian justification,

we follow a large and growing literature that takes a frequentist perspective and relies on the

BMA framework as a pragmatic approach to data-based weighting of a large number of competing

prediction models (e.g., Min and Zellner [1993]; Fernandez et al. [2001b]; Avramov [2002]; Cremers

[2002]; Sala-i-Martin et al. [2004]; Koop and Potter [2004]; King et al. [2007]; and Wright [2008]).

While following GYZ’s basic approach for constructing credit spread indexes, we also improve

on their methodology by adjusting the underlying micro-level credit spreads for the call option

embedded in many of the underlying securities. As pointed out by Duffee [1998] and Duca [1999],

fluctuations in the value of embedded options—reflecting shifts in the term structure of risk-free

rates—can substantially alter the information content of movements in corporate bond yields at

business cycle frequencies.

Our results indicate that the new credit spread indexes have considerable marginal predictive

power for economic activity. When using the entire set of predictors to forecast a wide array of

2GYZ measure the underlying credit risk by the issuer’s expected default frequency (EDF™), a market-based
default-risk indicator calculated by Moody’s/KMV that is more timely that the issuer’s credit rating.
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economic activity indicators, the gains in the root mean square forecast error (RMSFE)—relative

to a univariate autoregressive benchmark—are statistically significant and often substantial in mag-

nitude: BMA forecasts generate 5 to 10 percent reductions in the RMSFEs at horizon zero (i.e.,

the “nowcast”) and between 10 and 25 percent improvement in predictive accuracy when forecast-

ing the cumulative growth of cyclically sensitive economic indicators four quarters into the future.

Consumption growth is the main exception to this general result—there are no gains in predictive

accuracy relative to our benchmark for this measure of economic activity.

When we omit the credit spread indexes from the predictor set and redo the analysis, we

obtain the standard result, namely, that the predictive accuracy of the BMA method—like that

of most other documented forecasting methods—is statistically indistinguishable from that of the

univariate autoregressive benchmark. This result indicates that there is something different about

the information content of credit spreads and that our BMA weighting scheme is able to pick out

this difference in real-time from a large number of predictors, all of which were treated equally

ex ante. Indeed, the analysis of the evolution of posterior weights that the BMA scheme assigns to

various variables in the predictor set shows that it is economic downturns that lead to the majority

of the posterior weight being placed on the credit spreads. This finding suggests that corporate

bond spreads—when properly measured—may be one of the earliest and clearest aggregators of

accumulating evidence of incipient recession.

Lastly, we examine the predictive power of the BMA model during the recent financial crisis.

While the blowout in credit spreads following the collapse of Lehman Brothers in the early autumn

of 2008 is ingrained in the minds of financial market participants, the standard macro predictions did

not anticipate the severe slump in economic activity that ultimately transpired until about the end

of 2008. Thus, it is seems reasonable to expect that a forecast incorporating the information content

of credit spreads is likely to signal a very bad economic outcome before many standard models and

forecasters. In fact, when we examine our real-time forecasts, we find that they predicted the

downturn earlier than many standard macroeconomic forecasts. Nevertheless, our BMA forecasts

still underestimated the severity of the downturn, a finding that is perhaps not too surprising given

the extraordinary economic and financial turmoil surrounding that period.

The plan for the remainder of this paper is as follows. Section 2 describes our bond-level data

and the construction of portfolios based on the option-adjusted credit spreads. In Section 3, we

outline the econometric methodology used to combine forecasts by BMA. Section 4 contains our

main empirical results. Section 5 concludes.
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2 Data Sources and Methods

2.1 Credit Spreads

The key information for our analysis comes from a large sample of fixed income securities issued by

U.S. corporations. Specifically, from the Lehman/Warga (LW) and Merrill Lynch (ML) databases,

we extracted month-end prices of outstanding long-term corporate bonds that were actively traded

in the secondary market between January 1986 and June 2010.3 To guarantee that we are measuring

borrowing costs of different firms at the same point in their capital structure, we restricted our

sample to senior unsecured issues with a fixed coupon schedule only. For such securities, we spliced

their month-end prices across the two data sources.

The micro-level aspect of our data set allows us to construct credit spreads that are not contam-

inated by the maturity/duration mismatch that plagues most commercially-available credit spread

indexes. In particular, we construct for each individual bond issue a theoretical risk-free security

that replicates exactly the promised cash-flows of the corresponding corporate debt instrument.

For example, consider a corporate bond k issued by firm i that at time t is promising a sequence of

cash-flows {C(s) : s = 1, 2, . . . , S}, consisting of the regular coupon payments and the repayment

of the principle at maturity. The price of this bond in period t is given by

Pit[k] =
S
∑

s=1

C(s)D(ts),

where D(t) = e−rtt is the discount function in period t. To calculate the price of a corresponding

risk-free security—denoted by P f
t [k]—we discount the promised cash-flow sequence {C(s) : s =

1, 2, . . . , S} using continuously-compounded zero-coupon Treasury yields in period t, obtained from

the daily estimates of the U.S. Treasury yield curve reported by Gürkaynak et al. [2007]. The

resulting price P f
t [k] can then be used to calculate the yield—denoted by yft [k]—of a hypothetical

Treasury security with exactly the same cash-flows as the underlying corporate bond. The credit

spread Sit[k] = yit[k] − yft [k], where yit[k] denotes the yield of the corporate bond k, is thus free

of the “duration mismatch” that would occur were the spreads computed simply by matching the

corporate yield to the estimated yield of a zero-coupon Treasury security of the same maturity.

To ensure that our results are not driven by a small number of extreme observations, we elim-

inated all bond/month observations with credit spreads below 5 basis points and with spreads

greater than 3,500 basis points. In addition, we dropped from our sample very small corporate

issues—those with a par value of less than $1 million—and all observations with a remaining term-

3These two data sources are used to construct benchmark corporate bond indexes used by market participants.
Specifically, they contain secondary market prices for a vast majority of dollar-denominated bonds publicly issued
in the U.S. corporate cash market. The ML database is a proprietary data source of daily bond prices that starts
in 1997. The LW database of month-end bond prices is available from 1973 through mid-1998 (see Warga [1991] for
details).

4



Table 1: Corporate Bond Characteristics by Type of Firm

Nonfinancial Firms

Bond Characteristics Mean SD Min P50 Max

No. of bonds per firm/month 3.08 3.75 1.00 2.00 74.0
Mkt. value of issue ($mil.) 334.7 327.6 1.22 248.3 5,628
Maturity at issue (years) 12.9 9.3 1.0 10.0 50.0
Term to maturity (years) 10.5 8.4 1.0 7.5 30.0
Duration (years) 6.29 3.26 0.91 5.75 15.8
Credit rating (S&P) - - D BBB1 AAA
Coupon rate (pct.) 7.30 1.97 1.70 7.00 17.5
Nominal yield to maturity (pct.) 7.29 3.04 0.60 6.93 44.3
Credit spread (bps.) 215 297 5 123 3,499

Financial Firms

Bond Characteristic Mean SD Min P50 Max

No. of bonds per firm/month 3.03 3.49 1.00 2.00 26.0
Mkt. value of issue ($mil.) 471.0 554.9 9.11 266.1 4,351
Maturity at issue (years) 10.4 8.0 2.0 10.0 40.0
Term to maturity (years) 8.5 7.7 1.0 5.9 30.0
Duration (years) 5.47 3.17 0.90 4.77 15.3
Credit rating (S&P) - - CC A2 AAA
Coupon rate (pct.) 6.89 1.94 2.25 6.63 15.8
Nominal yield to maturity (pct.) 6.72 2.73 1.01 6.40 41.2
Credit spread (bps.) 173 254 5 102 3,495

Note: Sample period: Jan1986–June2010. No. of nonfinancial firms/bonds = 1,104/5,896 (Obs.
= 305,412); No. of financial firms/bonds = 193/886 (Obs. = 42,270). The market value of the bond
issues is deflated by the CPI (1982–84 = 100). Sample statistics are based on trimmed data (see text
for details).

to-maturity of less than one year or more than 30 years.4 These selection criteria yielded a sample

of 5,896 individual securities issued by firms in the nonfinancial sector and 886 securities issued by

financial firms.5 We matched these corporate securities with their issuer’s quarterly income and

balance sheet data from Compustat and daily data on equity valuations from CRSP, yielding a

matched sample of 1,104 nonfinancial firms and 193 financial firms.

Table 1 contains summary statistics for the key characteristics of bonds in our sample by the

type of firm (nonfinancial vs. financial). Note that a typical firm has only a few senior unsecured

4We also eliminated a very small number of puttable bonds from our sample. In contrast, a significant fraction of
the securities in our sample is callable, which raises an important issue of how to separate time-varying prepayment
risk from the default risk premium. We address this issue in detail later in the paper.

5Government-sponsored entities, such as Fannie Mae and Freddie Mac, were excluded from the sample.
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issues outstanding at any point in time—the median firm in both sectors, for example, has two such

issues trading at any given month. The size of bond issues, measured by their market value, tend

to be somewhat larger, on average, in the financial sector. Not surprisingly, the maturity of these

debt instruments is fairly long, with the average maturity at issue of more than 10 years in both

sectors. Because corporate bonds typically generate significant cash flow in the form of regular

coupon payments, their effective duration is considerably shorter.

According to the S&P credit ratings, our sample spans the entire spectrum of credit quality,

from “single D” to “triple A.” At A2, the median bond/month observation in the financial sector

is somewhat above that in the nonfinancial sector (i.e., BBB1), though they are both solidly in the

investment-grade category. Turning to returns, the (nominal) coupon rate on the bonds issued by

nonfinancial firms averaged 7.30 percent during our sample period, compared with 6.89 percent for

bonds issued by their financial counterparts. The average expected total return was 7.29 percent per

annum in the nonfinancial sector and 6.72 percent in the financial sector. Relative to Treasuries, an

average bond issued by a nonfinancial firm has an expected return of about 215 basis points above

the comparable risk-free rate. Reflecting their generally higher credit quality—at least as perceived

by the ratings agencies—the average credit spread on a bond issued by a financial intermediary is

173 basis points.

2.2 Default Risk

The measurement of firm-specific default risk is the crucial input in the construction of our bond

portfolios. To measure an issuer’s probability of default at each point in time, we employ the

“distance-to-default” (DD) framework developed in the seminal work of Merton [1973, 1974]. The

key insight of this contingent claims approach to corporate credit risk is that the equity of the firm

can be viewed as a call option on the underlying value of the firm with a strike price equal to the

face value of the firm’s debt. Although neither the underlying value of the firm nor its volatility

is directly observable, they can, under the assumptions of the model, be inferred from the value of

the firm’s equity, the volatility of its equity, and the firm’s observed capital structure.

The procedure used to construct our market-based measure of default risk is described in detail

by Bharath and Shumway [2008] and Gilchrist and Zakraǰsek [2010]. Employing this methodology,

we calculate the distance-to-default for all U.S. corporations covered by S&P’s Compustat and

CRSP (i.e., 14,446 firms over the Jan1986–June2010 period). Figure 1 plots the cross-sectional

median of the DDs for the 1,104 nonfinancial and 193 financial bond issuers in our sample. As a

point of comparison, the figure also depicts the cross-sectional interquartile range (IQR) of the DDs

for the entire Compustat-CRSP matched sample.6 According to this metric, the credit quality of

the median nonfinancial bond issuer in our sample is, on average, higher than that of the median

6To ensure that our results were not driven by a small number of extreme observations, we eliminated from our
sample all firm/month observations with a DD of more than 20 or less than -2, cutoffs corresponding roughly to the
99th and 1st percentiles of the DD distribution, respectively.
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Figure 1: Distance-to-Default
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Note: Sample period: Jan1986–June2010. The solid line depicts the weighted median DD of the 1,104
nonfinancial bond issuers in our sample; the dotted line depicts the weighted median DD of the 193 financial
bond issuers. The shaded band depicts the weighted interquartile range of the DDs for the entire U.S. corporate
sector; all percentiles are weighted by the firm’s outstanding liabilities. The shaded vertical bars represent the
NBER-dated recessions.

financial issuer, a result that is primarily due to the fact that financial firms tend to have higher

leverage than their nonfinancial counterparts. More importantly, the median DD for both sets of

firms is strongly procyclical, implying that market participants anticipate corporate defaults to

increase during economic downturns. Indeed, during the height of the recent financial crisis in the

autumn of 2008, both measures fell to very low levels by recent historical standards.

2.3 Call-Option Adjustment

Figure 2 shows the proportion of bonds in our sample that are callable—that is, the issuer has, under

certain pre-specified conditions, the right to “call” (i.e., redeem) the security prior to its maturity.

The share of senior unsecured bonds with embedded call options is, on average, substantial in both

sectors.7 Moreover, the proportion of callable debt has changed considerably over the course of our

sample period, with almost all bonds being subject to a call provision at the start of our sample.

In the late 1980s, however, the composition of debt began to shift noticeably toward noncallable

7The proportions and the U-pattern of the two series are virtually the same if the shares are weighted by the
amount issued.
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Figure 2: Proportion of Callable Corporate Bonds
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Note: Sample period: Jan1986–June2010. The figure depicts the proportion of bonds in our sample that
are callable. The shaded vertical bars represent the NBER-dated recessions.

debt, and by the mid-1990s, the majority of senior unsecured debt traded in the secondary market

was in the form of noncallable securities. Over the past decade or so, this trend has been reversed,

as firms resumed issuing large amounts of callable long-term debt.

As shown by Duffee [1998], if a firm’s outstanding bonds are callable, movements in the risk-

free rates—by changing the value of the embedded call option—will have an independent effect on

bond prices, complicating the interpretation of the behavior of credit spreads. For example, as the

general level of interest rates in the economy increases, the option to call becomes less valuable,

which accentuates the price response of callable bonds relative to that of noncallable bonds. As

a result, a rise in interest rates will, ceteris paribus, compress the credit spreads of callable bonds

more than the credit spreads of their noncallable counterparts. In addition, prices of callable bonds

are more sensitive to uncertainty regarding the future course of interest rates. On the other hand,

to the extent that callable bonds are, in effect, of shorter duration, they may be less sensitive to

changes in default risk.

To deal with this issue, we utilize the micro-level aspect of our bond data to adjust directly for

the value of embedded options in callable bonds. In particular, we consider the following empirical
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pricing model for credit spreads:

lnSit[k] = (1 + CALLi[k])× (α+ β1DDit + β2DD
2
it + γ′Xit[k])

+ CALLi[k]× (θ1LEVt + θ2SLPt + θ3CRVt + θ4VOLt) +RTGit[k] + εit[k], (1)

where CALLi[k] is an indicator variable that equals one if bond k (issued by firm i) is callable and

zero otherwise, DDit denotes the estimated year-ahead distance-to-default for firm i, and εit[k] is

a “bond-pricing error.”8 In this framework, the credit spreads of callable bonds are allowed to

depend separately on the level (LEVt), slope (SLPt), and curvature (CRVt) of the Treasury yield

curve, the three factors that summarize the vast majority of the information in the Treasury term

structure, according to Litterman and Scheinkman [1991] and Chen and Scott [1993].9 The spreads

of callable bonds are also influenced by the uncertainty regarding the path of long-term interest

rates, as measured by the option-implied volatility on the 30-year Treasury bond futures (VOLt).

We also allow for a nonlinear effect of default risk on credit spreads by including a quadratic

term of DDit in the pricing regression, thereby accounting for the nonlinear relationship between

credit spreads and leverage documented by Levin et al. [2004].10 The vector Xit[k], in contrast,

controls for the bond-specific characteristics that could influence credit spreads through either

term or liquidity premiums, including the bond’s duration (lnDURit[k]), the amount outstanding

(lnPARit[k]), and the bond’s (fixed) coupon rate (lnCPNi[k]). The regression also includes credit

rating fixed effects (RTGit[k]), which capture the “soft information” regarding the firm’s financial

health, information that is complementary to our market-based measures of default risk; see, for

example, Löffler [2004, 2007].

We estimate the pricing regression (1) separately for the sample of securities issued by nonfi-

nancial firms and those issued by financial firms. Neglecting the effect of Jensen’s inequality, the

option-adjusted spread on a callable bond k (i.e., CALLi[k] = 1)—denoted by S̃it[k]—is given by

S̃it[k] = exp
[

lnSit[k]− CALLi[k]× (α̂+ β̂1DDit + β̂2DD
2
it + γ̂′Xit[k])

− (θ̂1LEVt + θ̂2SLPt + θ̂3CRVt + θ̂4VOLt)
]

,

where α̂, β̂1, β̂2, γ̂, and θ̂1, . . . , θ̂4 denote the OLS estimates of the corresponding parameters from

equation (1).

8Taking logs of credit spreads provides a useful transformation to control for heteroscedasticity, given that the
distribution of credit spreads is highly skewed.

9The level, slope, and curvature factors correspond, respectively, to the first three principal components of nominal
Treasury yields at 3-month, 6-month, 1-, 2-, 3-, 5-, 7-, 10-, 15-, and 30-year maturities. All yield series are monthly
(at month-end) and with the exception of the 3- and 6-month bill rates are derived from the smoothed Treasury yield
curve estimated by Gürkaynak et al. [2007].

10As a robustness check, we also considered higher-order polynomials of the distance-to-default, but the inclusion
of cubic and quartic terms had virtually no effect on our results.
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Table 2: Selected Marginal Effects by Type of Bond

Nonfinancial Firmsa Financial Firmsb

Marginal Effect CALL = 0 CALL = 1 CALL = 0 CALL = 1

Distance-to-default: DDit -0.227 -0.138 -0.123 -0.133
(0.013) (0.009) (0.029) 0.016

Term structure: LEVt - -0.508 - -0.480
(0.045) (0.082)

Term structure: SLPt - -0.319 - -0.245
(0.039) (0.052)

Term structure: CRVt - -0.052 - -0.086
(0.044) (0.042)

Term structure: VOLt - 0.153 - 0.147
(0.014) (0.017)

Adjusted R2 0.730 0.594
Pr > W c 0.000 0.000

Note: Sample period: Jan1986–Jun2010. Entries in the table denote the estimated marginal
effects of a one unit change in the specified variable on the level of credit spreads (in percentage points)
for noncallable (CALL = 0) and callable (CALL = 1) bonds based on the bond-pricing regression (1).
All marginal effects are evaluated at their respective sample means (not reported). Robust asymptotic
standard errors reported in parentheses are double clustered in the firm (i) and time (t) dimensions;
see Cameron et al. [2010] for details.

aNo. of firms/bonds = 1,104/5,896; Obs. = 305,412.
bNo. of firms/bonds = 193/886; Obs. = 42,270.
cp-value for the robust Wald test of the exclusion of credit rating fixed effects.

Table 2 translates the selected coefficients from the estimated log-spread pricing equation into

the impact of variation in default risk (the sum of the linear and quadratic DD terms), the shape of

the term structure, and interest rate uncertainty on the level of credit spreads. For callable bonds

issued by nonfinancial firms, the effect of the distance-to-default on credit spreads is significantly

attenuated by the call-option mechanism: A one standard deviation increase in the distance-to-

default—a signal of improving credit quality—implies a decrease of 23 basis points in the spreads

of noncallable bonds, compared with a 14 basis points decline in the spreads of their callable

counterparts. The same call-option mechanism, however, does not seem to be as important for

bonds issued by financial intermediaries. In that case, a one standard deviation increase in the

distance-to-default implies a narrowing of spreads of about 13 basis points for both types of bonds.

The estimates in Table 2 also indicate that the shape of the Treasury term structure and

interest rate volatility have first-order effects on the credit spreads of callable bonds, which are

consistent with the theoretical predictions. For example, a one standard deviation increase in the

level factor implies a 50 basis points reduction in the credit spreads on callable bonds in both sectors.
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Figure 3: Credit Spreads on Corporate Bonds
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Note: Sample period: Jan1986–June2010. The solid line in each panel depicts the time-series of the weighted
cross-sectional average of the option-adjusted credit spreads for our sample of bonds (see text for details); the
dotted line depicts the time-series of the weighted cross-sectional average of the raw credit spreads. In all cases,
the weights are equal to the market values of the underlying bond issues. The shaded vertical bars represent the
NBER-dated recessions.

Similarly, an increase in the option-implied volatility on the long-term Treasury bond futures of

one percentage point implies a widening of callable credit spreads of about 15 basis points, because

the rise in interest rate uncertainty lowers the prices of callable bonds by boosting the value of the

embedded call options.

The importance of the option-adjustment procedure over the entire sample period is illustrated

in Figure 3, which shows the time path of the average credit spread in our two data sets, calculated

using both the raw and option-adjusted spreads. Although the two series in each sector are clearly

highly correlated (ρ = 0.88 for nonfinancial issuers and ρ = 0.92 for financial issuers) and are all
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strongly countercyclical, there are a number of noticeable differences. First, the option-adjusted

credit spreads are, on average, lower than their unadjusted counterparts, reflecting the positive value

of the embedded call options. By eliminating, at least in part, fluctuations in the call option values,

the option-adjusted credit spreads are also less volatile, on average, than the raw credit spreads.

Lastly, the largest differences between the two series occurred in the mid-1980s and during the

recent financial crisis. The former period was characterized by a high general level of interest rates

and relatively high uncertainty regarding the future course of long-term interest rates, whereas the

difference during the latter period owes primarily to the plunge in interest rates and the steepening

of the term structure that began with the onset of the financial crisis in the summer of 2007, two

factors than more than offset the spike in interest rate volatility that occurred during that period.

2.4 Distance-to-Default Portfolios

We summarize the information contained in credit spreads, DDs, and excess equity returns for the

sample of bond issuers by constructing portfolios based on expected default risk—as measured by

our estimate of the distance-to-default—at the beginning of the period. These conditional DD-

based portfolios are constructed by sorting the three financial indicators in month t into bins based

on the percentiles of the distribution of the distance-to-default in month t− 1. Separate portfolios

are formed for the financial and nonfinancial issuers.

The distance-to-default portfolios are constructed by computing a weighted average of DDs in

month t for each bin, with the weights equal to the book value of the firm’s liabilities at the end

of month t− 1. Similarly, the stock portfolios are computed as a weighted average of excess equity

returns in month t for each bin, with the weights equal to the market value of the firm’s equity

at the end of month t − 1.11 Given the relatively large number of nonfinancial issuers, the bins

for nonfinancial portfolios are based on the quartiles of the DD distribution, yielding four credit-

risk categories, denoted by NFIN-DD1, NFIN-DD2, NFIN-DD3, and NFIN-DD4. The financial

bond issuers, by contrast, are sorted into two credit-risk categories—denoted by FIN-DD1 and

FIN-DD2—based on the median of the DD distribution.

To control for maturity, we further split each DD-based bin of nonfinancial credit spreads into

four maturity categories: (1) NFIN-MTY1: credit spreads of bonds with the remaining term-

to-maturity of more than 1 year but less than (or equal) to 5 years; (2) NFIN-MTY2: credit

spreads of bonds with the remaining term-to-maturity of more than 5 years but less than (or equal)

10 years; (3) NFIN-MTY3: credit spreads of bonds with the remaining term-to-maturity of more

than 10 years but less than (or equal) to 15 years; (4) NFIN-MTY4: credit spreads of bonds with

the remaining term-to-maturity of more than 15 years. Given the substantially smaller sample of

bonds issued by firms in the financial sector, we split the two credit-risk categories in this sector

11Excess equity returns, which include dividends and capital gains, are measured relative to the yield on 1-month
Treasury bills.
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into two maturity categories: (1) FIN-MTY1: credit spreads of bonds with the remaining term-to-

maturity of more than 1 year but less than (or equal) to 5 years; and (2) FIN-MTY2: credit spreads

of bonds with the remaining term-to-maturity of more than 5 years. All told, this gives us a total

of 16 nonfinancial and 4 financial DD/maturity bond portfolios. Within each of these portfolios, we

compute a weighted average of option-adjusted credit spreads in month t, with the weights equal

to the market value of the outstanding issue. (The summary statistics of all DD-based portfolios

are contained in Appendix A.)

The DD-based portfolios considered thus far were based on asset prices of a subset of U.S.

corporations, namely firms with senior unsecured bonds that are traded in the secondary market.

We also consider a broader set of DD-based financial indicators by constructing the same type of

portfolios using the distance-to-default estimates and excess equity returns for the entire matched

CRSP-Compustat sample of U.S. corporations. Given the large number of firms in any given month,

we increase the number of bins by sorting—for both nonfinancial and financial firms separately—

the DDs and excess equity returns in month t into 10 deciles based on the distribution of the

distance-to-default in month t − 1. As before, the conditional DD portfolios are constructed by

computing a weighted average of DDs in month t for each DD decile, whereas the stock portfolios

are computed as a weighted average of excess equity returns in month t. This procedure yields a

total of 20 additional DD-based portfolios for the nonfinancial sector and another 20 portfolios for

the financial sector.

3 Econometric Methodology

We examine the predictive content of the DD-based portfolios, as well as a large number of other pre-

dictors, within the Bayesian Model Averaging (BMA) framework, an approach that is particularly

well-suited to deal with model uncertainty. Initially proposed by Leamer [1978], BMA has been used

extensively in the statistics literature; see, for example, Raftery et al. [1997] and Chipman et al.

[2001]. The BMA approach to model uncertainty has also found numerous econometric applica-

tions, including the forecasting of output growth (Min and Zellner [1993] and Koop and Potter

[2004]); the forecasting of recession risk (King et al. [2007]); cross-country growth regressions

(Fernandez et al. [2001b] and Sala-i-Martin et al. [2004]); exchange rate forecasting (Wright [2008]);

and the predictability of stock returns (Avramov [2002] and Cremers [2002]).

3.1 Bayesian Model Averaging

We begin with a brief review of the formal Bayesian justification for our model-averaging approach.

The researcher starts with a set of n possible models, where the i-th model, denoted by Mi, is

parametrized by θi. The researcher has prior beliefs about the probability that the i-th model

is true—denoted by P (Mi)—observes data D, and updates her beliefs to compute the posterior
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probability that the i-th model is the true model according to

P (Mi|D) =
P (D|Mi)P (Mi)

∑n
j=1 P (D|Mj)P (Mj)

, (2)

where

P (D|Mi) =

∫

P (D|θi,Mi)P (θi|Mi)dθi (3)

is the marginal likelihood of the i-th model; P (θi|Mi) is the prior density of the parameter vector

θi associated with the i-th model; and P (D|θi,Mi) is the likelihood function.

Each model also implies a forecast. In the presence of model uncertainty, the BMA forecast

weights each of the individual forecasts by their respective posterior probabilities. To operationalize

a BMA forecasting scheme, the researcher needs only to specify the set of models, the model priors

P (Mi), and the parameter priors P (θi|Mi). In this paper, we follow a growing literature that

considers a large set of very simple models. In particular, the models are all linear regression

models, with each model adding a single regressor to the baseline specification. More formally, the

i-th model is given by

yt+h = βiXit + γ′Zt + εt+h, (4)

where yt is the variable that the researcher wishes to forecast at a horizon of h periods; Xit is the

predictor specific to model i; Zt is a (p×1)-vector of predictors that are common to all models; and

εt+h
iid
∼ N(0,σ2) is the forecast error. Without loss of generality, the model-specific predictor Xit

is assumed to be orthogonal to the common predictors Zt. In our setup, the vector of parameters

characterizing the i-th model is thus given by θi = (βi γ′ σ2)′.

In setting the model priors, we assume that all models are equally likely, implying that P (Mi) =

1/n. For the parameter priors, we follow the general trend of the BMA literature (e.g., Fernandez et al.

[2001a]) in specifying that the prior for γ and σ2, denoted by p(γ,σ), is uninformative and is pro-

portional to 1/σ, while using the g-prior specification of Zellner [1986] for βi conditional on σ2.

The g-prior is given by N(0,φσ2(X ′
iXi)−1), where the shrinkage hyperparameter φ > 0 measures

the strength of the prior—a smaller value of φ corresponds to a more dogmatic prior.

Letting β̂i and γ̂ denote the OLS estimates of the corresponding parameters in equation (4),

the Bayesian h-period-ahead forecast made from model Mi at time T is given by

ỹiT+h|T = β̃iXit + γ̂′Zt, (5)

where β̃i =
(

φ
φ+1

)

β̂i denotes the posterior mean of βi. In our framework, the marginal likelihood

of the i-th model reduces to

P (D|Mi) ∝

[

1

1 + φ

]− 1
2

×

[

1

1 + φ
SSRi +

φ

1 + φ
SSEi

]− (T−p)
2

, (6)
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where SSRi is the sum of squares from the i-th the regression and SSEi is the associated sum of

squared errors. The posterior probabilities of the models can then be worked out from equation (2),

and the final BMA forecast that takes into account model uncertainty is given by

ỹT+h|T =
n
∑

i=1

P (Mi|D)ỹiT+h|T . (7)

Clearly, the BMA forecast in equation (7) will depend on the value of the shrinkage hyperpa-

rameter φ. A small value of φ implies that the model likelihoods are roughly equal, and so the BMA

forecast will resemble equal-weighted model averaging (cf. Bates and Granger [1969]). In contrast,

a high value of φ amounts to weighting the models by their in-sample R2 values, a procedure that

is well known to generate poor out-of-sample forecasting performance. Because the relationship be-

tween the out-of-sample root mean square prediction error and the parameter φ is often U-shaped,

the best out-of-sample forecasts are obtained when φ is neither too small nor too big. Our baseline

results are based on a standard value (φ = 4) taken from the aforementioned literature, but we

also conduct sensitivity analysis, which shows that our key results are robust with respect to this

choice.

We apply BMA to forecasting various indicators of economic activity using standard macroeco-

nomic variables and financial asset prices as predictors. The common predictors Zt in the predictive

regression (4) are a constant and lags of the dependent variable. It is worth emphasizing that we

view the forecasting scheme proposed above as a pragmatic approach to data-based weighting of

models and make no claim to its Bayesian optimality properties.12

3.2 The Forecasting Setup

We focus on forecasting real GDP, real personal consumption expenditures (PCE), real business

fixed investment, industrial production, private payroll employment, the civilian unemployment

rate, exports, and imports over the period from 1986:Q1 to 2010:Q2. All series are in quarter-over-

quarter growth rates (actually 400 times log first differences), except for the unemployment rate,

which is simply in first differences. Our objective is to forecast the cumulative growth rate (or the

cumulative change in the case of the unemployment rate) for each of these macroeconomic variables

from quarter t− 1 through quarter t+ h.

Specifically, let yt denote the growth rate in the variable from quarter t − 1 to quarter t. (In

12As noted by a number of papers that employ the same data-based model averaging approach, several of the
conditions for strict optimality are not met in typical macro time-series applications. First, the regressors are
assumed to be strictly exogenous. And second, the forecasts are overlapping h-step ahead forecasts, so the forecast
errors less than h periods apart are bound to be serially correlated, even though it is assumed that they are i.i.d.
normal. Nevertheless, BMA, like other methods that combine a large number of predictors to generate a forecast,
may still have good forecasting properties, even if the premises underlying their theoretical justification are false
(e.g., Stock and Watson [2005]). In fact, ability to provide accurate out-of-sample forecasts is a stringent test of the
practical usefulness of BMA in forecasting.
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case of the unemployment rate, yt denotes the first difference.) The average value of yt over the

forecast horizon h is denoted by yC

t+h = 1
h+1

∑h
i=0 yt+i. The i-th forecasting model in our setup is

given by:

yC

t+h = α+ βixit +
p

∑

j=1

γjyt−j + εt+h, (8)

where xit is one of the predictors listed in Table 3 and p, the number of lags, is determined by

the Bayes Information Criterion (BIC). The set of possible predictors listed in Table 3 includes

15 different macroeconomic series and 110 financial indicators. The financial indicators include

our 20 bond portfolios of option-adjusted credit spreads, as well as average DDs and excess equity

returns for different default-risk portfolios; in addition, we consider the predictive content of the

three Fama-French risk factors (i.e., the excess market return and the SMB and HML factors), a

range of standard interest rates and interest rate spreads, implied volatilities from options quotes,

commodity prices, and conventional credit spreads.

The timing convention in the forecasting regression (8) is as follows. We think of forecasts

as being made in the middle month of each quarter. For macroeconomic variables, we use the

February, May, August, and November vintages of data from the real-time data set compiled and

maintained by the Federal Reserve Bank of Philadelphia; this includes data through the previous

quarter for all the macroeconomic series that we consider. All asset prices are as of the end of the

month from the first month of the current quarter and would have been available as of the middle

month of the quarter.

The option-adjustment procedure is also implemented in real-time—that is, the parameters of

the pricing regression (1) are estimated each month using only data available at that time. The

resulting real-time coefficient estimates are used to compute the option-adjusted credit spreads,

which are then sorted into the DD-based bond portfolios.13 With these fully real-time data in

hand, we then use BMA to construct forecasts of the values of the dependent variable for the

current and next four quarters (i.e., h = 0, 1, . . . , 4). Thus, we are considering both “nowcasting”

and prediction at horizons up to one year ahead. These forecasts are evaluated in a recursive out-

of-sample forecast evaluation exercise, starting with the forecasts made in 1992:Q1 and continuing

through to the end of the sample period in 2010:Q2.

An important issue in this type of real-time forecasting exercise is the definition of what con-

stitutes the “actual” values with which to compare the BMA forecasts. The macroeconomic series

that we are forecasting are subject to benchmark revisions, and some of the series are also sub-

ject to definitional and conceptual changes. None of these changes seem sensible to predict in a

real-time forecasting exercise. Accordingly, we follow a standard convention (cf. Tulip [2005]; and

Faust and Wright [2009]), which is to measure actual realized values from the data as recorded in

13Note that the real-time implementation of the option-adjustment procedure generates spreads that differ from
the option-adjusted spreads underlying Figure 3, where the option-adjustment procedure was implemented using the
full data set.
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Table 3: Macroeconomic and Financial Predictors

Predictor (# of series) Data Transformation

Macroeconomic Series (15)
GDP log difference
PCE log difference
PCE (durable goods) log difference
Residential investment log difference
Business fixed investment log difference
Government spending log difference
Exports log difference
Imports log difference
Nonfarm private payrolls log difference
Civilian unemployment rate difference
Industrial production log difference
Single-family housing starts log difference
GDP price deflator log difference
Consumer price index log difference
M2 log difference

Financial Indicators (110)
Credit spreads in DD-based bond portfolios (nonfinancial) (16) level
Credit spreads in DD-based bond portfolios (financial) (4) level
Avg. DD by DD percentile (nonfinancial bond issuers) (4) level
Avg. DD by DD percentile (nonfinancial firms) (10) level
Excess stock returns by DD percentile (nonfinancial bond issuers) (4) level
Excess stock returns by DD percentile (nonfinancial firms) (10) level
Avg. DD by DD percentile (financial bond issuers) (2) level
Avg. DD by DD percentile (financial firms) (10) level
Excess stock returns by DD percentile (financial bond issuers) (2) level
Excess stock returns by DD percentile (financial firms) (10) level
3-month nonfinancial commercial paper rate level
3-month nonfinancial commercial paper rate less 3-month Tbill rate
3-month Eurodollar rate level
3-month Eurodollar rate less 3-month Tbill rate
3-month Treasury bill rate level
Federal funds rate level
1- to 10-year Treasury yieldsa (10) level
1- to 10-year Treasury yields (10) less 3-month Tbill rate
Fama-French risk factors (3) level
S&P 100 futures implied volatility (VXO) level
Treasury futures implied volatility (10 and 30 year) level
Eurodollar futures implied volatility (3-month) level
Gold price 2nd difference of logs
Oil price 2nd difference of logs
CRB commodity price index 2nd difference of logs
S&P 500 dividend yield log
Moody’s Baa-Aaa credit spread level

Note: All macroeconomic series come from the real-time data set maintained by the Federal Reserve
Bank of Philadelphia. The NIPA series are in real terms (c-w, $2000).

aThe nominal Treasury yields between maturities of 1- and 10-years are taken from the Treasury yield
curve estimated by Gürkaynak, Sack, and Wright [2007]
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the real-time data set by the Philadelphia Fed two quarters after the quarter to which the data

refer.

3.3 Inference

The accuracy of the BMA forecasts is evaluated by comparing the mean-square prediction error

(MSPE) of the BMA forecast to that obtained from a univariate autoregression:14

yC

t+h = α+
p

∑

j=1

γjyt−j + εt+h. (9)

Unfortunately, evaluating the statistical significance of the difference in MSPEs from BMA and the

direct autoregression is complicated by the fact that the forecasts are generated by nested models.

As shown by Clark and McCracken [2001], the distribution of the Diebold and Mariano [1995] test

statistic under the null hypothesis of equal forecast accuracy has a nonstandard distribution in

this case. Accordingly, we use a bootstrap to approximate the limiting distribution of the Diebold-

Mariano statistic under the null hypothesis. In the bootstrap, the predictors are, by construction,

irrelevant—nevertheless, they have time-series and cross-sectional dependence properties that are

designed to mimic those of the underlying data. The bootstrap hence allows us to test the null

hypothesis of no improvement in forecast accuracy.

We consider two specific bootstrap re-sampling schemes to implement this idea. The first

implementation of the bootstrap, henceforth referred to as bootstrap B1, involves fitting an AR(4)

process to yt and separately estimating a dynamic factor model using the set of all predictors Xt:

Xt = ΛFt + ut; (10)

and

Ft = ΦFt−1 + vt, (11)

where the elements of the vector Ft correspond to the first three principal components ofXt. In each

bootstrap replication, we first re-sample with replacement from the residuals of the AR(4) process

for yt to construct bootstrap samples of yt. We then independently re-sample with replacement

from the residuals in equations (10) and (11), thereby constructing bootstrap samples of Xt for

use in BMA; note that in this setup, the predictor set Xt is, by construction, irrelevant for the

forecasting of the dependent variable.

The second implementation of the bootstrap, henceforth referred to as bootstrap B2, follows

Clark and McCracken [2010] and Gonçalves and Perron [2010]. Specifically, we estimate two mod-

14Note that this is a direct autoregression that projects yC

t+h onto p lags of yt. An alternative would be to estimate
an AR(p) model for yt and then iterate it forward to construct the forecasts. This approach yielded very similar
results.
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els: a restricted model that involves estimating an AR(4) process for yt and an unrestricted model

that consists of a regression of yt on four lags of itself and the first three principal components of Xt.

In each bootstrap replication, we then re-sample from the residuals of the unrestricted model using

a wild bootstrap and then construct a bootstrap sample of yt using these re-sampled residuals to-

gether with the coefficients from the restricted model (see Clark and McCracken [2010] for details);

meanwhile, the predictor set Xt is held fixed. As with bootstrap B1, the predictors are again, by

construction, irrelevant for the forecasting of the dependent variable in all samples. Compared with

bootstrap B1, bootstrap B2 has the advantage of preserving any conditional heteroscedasticity in

the data.

4 Results

Table 4 contains the relative out-of-sample MSPEs of the BMA forecasts, using the benchmark

value of the shrinkage parameter φ = 4. Bootstrapped p-values testing the null hypothesis that the

relative mean-square prediction error is equal to 1.0, are shown in round and square brackets for

bootstraps B1 and B2, respectively; as evidenced by the entries in the table, the two p-values are

generally consistent. For real GDP growth, the MSPEs from the BMA forecasts relative to those

from the direct autoregression are around 0.8 at all forecast horizons beyond the current quarter.

Judging from the associated p-values, these improvements in forecast accuracy are all statistically

significant, at least at the 5 percent level.

The relative accuracy of BMA in forecasting output growth appears to reflect, in part, its ability

to predict the growth of business fixed investment. In addition, BMA also does well in forecasting

the external dimension of U.S. economic performance, namely the growth of both exports and im-

ports. Personal consumption expenditures, in contrast, are considerably less predictable. Although

BMA is noticeably more accurate than the direct autoregression in forecasting consumption growth

over the very near term, the relative MSPEs are statistically indistinguishable from 1.0 at the two-

to four-quarter-ahead horizons.

Our BMA setup also implies economically and statistically significant gains in accuracy when

predicting the growth of industrial production and changes in labor market conditions at both the

near- and longer-term forecast horizons. In the case of industrial production, the relative MSPEs

lie between 0.87 and 0.97, improvements that are borderline statistically significant. The relative

MSPEs in the case of employment growth and changes in the unemployment rate are mostly around

0.8, values that are all significantly below 1.0 at a 5 percent significance level.

Overall, our first set of results indicates that for forecasting a range of real economic activity

indicators, BMA—with (option-adjusted) portfolio credit spreads in the set of predictors—yields

improvements relative to the univariate benchmark that are both economically and statistically

significant. The gains in forecasting accuracy are most pronounced for cyclically sensitive indicators

of economic activity, such as the growth of business fixed investment, industrial production, and
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Table 4: BMA Out-of-Sample Predictive Accuracy
(Predictor Set: All Variables)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.94 0.82 0.73 0.79 0.85
(0.01) (0.00) (0.00) (0.01) (0.03)
[0.04] [0.01] [0.00] [0.02] [0.05]

Personal consumption expenditures 0.79 0.86 0.96 1.07 1.14
(0.00) (0.02) (0.16) (0.61) (0.70)
[0.01] [0.06] [0.16] [0.29] [0.35]

Business fixed investment 0.89 0.70 0.87 0.87 0.86
(0.00) (0.00) (0.02) (0.03) (0.04)
[0.01] [0.00] [0.02] [0.03] [0.03]

Industrial production 0.97 0.95 0.95 0.93 0.87
(0.04) (0.04) (0.07) (0.06) (0.04)
[0.06] [0.06] [0.07] [0.08] [0.06]

Private employment 0.88 0.79 0.83 0.89 0.84
(0.00) (0.01) (0.01) (0.04) (0.03)
[0.01] [0.00] [0.01] [0.05] [0.03]

Unemployment rate 0.92 0.78 0.73 0.74 0.77
(0.00) (0.00) (0.00) (0.01) (0.02)
[0.01] [0.00] [0.00] [0.00] [0.02]

Exports 0.96 0.92 0.88 0.89 0.89
(0.01) (0.01) (0.01) (0.02) (0.05)
[0.00] [0.00] [0.00] [0.01] [0.02]

Imports 0.91 0.90 0.94 0.91 0.92
(0.00) (0.00) (0.03) (0.03) (0.06)
[0.00] [0.01] [0.05] [0.05] [0.08]

Note: Sample period: 1986:Q1–2010:Q2. The jump-off date for the out-of-sample recursive forecasts
is 1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote
the ratio of the MSPE from the BMA forecast to the MSPE from a direct autoregression. Each model
in the BMA forecast consists of a direct autoregression augmented with one predictor. Bootstrapped
p-values (500 replications) for the test of the null hypothesis that the ratio of the MSPEs is equal to one
are shown in round and square brackets, using bootstraps B1 and B2, respectively (see text for details).

private employment.15

To gauge the information content of credit spreads in predicting economic activity, we repeat

the above analysis, except that we exclude the 20 models that utilize the credit spreads in the

15As a robustness check, we also considered other methods for forecasting in a data-rich environment, includ-
ing a factor-augmented autoregression and an equally-weighted average of OLS-based forecasts. In general, BMA
outperformed these methods.
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Table 5: BMA Out-of-Sample Predictive Accuracy
(Predictor Set: All Variables Except Option-Adjusted Credit Spreads)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.96 0.95 0.95 0.98 0.98
(0.03) (0.05) (0.08) (0.14) (0.15)
[0.12] [0.11] [0.12] [0.13] [0.14]

Personal consumption expenditures 0.95 0.92 0.99 1.06 1.13
(0.06) (0.06) (0.21) (0.57) (0.68)
[0.12] [0.11] [0.20] [0.32] [0.43]

Business fixed investment 0.90 0.91 0.92 0.96 0.92
(0.00) (0.02) (0.04) (0.11) (0.08)
[0.01] [0.04] [0.07] [0.10] [0.07]

Industrial production 0.98 1.04 1.11 1.11 1.07
(0.07) (0.70) (0.83) (0.72) (0.50)
[0.10] [0.51] [0.63] [0.50] [0.32]

Private employment 0.97 1.00 1.09 1.13 1.07
(0.06) (0.20) (0.72) (0.71) (0.42)
[0.07] [0.23] [0.53] [0.45] [0.24]

Unemployment rate 0.93 0.94 1.04 1.11 1.08
(0.01) (0.03) (0.54) (0.71) (0.55)
[0.01] [0.02] [0.32] [0.47] [0.28]

Exports 0.97 1.05 0.99 0.97 0.97
(0.01) (0.80) (0.15) (0.09) (0.12)
[0.01] [0.59] [0.07] [0.05] [0.07]

Imports 0.91 0.94 1.01 1.08 1.07
(0.00) (0.01) (0.24) (0.53) (0.45)
[0.00] [0.04] [0.16] [0.27] [0.25]

Note: Sample period: 1986:Q1–2010:Q2. The jump-off date for the out-of-sample recursive forecasts
is 1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote
the ratio of the MSPE from the BMA forecast to the MSPE from a direct autoregression. Each model
in the BMA forecast consists of a direct autoregression augmented with one predictor. Bootstrapped
p-values (500 replications) for the test of the null hypothesis that the ratio of the MSPEs is equal to one
are shown in round and square brackets, using bootstraps B1 and B2, respectively (see text for details).

DD-based bond portfolios from the pool of prediction models. As shown in Table 5, very few of

the entries are less than 0.95, and, especially at longer forecast horizons, most entries are greater

than 1.0. This finding is consistent with the standard result that a majority of forecasting methods

perform about as well as a univariate autoregression. These results also illustrate a sense of how

the information content of our credit spread indexes differs from that of the other real and financial
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Table 6: BMA Out-of-Sample Predictive Accuracy
(Predictor Set: Option-Adjusted Credit Spreads Only)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.88 0.83 0.80 0.89 1.00
(0.00) (0.00) (0.00) (0.02) (0.24)
[0.00] [0.00] [0.01] [0.02] [0.06]

Personal consumption expenditures 0.77 0.76 0.92 1.01 1.08
(0.00) (0.00) (0.07) (0.30) (0.66)
[0.00] [0.01] [0.08] [0.16] [0.26]

Business fixed investment 0.84 0.69 0.85 0.85 0.86
(0.00) (0.00) (0.01) (0.02) (0.03)
[0.00] [0.00] [0.02] [0.02] [0.04]

Industrial production 0.92 0.90 0.94 0.96 0.89
(0.01) (0.01) (0.05) (0.08) (0.04)
[0.02] [0.03] [0.08] [0.10] [0.08]

Private employment 0.85 0.78 0.81 0.84 0.78
(0.00) (0.00) (0.01) (0.02) (0.02)
[0.00] [0.00] [0.00] [0.01] [0.01]

Unemployment rate 0.86 0.76 0.69 0.70 0.70
(0.00) (0.00) (0.00) (0.00) (0.00)
[0.00] [0.00] [0.00] [0.00] [0.00]

Exports 0.96 0.94 0.99 1.07 1.13
(0.01) (0.02) (0.15) (0.68) (0.82)
[0.00] [0.00] [0.01] [0.14] [0.28]

Imports 0.90 0.84 0.84 0.88 0.89
(0.00) (0.00) (0.00) (0.02) (0.03)
[0.00] [0.00] [0.02] [0.05] [0.08]

Note: Sample period: 1986:Q1–2010:Q2. The jump-off date for the out-of-sample recursive forecasts
is 1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote
the ratio of the MSPE from the BMA forecast to the MSPE from a direct autoregression. Each model
in the BMA forecast consists of a direct autoregression augmented with one predictor. Bootstrapped
p-values (500 replications) for the test of the null hypothesis that the ratio of the MSPEs is equal to one
are shown in round and square brackets, using bootstraps B1 and B2, respectively (see text for details).

indicators in the predictor set: When assigning the weight to a predictor using only information

available at the time of the forecast, the BMA method singles out portfolio-based credit spreads

and is able to exploit their predictive ability for economic activity to improve significantly on the

benchmark forecast.

Another way to highlight the predictive ability of credit spreads is shown in Table 6, which
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contains the results of the forecasting exercise based only on models that include portfolio credit

spreads as predictors. These results are very comparable to those reported in Table 4, which utilize

the information content of the entire predictor set. Although restricting the predictor set to only

DD-based portfolio credit spreads leads to some loss of predictive accuracy for real GDP growth,

it actually improves the accuracy of the BMA forecasts of labor market indicators and business

fixed investment. Because all of our models embed the autoregressive benchmark, the results in

Tables 5–6 together imply that any forecasting gains over the univariate autoregression are, in

general, due to the information content of credit spreads in the DD-based portfolios.

4.1 Which Predictors are the Most Informative?

The vertical bars in Figure 4 depict the final total weights—that is, the sum of posterior probabilities—

that BMA assigns to variables in the following predictor subsets: (1) option-adjusted credit spreads

in the DD-based bond portfolios; (2) macroeconomic variables; (3) other interest rates and spreads;

and (4) all other asset market indicators. Results are shown for all the forecast horizons considered

and for each of the eight different indicators of economic activity. Note that, by construction, these

probabilities sum up to one at each forecast horizon.

These results provide a visual confirmation of the information content of the option-adjusted

credit spreads in our DD-based bond portfolios. With the exception of consumption growth, BMA

assigns the vast majority of the posterior weight to credit spreads in our DD-based portfolios. But

even in that case, most of the posterior weight for the near-term forecasts of the growth in PCE

(i.e., h = 0, 1, 2) is assigned to the portfolio credit spreads; at longer horizons (i.e., h = 3, 4),

BMA forecasts of consumption growth assign some weight to the macroeconomic variables, but

the accuracy of these forecasts is statistically indistinguishable from those made by the benchmark

autoregression, according to Table 4.

It should be emphasized, however, that Figure 4 shows the posterior probabilities for the dif-

ferent types of predictors as of 2010:Q2, that is, at the end of our sample period. In our real-time

forecasting exercise, these posterior probabilities were updated each time a new forecast was made

and thus, in principle, could have changed over time. Figure 5 illustrates how these probabilities

evolved over time. Specifically, for each indicator of economic activity, the figure plots the total

posterior weight attributed to the option-adjusted credit spreads in our 20 DD-based portfolios

against the time that the forecast was made. (For parsimony, we show the posterior probabilities

for the four-quarter-ahead forecast horizon only.)

In line with the specified prior, forecasts made in the 1990s assigned very little weight to the

portfolio credit spreads. The macroeconomic performance during the 2000–01 cyclical cyclical

downturn led BMA to significantly increase—relative to other predictors—the posterior weight on

the portfolio credit spreads, a pattern that was further reinforced by the 2007–09 financial crisis.

In fact, by the end of our sample period, BMA assigns the vast majority of the posterior weight
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Figure 4: BMA Posterior Probabilities by Predictor Type
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Note: The figure depicts the sum of posterior probabilities that BMA assigns to variables in the following
predictor sets: (1) option-adjusted credit spreads in the DD-based bond portfolios; (2) macroeconomic variables;
(3) other interest rates and interest rate spreads; and (4) all other asset market indicators.
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Figure 5: Evolution of BMA Posterior Probabilities for Bond Portfolios

(Four-Quarter-Ahead Forecast Horizon)
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Note: The figure depicts the real-time evolution of the sum of posterior probabilities that BMA assigns
to the option-adjusted credit spreads in the DD-based bond portfolios. The results shown are for the four-
quarter-ahead forecast horizon (i.e., h = 4). The posterior probabilities for the 20 portfolios—16 in the case
of nonfinancial portfolios and four in the case of financial portfolios—have been added together. The shaded
vertical bars represent NBER-dated recessions.

to the information content of credit spreads in the DD-based portfolios, a result consistent with

those shown in Figure 4. However, it is important to note that during the 1990s—a portion of the

sample period that is included in the forecast evaluation—the real-time BMA forecasts of economic

activity based on the entire predictor set would have differed markedly from those based only on

the portfolio credit spreads.

The time-series evolution of posterior weights is important because the prediction of cyclical

turning points is of special interest in many forecasting applications. As emphasized by Philippon

[2009], the anticipation of rising defaults associated with economic downturns may make corporate

bond spreads a particularly timely indicator of an incipient recession. The result is also consistent

with the recent work by Gertler and Kiyotaki [2009] and Gertler and Karadi [2010], who introduce

macroeconomic models in which shocks to the value of assets held by financial intermediaries—by

reducing the supply of credit—have independent effects on the real economy.

Next, we examine the posterior weights implied by the forecasting exercise shown in Table 5, a

case in which the predictor set includes only the option-adjusted credit spreads in the 20 DD-based
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Figure 6: BMA Posterior Probabilities for Bond Portfolios by DD Category
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Note: The figure depicts the sum of posterior probabilities that BMA assigns to the option-adjusted credit
spreads in the DD-based bond portfolios. The results shown are for the case in which the predictor set includes
only the option-adjusted credit spreads (see Table 5). The posterior probabilities for maturity categories within
each DD bin—four in the case of nonfinancial portfolios and two in the case of financial portfolios—have been
added together.
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bond portfolios. Figure 6 depicts the total posterior probabilities that BMA assigns to nonfinancial

portfolios in each DD quartile (NFIN-DD1, NFIN-DD2, NFIN-DD3, and NFIN-DD4) and the

posterior probabilities assigned to the financial portfolios in the two halves of the DD distribution

(FIN-DD1 and FIN-DD2). Results are shown for the one-quarter-ahead and four-quarter-ahead

forecast horizons only. For the ease of presentation, we also summed up the posterior probabilities

across the maturity categories within each DD-based portfolio—by construction, therefore, these

six posterior probabilities must sum to one.

In forecasting economic activity over the subsequent quarter (i.e., h = 1), BMA tends to place

most posterior weight on credit spreads based on portfolios that contain bonds issued by nonfinan-

cial firms. At the four-quarter-ahead forecast horizon, in contrast, the posterior probabilities are

concentrated on credit spreads based on portfolios that contain bonds issued by financial firms in the

lower half of the credit-quality spectrum; though not reported, most of that posterior probability

is assigned to portfolios that contain longer maturity bonds (i.e., FIN-DD1-MTY2).

4.2 Robustness Checks

4.2.1 Varying the Hyperparameter φ

The results reported thus far were based on the value of the shrinkage hyperparameter φ = 4. In this

section, we examine the robustness of our results to different values of φ, the parameter governing

the strength of the g-prior. Figure 7 plots the MSPE of the BMA forecast—relative to the MSPE

from a direct autoregression—as a function of φ for all six economic indicators and all five forecast

horizons. Our BMA forecasting setup delivers substantial gains in forecast accuracy relative to the

direct autoregression for a wide range of values of φ; in fact, the qualitative nature of our results

appears to be fairly insensitive to the choice of the shrinkage parameter. In some cases, the relative

MSPE decreases monotonically in φ (at least over the range of values of φ considered). In others,

the relationship between the MSPE and φ is U-shaped, and the best forecasts are consequently

obtained with a small or intermediate value of φ.

With a sufficiently small value of φ—implying a very informative prior—BMA outperforms the

univariate time-series benchmark in all cases considered in this paper. This is an attractive feature

of BMA with a sufficiently informative prior, at least in this data set.16 Overall, setting φ = 4

as our benchmark seems to be a good choice, because it gives relative MSPEs that are less than

one in nearly all cases, and it often yields substantial gains in forecast accuracy. Nevertheless, our

conclusions appear to be quite robust to a wide range of choices of φ.

16Note that in the limit, as φ goes to zero, the BMA forecast is, by construction, equivalent to the forecast from a
direct autoregression.
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Figure 7: BMA Forecasting Performance and the Informativeness of the g-Prior
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Note: The figure depicts the ratio of the MSPE of the BMA forecast to the MSPE from a direct autore-
gression for the different values of the shrinkage hyperparameter φ.
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4.2.2 Raw vs. Option-Adjusted Credit Spreads

An important feature of our DD-based bond portfolios is that they are based on option-adjusted

credit spreads. As shown in Figure 3, the option-adjustment procedure significantly alters the time-

series characteristics of the average credit spread across our 20 bond portfolios; indeed, the real-time

option adjustment makes an even bigger difference in the case of individual bond portfolios. Thus

one might naturally wonder to what extent our option-adjustment procedure influences the ability

of credit spreads to forecast economic activity. Accordingly, we re-did our forecasting exercise using

all the predictors as before, except with the DD-based bond portfolios now based on raw credit

spreads, instead of their option-adjusted counterparts. The results of this exercise are shown in

Table 7.

According to entries in the table, the BMA forecasts that use raw credit spreads continue to be

more accurate than the forecasts obtained from direct autoregressions, at least at shorter horizons.

Although gains in forecast accuracy are economically and statistically significant in some cases, they

are neither as large nor as consistent—both across economic indicators and horizons—as those that

relied on the option-adjusted credit spreads. For example, in forecasting the growth of private

payroll employment, the BMA forecast that uses the option-adjusted credit spreads is consider-

ably more accurate than the forecast from the direct autoregression at all forecast horizons. But

when raw spreads are used instead, the BMA forecast is actually less accurate than our univariate

benchmark at horizons of two quarters and beyond.

These results suggest that the information content of credit spreads on corporate bonds is

significantly influenced by fluctuations in the values of embedded options, fluctuations that lower

the signal-to-noise ratio of credit spreads for future economic outcomes. Given the fact the standard

credit spread indexes are constructed using prices on both callable and non-callable bonds and that

the portion of callable corporate debt is changing over time, our findings may also help explain the

uneven forecasting performance of these default-risk indicators for future economic activity.

5 Prediction During the 2007–09 Financial Crisis

At the end of 2007, the U.S. economy entered the longest and most severe recession of the postwar

period. This episode of extreme financial turmoil raises a natural question of the accuracy of our

BMA forecasts during that period. The dashed lines in Figures 8–9 depict the realized growth

rates—from quarter t − 1 to quarter t + h—of the variables being forecasted and the level of the

unemployment rate in quarter t+h for h = 1 (Figure 8) and h = 4 (Figure 9). The solid lines depict

the corresponding BMA point forecasts (using only the 20 DD-based portfolios of option-adjusted

credit spreads) made in quarter t, while the shaded bands represent the respective BMA predictive

densities. The data are plotted as of quarter t+ h, so for the four-quarter-ahead case, the data for

2010:Q2 show actual growth rates of economic activity from 2009:Q1 to 2010:Q2 and forecasts for
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Table 7: BMA Out-of-Sample Predictive Accuracy
(Predictor Set: All Variables with Raw Credit Spreads)

Forecast Horizon (h quarters)

Economic Activity Indicator h = 0 h = 1 h = 2 h = 3 h = 4

GDP 0.94 0.92 0.87 0.94 0.89
(0.02) (0.01) (0.01) (0.06) (0.04)
[0.05] [0.04] [0.04] [0.08] [0.05]

Personal consumption expenditures 0.92 0.92 1.00 1.09 1.19
(0.03) (0.07) (0.26) (0.69) (0.80)
[0.06] [0.12] [0.22] [0.31] [0.45]

Business fixed investment 0.87 0.79 0.92 0.93 0.91
(0.00) (0.00) (0.05) (0.07) (0.08)
[0.01] [0.01] [0.06] [0.07] [0.06]

Industrial production 0.96 0.97 1.09 1.10 1.10
(0.03) (0.08) (0.75) (0.64) (0.58)
[0.06] [0.10] [0.50] [0.41] [0.37]

Private employment 0.94 0.95 1.09 1.23 1.20
(0.02) (0.06) (0.72) (0.87) (0.77)
[0.03] [0.08] [0.43] [0.55] [0.40]

Unemployment rate 0.91 0.95 1.11 1.21 1.15
(0.00) (0.06) (0.84) (0.88) (0.72)
[0.00] [0.03] [0.49] [0.57] [0.32]

Exports 0.96 0.94 1.01 1.02 0.88
(0.00) (0.02) (0.26) (0.28) (0.05)
[0.00] [0.01] [0.08] [0.09] [0.01]

Imports 0.91 0.93 0.97 1.03 0.99
(0.00) (0.01) (0.07) (0.27) (0.15)
[0.00] [0.02] [0.07] [0.16] [0.13]

Note: Sample period: 1986:Q1–2010:Q2. The jump-off date for the out-of-sample recursive forecasts
is 1992:Q1. The forecasted variable is the cumulative growth rate (or change in the case of unemployment
rate) of each economic activity indicator over the specified forecast horizon. Entries in the table denote
the ratio of the MSPE from the BMA forecast to the MSPE from a direct autoregression (see text
for details). Each model in the BMA forecast consists of a direct autoregression augmented with one
predictor. Bootstrapped p-values (500 replications) for the test of the null hypothesis that the ratio of the
MSPEs is equal to one are shown in round and square brackets, using bootstraps B1 and B2, respectively
(see text for details).

growth over the same period. The real-time nature of our exercise implies that these forecasts were

made in 2009:Q2. If the BMA predictions had perfect foresight, then the predicted and realized

values would coincide.

According to Figure 3, credit spreads started to widen significantly in the second half of 2007,
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Figure 8: Real-Time Forecasts of the 2007–09 Financial Crisis

(One-Quarter-Ahead BMA Forecast)
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Note: The solid line in each panel depicts the real-time BMA point forecast—using the 20 DD-based
portfolios of option-adjusted credit spreads—of the specified variable for the one-quarter-ahead forecast horizon;
the dashed line depicts the realized values of the corresponding variable; and the shaded bands represent the
50-, 68-, 90-, and 95-percent percentiles of the predictive density (see text for details). The shaded vertical bar
denotes the 2007–09 NBER-dated recession.
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Figure 9: Real-Time Forecasts of the 2007–09 Financial Crisis

(Four-Quarter-Ahead BMA Forecast)

2005 2006 2007 2008 2009 2010 2011
-6
-4
-2
 0
 2
 4
 6
 8

4-quarter percent change

Quarterly

2005 2006 2007 2008 2009 2010 2011
-6
-4
-2
 0
 2
 4
 6
 8

4-quarter percent change

Actual
Forecast

Quarterly

GDP

2005 2006 2007 2008 2009 2010 2011
-4
-2
 0
 2
 4
 6
 8

4-quarter percent change

Quarterly

2005 2006 2007 2008 2009 2010 2011
-4
-2
 0
 2
 4
 6
 8

4-quarter percent change

Quarterly

Personal consumption expenditures

2005 2006 2007 2008 2009 2010 2011
-40
-30
-20
-10
  0
 10
 20
 30

4-quarter percent change

Quarterly

2005 2006 2007 2008 2009 2010 2011
-40
-30
-20
-10
  0
 10
 20
 30

4-quarter percent change

Quarterly

Business fixed investment

2005 2006 2007 2008 2009 2010 2011
-15
-10
 -5
  0
  5
 10
 15

4-quarter percent change

Quarterly

2005 2006 2007 2008 2009 2010 2011
-15
-10
 -5
  0
  5
 10
 15

4-quarter percent change

Quarterly

Industrial production

2005 2006 2007 2008 2009 2010 2011
-8
-6
-4
-2
 0
 2
 4
 6

4-quarter percent change

Quarterly

2005 2006 2007 2008 2009 2010 2011
-8
-6
-4
-2
 0
 2
 4
 6

4-quarter percent change

Quarterly

Private employment

2005 2006 2007 2008 2009 2010 2011
 2
 4
 6
 8
10
12
14
16

Percent

Quarterly

2005 2006 2007 2008 2009 2010 2011
 2
 4
 6
 8
10
12
14
16

Percent

Quarterly

Unemployment rate

2005 2006 2007 2008 2009 2010 2011
-30
-20
-10
  0
 10
 20
 30

4-quarter percent change

Quarterly

2005 2006 2007 2008 2009 2010 2011
-30
-20
-10
  0
 10
 20
 30

4-quarter percent change

Quarterly

Exports

2005 2006 2007 2008 2009 2010 2011
-30
-20
-10
  0
 10
 20
 30

4-quarter percent change

Quarterly

2005 2006 2007 2008 2009 2010 2011
-30
-20
-10
  0
 10
 20
 30

4-quarter percent change

Quarterly

Imports

Note: The solid line in each panel depicts the real-time BMA point forecast—using the 20 DD-based
portfolios of option-adjusted credit spreads—of the specified variable for the four-quarter-ahead forecast horizon;
the dashed line depicts the realized values of the corresponding variable; and the shaded bands represent the
50-, 68-, 90-, and 95-percent percentiles of the predictive density (see text for details). The shaded vertical bar
denotes the 2007–09 NBER-dated recession.
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concomitant with the slowdown in economic activity predicted by the BMA forecasts. With credit

spreads continuing to move higher, the forecast for economic growth became progressively more

pessimistic, reaching its nadir in 2008:Q4, a period when spreads skyrocketed to a record level after

the collapse of Lehman Brothers. These real-time projections turned out to be quite accurate,

especially at the one-quarter-ahead forecast horizon (Figure 8). The four-quarter-ahead BMA

forecast (Figure 9) also did reasonably well, although it missed the timing of the recession by a

couple of quarters. At this longer forecast horizon, the most pessimistic forecasts were also made in

2008:Q4—applying to the period ending in 2009:Q4—while the realized economic indicators were

generally at their worst in 2009:Q2.

6 Conclusion

This paper has revisited the forecasting of real-time economic activity using a large number of

macroeconomic and financial predictors. Our contribution involved expanding the set of finan-

cial predictors with corporate credit spreads based on bond portfolios sorted by the instrument’s

maturity and credit risk as measured by the issuer’s distance-to-default. These portfolio credit

spreads were constructed directly from the secondary market prices of a large number of senior

unsecured bonds issued by U.S. financial and nonfinancial corporations. Using a flexible empirical

bond-pricing framework, the micro-level credit spreads were adjusted for the callability of the un-

derlying issue, a pervasive feature of the corporate cash market and one that significantly influences

the information content of credit spreads for future economic activity.

To take explicitly into account model selection issues, we employed Bayesian model averaging

techniques to combine the information content of variables in our predictor set, an approach that

helps to mitigate concerns about data mining. Our results indicate that the accuracy of the BMA

forecasts significantly exceeds—both economically and statistically—the accuracy of the forecasts

obtained from a univariate direct autoregression, a benchmark that has proven to be quite difficult

to beat when forecasting real-time economic activity.

The gains in forecasting accuracy stem almost exclusively from the inclusion of the option-

adjusted portfolio credit spreads in the set of predictors—Bayesian model averaging consistently

assigns high posterior probabilities to models that include these financial indicators. In contrast,

if the portfolio credit spreads are omitted from the predictor set, the BMA forecasts of future

economic activity are generally statistically indistinguishable from the forecasts obtained from a

direct autoregression. This finding highlights the rich amount of information contained in corporate

bond spreads, information, as argued by Gilchrist and Zakraǰsek [2010], that may be particularly

useful for identifying the importance of credit supply shocks in the determination of macroeconomic

outcomes.
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Gilchrist, S., V. Yankov, and E. Zakrajšek (2009): “Credit Market Shocks and Economic
Fluctuations: Evidence From Corporate Bond and Stock Markets,” Journal of Monetary Eco-

nomics, 56, 471–493.
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Appendices

A DD-Based Portfolios

Table A-1 contains summary statistics of the distances-to-default, credit spreads, and excess equity
returns in the DD-based portfolios; the top panel covers portfolios constructed using asset prices
of nonfinancial firms, while the bottom panel corresponds to their financial counterparts. Not
surprisingly, the average distance-to-default increases across the conditional DD bins in both sectors.
The time-series volatility of this default-risk indicator, as measured by its standard deviation,
also increases with the improvement in credit quality, indicating that the DDs of riskier firms
fluctuate less than those of their more creditworthy counterparts. Consistent with the increase
in the likelihood of default, both the average and the median credit spread decline monotonically
across the conditional DD bins in all maturity categories.

The time-series characteristics of excess equity returns of firms in the different default-risk
categories, by contrast, do not exhibit much of a systematic pattern. In general, less credit-
worthy firms registered an exceptionally weak performance over the 1986–2010 period, a finding
consistent with the distress risk anomaly documented by the empirical asset-pricing literature (cf.
Griffin and Lemmon [2002] and Campbell et al. [2008]).
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Table A-1: Summary Statistics of DD-Based Portfolios by Type of Firm

Nonfinancial Firms DD Bin Mean SD S-Ra Min P50 Max

Distance-to-default 1 2.12 1.02 - -0.83 2.22 4.83
Distance-to-default 2 5.26 1.73 - 0.50 5.63 8.63
Distance-to-default 3 7.62 2.15 - 2.23 8.17 11.3
Distance-to-default 4 11.2 2.86 - 4.87 11.6 16.7
Credit spread (1–5 yr.) 1 2.77 1.82 1.52 0.73 2.27 12.1
Credit spread (1–5 yr.) 2 1.29 0.69 1.88 0.44 1.11 5.16
Credit spread (1–5 yr.) 3 0.94 0.48 1.94 0.29 0.85 3.65
Credit spread (1–5 yr.) 4 0.68 0.36 1.88 0.22 0.58 2.52
Credit spread (5–10 yr.) 1 2.97 1.65 1.80 0.93 2.35 9.65
Credit spread (5–10 yr.) 2 1.48 0.67 2.21 0.59 1.22 4.54
Credit spread (5–10 yr.) 3 0.99 0.45 2.20 0.45 0.86 3.33
Credit spread (5–10 yr.) 4 0.69 0.33 2.08 0.22 0.54 2.15
Credit spread (10–15 yr.) 1 2.51 1.67 1.50 0.87 1.98 13.2
Credit spread (10–15 yr.) 2 1.35 0.72 1.87 0.31 1.09 4.81
Credit spread (10–15 yr.) 3 0.90 0.48 1.89 0.25 0.79 3.45
Credit spread (10–15 yr.) 4 0.65 0.34 1.92 0.21 0.52 1.85
Credit spread (> 15 yr.) 1 2.69 1.61 1.67 0.67 2.34 12.3
Credit spread (> 15 yr.) 2 1.50 0.55 2.74 0.84 1.33 3.80
Credit spread (> 15 yr.) 3 1.10 0.42 2.59 0.51 0.98 3.09
Credit spread (> 15 yr.) 4 0.82 0.31 2.66 0.37 0.74 1.98
Excess Equity Return 1 -0.31 8.11 -0.04 -58.0 0.66 28.8
Excess Equity Return 2 0.08 6.12 0.01 -44.8 0.55 17.3
Excess Equity Return 3 0.05 4.91 0.01 -31.0 0.64 14.8
Excess Equity Return 4 0.19 4.14 0.05 -24.6 0.78 11.2

Financial Firms DD Bin Mean SD S-R Min P50 Max

Distance-to-default 1 1.88 1.22 - -1.33 1.82 4.54
Distance-to-default 2 6.26 3.10 - 0.48 6.07 13.4
Credit spread (1–5 yr.) 1 1.10 0.78 1.41 0.28 0.98 5.38
Credit spread (1–5 yr.) 2 0.91 0.49 1.88 0.22 0.88 3.14
Credit spread (> 5 yr.) 1 1.25 0.57 2.18 0.58 1.10 3.98
Credit spread (> 5 yr.) 2 1.16 0.37 3.16 0.59 1.09 2.54
Excess Equity Return 1 -0.13 8.30 -0.02 -42.8 0.74 22.1
Excess Equity Return 2 0.11 6.51 0.02 -46.4 0.74 15.3

Note: Sample period: Jan1986–June2010. DDs are in units of standard deviations, credit
spreads are in percentage points, and (monthly) excess equity returns are in percent. The (weighted)
average of indicators in month t in each DD bin is based on the DD distribution in month t − 1.
The four DD binds for the nonfinancial firms are based on the quartiles of the distribution; the two
DD bins for the financial firms are based on the median of the distribution (see text for details).

aSharpe ratio.
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