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Abstract

The discontinuous spectral Galerkin method uses a finite-element discretization of the groundwater flow domain with basis

functions of arbitrary order in each element. The independent choice of the basis functions in each element permits discontinuities in

transmissivity in the flow domain. This formulation is shown to be of high order accuracy and particularly suitable for accurately

calculating the flow field in porous media. Simulations are presented in terms of streamlines in a bidimensional aquifer, and

compared with the solution calculated with a standard finite-element method and a mixed finite-element method. Numerical sim-

ulations show that the discontinuous spectral Galerkin approximation is more efficient than the standard finite-element method (in

computing fluxes and streamlines/pathlines) for a given accuracy, and it is more accurate on a given grid. On the other hand the

mixed finite-element method ensures the continuity of the fluxes at the cell boundaries and it is particular efficient in representing

complicated flow fields with few mesh points. Simulations show that the mixed finite-element method is superior to the discon-

tinuous spectral Galerkin method producing accurate streamlines even if few computational nodes are used. The application of the

discontinuous Galerkin method is thus of interest in groundwater problems only when high order and extremely accurate solutions

are needed.
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1. Introduction

Numerical simulations are widely used in character-

izing subsurface flows. They are normally based on low

order finite-element or finite-difference approximations

[6,32] as they are robust and easy to implement. The

common approach is first to calculate the distribution of
the potential head from the equation of conservation of

mass and then to derive discharges through the Darcy

fluxes. Following this approach, in the finite-difference
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method the head at the center of a cell is computed

applying a water balance over the cell boundaries. In

this way the flux normal to a finite-difference cell side is

continuous and it is possible to compute flux-conserving

path lines [33]. When complex geometries and flow fields

are modeled, finite elements generally provide more

flexibility than finite differences. However, when linear
triangular elements are used, the head is approximated

as varying linearly in each element leading to a constant

discharge. As a consequence, fluxes across element

boundaries are discontinuous and path lines derived

from these fluxes may be of low accuracy [22].

As high accuracy of fluxes is essential for simulating

transport in heterogeneous porous formations [5,36],

improving the flux approximation in finite-element
models has been approached in several ways. A dual

formulation of the flow, utilizing both potential and

stream functions, leads to better results [22]. In a steady
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flow, both the head equation and the streamline equa-

tion are solved together, and the knowledge of the

stream function allows the calculation of streamlines.

The dual formulation has been extended to domains

that include wells and stagnation points [13], and to
three-dimensional flow fields [27]. Unfortunately, the

steady-state constraint makes the dual formulation

unsuitable for modeling transient phenomena.

Another approach introduced by Cordes and Kin-

zelbach [19] consists of postprocessing the head distri-

bution obtained from standard finite-element methods.

This can be achieved by imposing the continuity and the

irrotationality conditions on subelements obtained from
the finite-element discretization and taking into account

that the conforming finite-element method gives an ex-

act water balance at every node. This procedure yields a

continuous flux distribution and accurate streamlines

over the domain.

A third approach relies on mixed finite-element

methods. Following Meissner [28], for example, both

head and fluxes are independently considered. As the
resulting large system of linear equations leads to a

matrix that is not positive definite, hybridization has

been utilized [4,12]. Mos�e et al. [29] recently compared

this method with the Cordes and Kinzelbach postpro-

cessor and showed that the mixed finite-element method

is superior in terms of flux distribution accuracy, par-

ticularly in the presence of strong heterogeneity in

transmissivity. (For a discussion of the general validity
of these results, see also [20].) However, due to the

greater number of unknowns, mixed hybrid finite-ele-

ment methods require more memory and computation

time, although they provide physically more realistic

solutions to the flow field in very discontinuous and

heterogeneous systems [21]. All these methods are of low

order, whereas the study of complex physics with com-

puting constraints requires higher-order methods.
Goblet and Cordier [23] appear to be among the first

to have used a higher-order method of spectral accuracy

in a hydrological context. They solved the two-dimen-

sional flow and mass transport equations with the so-

called spectral element method, which is essentially due

to Patera and his colleagues ([31] see also, for example,

[24]). In this method, the domain of computation is

subdivided into elements of uniform order. The method
permits the solution in each element to be approximated

to an arbitrary order of accuracy. The choice of spectral

basis functions in each element, such as the Legendre

polynomials that the authors have used, ensures the

approximation error to decay exponentially. Globet and

Cordier [23] employed polynomials of order up to eight

and demonstrated the high order accuracy and efficiency

of the spectral element method in resolving steep gra-
dients and moving fronts.

Recently, another class of methods known as the

discontinuous Galerkin methods have become
increasingly popular in fluid mechanics, acoustics and

electromagnetics ([26,30,34] and others). Modern

developments in these methods are primarily due to

Cockburn and Shu and their group [14–16]. The key

feature is the independent choice of basis functions in
each element, which enables adaptive mesh refinement

as well as arbitrary order of approximation in each

element. In a hydrological context, Aizinger et al. [2]

applied the method to the study of groundwater con-

taminant transport. Specifically, they used the local

discontinuous Galerkin (LDG) method of Cockburn

and Shu [17] with third-order Runge–Kutta time dis-

cretization and spatial discretization based on piecewise
constant, linear and quadratic approximations. They

mainly considered unsteady one-dimensional transport

of one and two-component contaminants. Their con-

clusion is that ‘‘in general the higher degree polynomials

give a more accurate solution with smaller CPU time’’.

On the other hand, Riviere et al. [35] applied the for-

mulation of Oden et al. [30] to the steady flow in porous

media governed by an elliptic equation with discontin-
uous diffusivity coefficients. They used polynomials of

order up to eight and exploited the adaptive mesh

refinement strategy permitted by the method to obtain

optimal convergence rates unattainable with a uniform

mesh refinement methodology.

In this paper, we apply the local discontinuous

spectral Galerkin method (LDG) developed by Cock-

burn and Shu [14] to the unsteady saturated ground-
water flow problem. Specifically, we investigate the

performance of the method in a series of numerical tests

and compare the results with the standard finite-element

and mixed finite-element solutions.
2. The local discontinuous Galerkin formulation

The LDG formulation is applied to the two-dimen-

sional transient flow equations in an aquifer:

oqx
ox

þ oqy
oy

¼ �S
oh
ot

þ Q ð1Þ

qx ¼ �Tx
oh
ox

; qy ¼ �Ty
oh
oy

ð2Þ

where (1) enforces mass conservation and (2) are the

Darcy fluxes. In these equations h represents the

hydraulic head, qx and qy the discharge per unit width of

the aquifer in the x- and y-direction, Tx, Ty are the

components of the anisotropic coefficient of hydraulic
transmissivity, S is the storage coefficient of the aquifer

and Q is the distributed source or sink term.

We descritize the system (1) and (2) by the LDG

method (see [17]). The domain is divided into non-

overlapping quadrilaterals. We then seek an approxi-

mation of the head and discharges belonging to the
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Fig. 1. Transformation of the generic quadrilateral in the reference

square. The dots are the Gauss–Legendre points where the head and

the discharges are evaluated.
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space of polynomials of order n (at most) in each ele-

ment. Multiplying (1) and (2) by an arbitrary smooth

function v0, and integrating over each element of the

triangulation, we obtain, after integration by parts, the

following weak formulation for each element E:Z
E

S
oh
ot

�
� Q

�
v0 dA�

Z
E

qx
ov0

ox

�
þ qy

ov0

oy

�
dA

þ
Z
oE
ðq̂xnx þ q̂ynyÞv0 dC ¼ 0 ð3Þ

Z
E

1

Tx
qxv0 dA�

Z
E
h
ov0

ox
dAþ

Z
oE
ĥnxv0 dC ¼ 0 ð4Þ

Z
E

1

Ty
qyv0 dA�

Z
E
h
ov0

oy
dAþ

Z
oE
ĥnyv0 dC ¼ 0 8v0 ð5Þ

where ðnx; nyÞ is the outward unit normal to the

boundary of the element E, A the element area, and C
the element boundary. The terms q̂x, q̂y , and ĥ on the
left-hand side of Eqs. (3)–(5) are numerical fluxes at the

edges that link the elements together. Because we want

to model abrupt changes in transmissivity at the edges of

elements, the quantities Tx and Ty are incorporated

within the first integrals of Eqs. (4) and (5).

The major advantage of this scheme is that the basis

functions, used to solve the weak formulation (3)–(5),

are locally defined for each element. In fact the basis
functions are identically zero outside the element, so

that we can freely modify the order of the approxima-

tion, without modifying the basis functions in other

elements. This formulation is thus different from the

standard finite-element method where each basis func-

tion is defined in all the elements sharing a node, thus

enforcing the continuity of the solution. Contrary to the

LDG method, in standard finite elements the order of
the approximation cannot be changed once the basis

functions are chosen.
3. Expansion bases

The first step in resolving the system (3)–(5) is to

transform the generic quadrilateral region into the ref-
erence square X (cf. Fig. 1). If the form of the mapping is

known, i.e. we know the two functions X , Y for which

x ¼ X ðn; gÞ and y ¼ Y ðn; gÞ, the system (3)–(5) becomes

(e.g. [25]):

Z
X

S
oh
ot

�
� Q

�
vjJ jdA ¼

Z
X
ðqxwx þ qywyÞdA

þ
Z
oX

ðq̂x�nx � q̂y�nyÞvdC ð6Þ

Z
X

1

Tx
qxvjJ jdA ¼

Z
X
hwx dA�

Z
oX

ĥ�nxvdC ¼ 0 ð7Þ
Z
X

1
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qyvjJ jdA ¼

Z
X
hwy dA�

Z
oX

ĥ�nyvdC ¼ 0 8v ð8Þ

where the Jacobian J and the expressions wx and wy are:

J ¼ oX
on

oY
og

� oX
og

oY
on

; wx ¼
ov
on

oY
og

� ov
og

oY
on

;

wy ¼
ov
og

oX
on

� ov
on

oX
og

ð9Þ

with v the reference basis function in X and the vector

ð�nx; �nyÞ the normal to the boundary of the element E.
ð�nx; �nyÞ is not unity, but rather has length equal to half

the side of the element E in consideration. Standard fi-

nite-element functions are often used for the mapping X ,

Y of a reference element.

For each quadrilateral element, we choose indepen-

dently an order n	 m, which means that we evaluate the
head and the discharges at nþ 1 nodes in the x-direction
and at mþ 1 nodes in the y-direction. We choose the

nodes ðni; gjÞ in the reference square so that they cor-

respond to the Gauss–Legendre points (Fig. 1) (see [1]).

The nodes ðni; gjÞ are then mapped in ðxi; yjÞ in each

quadrilateral of the mesh by using the functions X and

Y .
As in Goblet and Cordier [23], each base expansion

is a tensor product of Lagrange polynomials on the

reference domain X. The head and the discharges are

expressed as:

h
qx
qy

0
@

1
A ¼

Xm
j¼0

Xn
i¼0

Hij

QXij

QYij

0
@

1
ALn

i ðnÞLm
j ðgÞ ð10Þ

where Hij, QXij, and QYij are the coefficients of the

expansion (10) at the points ðni; gjÞ in the reference

square. Ln
i ðnÞ is the Lagrange polynomial which takes a

value of one at the node ni and zero at the others. It can

be written as:

Ln
i ðnÞ ¼

Y
j¼0;n j 6¼i

ðn � niÞ
ðni � njÞ

ð11Þ
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Because we use Lagrange polynomials the elements of

the matrix Hij, QXij, QYij are respectively the values of

the head, the x-component and the y-component of the

discharge at the points ðxi; yjÞ, mapped in ðni; gjÞ within
the reference square. For every element Eqs. (6)–(8)
are written ðnþ 1Þ 	 ðmþ 1Þ times, once for each test

function vkl. In the Galerkin formulation these test

functions are equivalent to the expansion bases:

vkl ¼ Ln
kðnÞLm

l ðgÞ; k ¼ 0; n; l ¼ 0;m ð12Þ
4. Numerical integration and differentiation

Since the points ni and gi correspond to the Gauss–

Legendre quadrature points, we can substitute the

integrals in (6)–(8) with a weighted sum of the values of

the integrand at the quadrature points. Because of the

particular choice of the points, this substitution is exact

for polynomials with order up to 2nþ 1, if nþ 1 is the

number of points. The weight wn
i utilized in the sum can

be calculated from available algorithms [8]. Remem-

bering that Ln
i ðniÞ ¼ 1 and Ln

i ðnjÞ ¼ 0, for i 6¼ j, inte-

gration of the product of Lagrange polynomials

evaluated on the Gauss–Legendre points yields the

simple result:Z
X
f ðn; gÞLn

kðnÞLm
l ðgÞdA

’
Xm
j¼0

wm
j

Xn
i¼0

wn
i f ðni; gjÞLn

kðniÞLm
l ðgjÞ

( )

¼ wn
kw

m
l f ðnk; glÞ ð13Þ

where wn
k and wm

l are the Gauss–Legendre quadrature

weights for n and m points respectively. If we consider a

constant transmissivity in each element and if we utilize

(13) to calculate the left-hand side of (7), we get the

following expression:

1

Tx

Z
X
qxvjJ jdA ¼ 1

Tx

Z
X

Xm
j¼0

Xn
i¼0

QXijðtÞLn
i ðnÞLm

j ðgÞ
 !

	 Ln
kðnÞLm

l ðgÞjJ jdA
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Tx
QXklw

n
kw

m
l jJðnk; glÞj ð14Þ

In order to calculate the first integral on the right-hand

side of Eqs. (6)–(8), we need to obtain a partial deriva-

tive of the test function. In spectral methods the deriv-
ative of a function is expressed as a matrix-vector

multiplication. In our case the test function v ¼ vkl is

expanded in Lagrange polynomials and the matrix-

vector multiplication simplifies further to:
ovkl
og

����
ni;gj

¼ Ln
kðnÞ

d

dg
Lm
l ðgÞ

����
ni ;gj

¼ Dm
jl if i ¼ k

0 if i 6¼ k

�
ð15Þ
where the derivative matrices Dm
ij and D

n
ij are defined as:

Dm
ij ¼ Lm0

j ðgiÞ; Dn
ij ¼ Ln0

j ðniÞ ð16Þ

In (16) Lm0
j ðgÞ is the first derivative of the Lagrange

polynomial Lm
j ðgÞ and can be calculated only once at the

beginning of the simulation [8]. Utilizing (13) and (15)

we can now calculate the first term on the right-hand

side of Eqs. (6)–(8). For example, for Eq. (7), it becomes:Z
X
hwx dA ’ wm

l

Xn
p¼0

wn
pDpkHpl

oY
og

ðnp; glÞ
� �

� wn
k

Xm
p¼0

wm
pDplHkp

oY
on

ðnk; gpÞ
� �

ð17Þ
5. Numerical fluxes and boundary conditions

When the boundary integrals in Eqs. (3)–(5) are

evaluated, the terms ĥ, q̂x, q̂y , which are the fluxes of the

head and discharges through the interface, are not un-

iquely defined due to the discontinuous function

approximation. It is therefore necessary to substitute

these terms with a numerical flux function, which in

general depends on both the states at the left and right
of the interface and which introduces a coupling be-

tween the unknowns of neighboring elements. Several

numerical fluxes have been defined for parabolic and

elliptic problems [3,7,17], and their choice is crucial for

the stability of the method.

In this paper we adopt the formulation of Cockburn

and Shu [17] (see also [3,11]). For each edge separating

two elements (called here element 1 and 2) we define the
following quantities (the index 1 refers to quantities

calculated within the element 1 and the index 2 refers to

quantities calculated within the element 2):

fhg ¼ 1
2
ðh1 þ h2Þ; fqg ¼ 1

2
ðq1 þ q2Þ;

½h� ¼ h1n1 þ h2n2; ½q� ¼ q1 � n1 þ q2 � n2 ð18Þ

with q ¼ ðq1; q2Þ, n1 and n2 the normals to the edge di-
rected outward the element 1 and 2 respectively. The

numerical fluxes are then:

ĥ ¼ fhg þ c � ½h�; q̂ ¼ fqg � b½q� ð19Þ

where q̂, and c are vector valued functions. Here we set

b ¼ 1 and c ¼ ð1; 1Þ in order to obtain an optimal

convergence rate, as theoretically demonstrated by Ca-

stillo et al. [11]. The terms containing b and c play a role

similar to the introduction of numerical diffusion at the
boundaries stabilizing the method. Without these terms

all the fluxes are the simple average between the values

at the two boundaries.

The quantities h1, h2, q1, q2 are calculated projecting

the solution within the element on the edge of the ele-

ment itself. Since the approximation is a high order
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polynomial, the projection is simply a polynomial

interpolation. It is necessary to determine the value of

the quantities at the same points for both sides before

calculating fhg, ½h�, fqg, ½q�, in order to do that we

choose a number of points on the edge equal to the
lowest of the polynomial orders of the two contiguous

elements. The line integrals in (6)–(8) are then computed

using the Gauss–Legendre quadrature weights.

In order to resolve the system of Eqs. (3)–(5) suitable

boundary conditions are added. Neumann boundary

conditions are implemented directly in Eq. (3) substi-

tuting the integral at the boundaries with the value of

the given flux. The Dirichlet boundary condition is in-
stead utilized in Eqs. (4) and (5) to compute the

numerical flux ĥ. In this way the value of the head at the

boundaries is weakly enforced, differently from finite-

element and finite-difference methods.
6. Model implementation

The model implementation is fully explicit and does

not require the solution of a linear system. Given the
current values of the potential head, it is possible to

compute the discharge from Eqs. (7) and (8), calculating

the integral on the left-hand side and the first integral on

the right-hand side as showed in Eqs. (14) and (17), and

the numerical flux in the second integral on the right-

hand side of Eqs. (7) and (8) using (19). The discharges

at the time step n can then be written as: QXn
ij ¼ f1ðHn

ijÞ
and QYn

ij ¼ f2ðHn
ijÞ with the operators f1 and f2 fully

explicit. Once the discharges are calculated it is possible

to determine the numerical fluxes q̂x and q̂y . Eq. (6) is
then utilized to calculate the head distribution at the

next time step nþ 1, yielding Hnþ1
ij ¼ Hn

ij þ DtgðQXn
ij;

QYn
ijÞ with the operator g derived from (6).

To improve the accuracy of the solution at the next

time step a Runge–Kutta scheme of the third order is

utilized for the time discretization [39]. Following this
scheme the discharges and the potential head are com-

puted three times for each time step in order to get the

value of the head Hnþ1
ij . The scheme is:

QXn
ij ¼ f1ðHn

ijÞ; QYn
ij ¼ f2ðHn

ijÞ

H
ð1Þ
ij ¼ Hn

ij þ DtgðQXn
ij;QY

n
ijÞ

QX
ð1Þ
ij ¼ f1ðHð1Þ

ij Þ; QY
ð1Þ
ij ¼ f2ðHð1Þ

ij Þ
H

ð2Þ
ij ¼ 3

4
Hn

ij þ 1
4
H

ð1Þ
ij þ DtgðQXð1Þ

ij ;QY
ð1Þ
ij Þ

QX
ð2Þ
ij ¼ f1ðHð2Þ

ij Þ; QY
ð2Þ
ij ¼ f2ðHð2Þ

ij Þ
Hnþ1

ij ¼ 1
3
Hn

ij þ 2
3
H

ð2Þ
ij þ DtgðQXð2Þ

ij ;QY
ð2Þ
ij Þ

ð20Þ

where (1) and (2) indicate the quantities calculated at the

two intermediate steps. We note that only the matrix of

the head at the steps H
ð1Þ
ij and H

ð2Þ
ij has to be stored and

not the discharges, with a notable memory saving. In
fact the head does not depend on the value of the dis-

charges at the previous step.

The LDG formulation is fully explicit and stability is

achieved only by using a small time step. The maximum

time step allowed to have convergence depends, among
other factors, on the order of the spectral approximation

within the elements, decreasing considerably for higher

approximations. For the diffusion operator the time step

is equal to [8]:

Dt ¼ C
Dx2min

TmaxN 4
ð21Þ

where Dxmin is the smallest side (length) of the elements,

Tmax is the maximum value of the transmissivity, N is the
order of the polynomial approximation, and C is a

constant less than one. Herein we use (21) with C ¼ 0:5
as the time step for the LDG method.
7. Applications

7.1. Example 1

First we explore the performance of the LDG method

in a test example with given analytical solution. The test

example has a non-smooth solution that was chosen

on purpose to show the advantages and limits of the

method when complicated potential head fields are

computed. The simulation results are then compared to
a priori error estimate derived for smooth solutions

[10,11]. We consider an aquifer 100 m · 100 m with a

constant transmissivity of 1 m2/day (Fig. 2a). The cor-

responding boundary conditions are: fixed head equal to

100 m at the lower side of the domain and fixed head

equal to 25 m at the other three sides. For initial con-

ditions we consider a constant head equal to 25 m within

the domain. After a transient period, the head distri-
bution in the domain converges to the following steady-

state analytical solution, plotted in Fig. 2a [9; p. 147]:

h ¼ 25þ 300

p

X1
n¼0

1

ð2nþ 1Þ sin
ð2nþ 1Þpx

100

	 sinh
ð100� yÞð2nþ 1Þp

100
cosechð2nþ 1Þp ð22Þ

In Fig. 2a we note that the jump in the value of the

potential head at the boundary results in a folded head

surface near the two lower corners. In the following we

discuss the advantages and limits of the LDG method

applied to this problem, from a water resources per-
spective. The existence of an analytical solution enables

a direct calculation of the error associated with the

numerical approximation. To compare the error of the

LDG solutions using different polynomial orders and

meshes with a different number of elements, we utilize

the discrete 2-norm of the error, defined as:
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Fig. 3. h-Refinement and p-refinement for the test example shown in

Fig. 2. In the h-refinement the polynomial order is maintained constant

and equal to two whereas in the p-refinement a fixed mesh with nine

elements is used. The convergence rate for the h-refinement is indi-
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Fig. 2. Steady-state distribution of potential head (isolines) in an

aquifer with fixed value of the head at the boundaries. (a) Analytical

solution (see Eq. (22)); (b) solution obtained with the LDG method

with a mesh of nine elements and a polynomial order equal to 4 in each

element; (c) solution obtained with the LDG method with a mesh of 36

elements and a polynomial order equal to 2 in each element; (c)

solution obtained with the LDG method with a mesh of nine elements

and different polynomial order in each element (the polynomial order

is increased in areas where the numerical error is high); the LDG

solutions are obtained at steady state.
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k�k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðHi � hiÞ2

N

s
ð23Þ

where Hi is the value of the approximation at the point i
and hi is the pointwise value of the real solution (k�k2 is
calculated at the same points in each simulation). We

start with a grid with nine elements and a polynomial

approximation inside each element of order 2 (nine

evaluation points) in both x- and y-direction and we run

the model until the steady-state solution is reached. If
we want to improve the accuracy of the solution we can

either increase the order of the basis functions in each

element (p-refinement) or increase the number of ele-

ments maintaining the order of the basis functions

constant (h-refinement). In Fig. 2b the solution with

nine elements and order four is reported, whereas in Fig.

2c the solution with 36 elements and order two is shown.

Even though the analytical solution is continuous, both
approximations are discontinuous at the elements

interfaces. Discontinuities in the solution are particu-

larly evident when the potential head surface is ex-

tremely folded, as it is the case at the lower corners of

Fig. 1. Here a polynomial surface of high order is nec-

essary to approximate the solution and its steep gradi-
ents. The discontinuity of the solution strongly limits the

applicability of the LDG method in water resources

problems. In fact the same solution calculated with a

standard finite-element method is always continuous,

since the basis functions are continuous in contiguous
elements. This does not necessary mean that the finite-

element method is more accurate, but simply that the

finite-element method always leads to a continuous

solution even with few mesh points. The only way to

improve the continuity of the solution with the LDG

method is by increasing the polynomial order in the

elements until the approximate solution can adequately

fit the real solution.
Another fundamental characteristic of the LDG

method is the possibility of increasing the order of the

basis in each element, without modifying the order in the

contiguous elements. This is virtually impossible in finite

differences and finite elements where the scheme order is

fixed �a priori’ and the only way to improve the accuracy

is by increasing the number of elements (h-refinement).

In Fig. 2d we increased the basis order in the two critical
elements at the lower corners of the domain, producing

a noteworthy improvement in the quality of the solu-

tion.

Castillo et al. [11] derived a priori error estimate for

smooth solutions finding that the error is proportional

to hkþ1 for an h-refinement, where h is the mesh size and

k the polynomial order of the approximation. By plot-

ting the error as a function of the degrees of freedom we
note that the convergence rate in our example is only

one (rather than three) for an h-refinement with poly-

nomials of second order (see Fig. 3), indicating that the

convergence rate deteriorates when non-smooth solu-

tions are calculated. Furthermore Castillo et al. [11]

showed with numerical examples that a p-refinement

leads to exponential convergence. In our simulation a p-
refinement (increasing the polynomial order in a mesh
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with nine elements) shows that the convergence rate

is indeed higher than the h-refinement, but it is not

possible to prove that it is exponential (Fig. 3). In

groundwater simulations a p-refinement has thus two

major advantages: (i) the error is strongly reduced with
an increment of the degrees of freedom; (ii) the conti-

nuity of the solution is improved (whereas with an h-
refinement there are more elements that can possibly

lead to discontinuities at the interfaces).

A p-refinement can be also adaptively applied. The

best strategy is to calculate two solutions with two

consecutive polynomial orders and then to refine (i.e.

increase the order) only where the difference between the
two solutions is remarkable.

Since an increase in the polynomial order consistently

reduces the error and better preserves the continuity of

potential head, in the next examples we mainly focus on

the p-refinement of the solution.

7.2. Example 2

In the second example we consider a square aquifer

(100 m · 100 m) with a constant transmissivity of 1 m2/

day (Fig. 4a).

The corresponding boundary conditions are: fixed

head (Dirichlet boundary condition) equal to 10 m for
the edges of the element at the lower right corner, fixed

head equal to 0 m for the edges of the upper left element,

and zero flux for the other boundaries (Neumann

boundary condition). Solutions obtained with the LDG

model are compared with solutions of the finite-element

model MODFE [18,37,38], with the same degrees of

freedom (number of nodes or number of evaluation

points). Hereafter we refer to this model as FEM. Al-
though both models resolve the parabolic transient flow

problem, in this second example we show only results in

term of streamlines computed after 24,000 days of sim-

ulation, when the solution is close to the final steady

state. In this way it is also possible to qualitatively

compare our numerical experiments with others dealing

with the steady elliptic formulation [19,29].

Starting from initial conditions of zero potential head
in the aquifer, the time stepping problem is resolved for

24,000 days. In the spectral approximation the aquifer is

divided in 25 square elements (Fig. 4a). The numerical

experiment is carried out varying both the order of the

approximating polynomial inside each element of the

LDG and the number of the nodes for the FEM (Fig.

4b). The coupling of high order basis functions with

weak boundary conditions, which characterizes the
discontinuous Galerkin formulation, succeeds in

resolving the flow problem only when the order of the

polynomial is sufficient to approximate the solution.

Low order interpolating functions imply poor approxi-

mation inside the elements and jumps at the boundaries.

Under these circumstances streamlines have spurious
oscillations (Fig. 4e) with angular points at the inter-

faces of the elements, and the boundary conditions are

not well respected. As a consequence the finite-element

method with same number of unknowns (nodes) is more

accurate (Fig. 4c).

The situation is reversed when the order of the

spectral method is increased. In the finite-element
method, a linear approximation of the head implies a

constant discharge in each element, with abrupt dis-

continuities from one element to another, and conse-

quently poorly resolved streamlines (Fig. 4d). With a

spectral method the approximation of the discharge

becomes a polynomial of high order, implying a con-

tinuous (non-constant) discharge field in each element.

If the solution is smooth enough, the exponential rate of
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convergence enhances the quality of the streamlines, for

example in both the diverging zone close to the

boundaries and in the converging zone close to the

diagonal of the aquifer (Fig. 4f). This is in agreement

with numerical and theoretical results, stating the high
convergence rate for the LDG method [10,11,17].

7.3. Example 3

Factors that cause difficulties and inefficiencies when
using spectral methods are irregular domains and vari-

able resolution requirements in different parts of a large

domain. The discontinuous Galerkin formulation allows

for dividing the domain into elements that follow the

domain geometry, and for using a different order of

approximation and different transmissivity in each ele-

ment. In this third numerical experiment we explore the

ability of the LDG to deal with discontinuities in per-
meability. The example aquifer is a square (100 m · 100
m) and is divided into 25 zones with different trans-

missivity (Fig. 5a). The transmissivity ranges from 1 to

10�2 m2/day. We impose boundary conditions of zero

flux for the upper and lower side of the aquifer, constant

head equal to 10 m for the left side and constant head

equal to 0 m for the right side. Again, in the first com-

parison, we consider the streamlines after 24,000 days,
close to the steady-state solution.

We utilize the solution obtained with the LDG and

polynomial order 9 in the elements for comparison with

numerical experiments (Fig. 5b). Because the streamline

distribution does not present perceptible differences by

increasing the order, we call this solution the �exact
solution’. The LDG formulation is applied to the same

problem with different polynomial order in each element
(order 2 and order 4 in Fig. 5e and f). Even with a low

order approximation, the LDG solution is close to the

streamline distribution of the �exact solution’ (compare

Fig. 5e and f with Fig. 5b). In contrast, streamlines

obtained with the FEM using a number of nodes equal

to the number of evaluation points in the LDG

approximation exhibit strong discrepancies with the

�exact solution’ (Fig. 5c and d). With the spectral
method, however, problems can arise when imposing

boundary conditions. On the one hand, the weak for-

mulation utilizing fluxes at the element boundaries

greatly increases the flexibility of the method in sepa-

rating the domain into elements, but on the other hand

it does not ensure a rigorous treatment of the boundary

conditions. The head values at the Dirichlet boundaries

are not enforced directly as in the finite-element method;
rather they are transformed into an integral flux. Dis-

crepancies between the boundary conditions and the

approximated solution can occur for low approximation

order. Similarly, the zero-flux boundary condition is

enforced in an integral form, and local (albeit small)

normal discharges can appear. A direct consequence is
that with a low order approximation, streamlines can

cross the impervious boundaries (Fig. 5e).

In this section we have compared two codes for the
time-dependent formulation of the flow. Time stepping

methods are usually selected to achieve some prescribed

accuracy at the lowest cost––that is, to minimize the

product of the cost per time step and the number of time

steps needed. These methods are either explicit or im-

plicit, emphasizing speed per time step or minimizing the

number of time steps respectively. The finite-element

code MODFE utilizes the Modified Incomplete-Chole-
sky Conjugate-Gradient (MICCG) and an implicit, first

order algorithm for the time integration [18]. The
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method is unconditionally stable, but a time step that is

too large can cause the temporal error to dominate,

particularly in the first part of the transient simulation.

When the system reaches the steady state, the temporal

error decays because the solution becomes independent
of time, and the spatial error is dominant.

We then compare the error of the LDG method using

different polynomial orders (p-refinement) with the error

of the FEMmethod. The error is calculated by using Eq.

(23), evaluated on N points chosen as the centers of the

triangles of a finite-element mesh with 201 · 201 nodes.

Since the analytical solution of the case studied does not

exist, we compare each approximation with the �exact
solution’ reported in Fig. 5b.

The discrete 2-norm of the discharge error for sev-

eral LDG and FEM solutions is plotted in Fig. 6a and

b as a function of the degrees of freedom after 24,000

days, when the system is very close to steady condi-

tions. For both the x-component and y-component of

the discharge the convergence rate (slope of the line) is

higher for the spectral method than for the finite-ele-
ments method (Fig. 6a and b). Since the simulation is

time-dependent, the same comparison is performed

after 2000 days, when the head transient is passing

through the central strong heterogeneity region in Fig.

5a. Again the convergence rate is higher for the spectral

method (Fig. 6c and d). In this test case the p-refine-
ment of the LDG method does not show exponential

convergence, as it is the case for smooth solutions [11],
since the discontinuities in transmissivity degrade the

convergence rate of the solution. Despite the lack of

exponential convergence, a p-refinement with the LDG

method is more accurate than the FEM method with

the same number of degrees of freedom. However, the

advantages of a more accurate solution can be under-

mined by a dramatic increase in the utilization of CPU

time and computer memory.
With the aim of comparing the performance of the

two methods with respect to the CPU time, we must first

consider the ‘‘correct’’ choice of the time step for the

implicit finite-element algorithm. A time step that is too

large, even if it allows to compute the solution utilizing

less CPU time, can involve a temporal error which

compromises the accuracy of the method. This is par-

ticularly evident during the first part of the simulation,
where the time dependence is very strong. In Fig. 7a, for

the FEM, the error is plotted as a function of the ratio

between the time step Dt and the mesh size Dx after 240

days. Because the finite-element method is second order

in space for the head, it follows that it is first order for

the discharges. The method is also first order in time, so

the error scales with the ratio Dt=Dx. The left part of Fig.
7a shows that for small time steps the spatial error
dominates whereas for large time steps the temporal

error is predominant. A value of Dt ¼ 2Dx reasonably

divides the two zones, and represents the maximum
allowable time step without incurring large temporal

errors. For the FEM method we then use a timestep

Dt ¼ 2Dx, with Dx the mesh size.

In Fig. 7b we report results obtained by running the

two codes with different numbers of degrees of freedom

on an Origin 200 s at 180 MHz. The CPU time for each

simulation is plotted as a function of the error (as pre-

viously defined) after 24,000 days of simulation. The
CPU time required for the two methods is of the same

order of magnitude, and the LDG method is advanta-

geous when a small final error is required. The higher

accuracy of the spectral method can then justify the

higher computational cost.
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The same example was used in Mos�e et al. [29] to study the accuracy of

the mixed finite-elements method; (b) streamlines for the aquifer of

figure (a) calculated with the LDG method and order basis one (steady
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basis two after 50,000 days of simulation; (d) streamlines calculated

with the LDG method with order basis four; (e) streamlines calculated

with the LDG method with order basis nine. These results can be di-

rectly compared with the results reported in Mos�e et al. [29] (see the

text for a discussion).
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However this result has to be judged only qualita-

tively. Usually we are interested in modeling the evolu-

tion of features at a time scale longer than the time scale

of the potential head diffusion across a cell. If this is the

case implicit methods as the program MODFE are

certainly more efficient. Furthermore, caution should be

exercised in interpreting CPU times based on different
computer models, as programming techniques may

influence CPU times.

A recent implicit implementation of the LDG method

[34] using a matrix-free Newton–Krylov–Schwarz algo-

rithm can further improve the efficiency of the LDG

method. Results presented in Rasetarinera and Hussaini

[34] show that the implicit formulation is 50 times faster

than the explicit method herein presented.
The superiority of the LDG method is instead com-

pletely manifest in the memory storage. Few evaluation

points and a suitable interpolation in the LDG give the
same accuracy of a FEM with many more nodes. Even if

we consider the total number of variables that we have

to store in the LDG method (i.e. head, x and y dis-

charges) the comparison is in favor of the spectral

approximation (Fig. 7c). However, nowadays memory
storage is of minor importance given the availability and

low cost of computer memory.

7.4. Example 4

In the fourth example the LDG method is compared

to the hybrid finite-element method described in Mos�e
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et al. [29]. In the hybrid finite-element method the po-

tential head and the discharges are simultaneously cal-

culated and satisfy an exact water balance in each

element. This formulation overcomes the problem of

standard finite elements where the velocity is discon-
tinuous at the element boundaries, reducing the accu-

racy in the calculation of the discharges (see Example 3).

We utilize the same domain described in Fig. 16 of

Mos�e et al. [29]. A squared aquifer with side dimension

of 100 m is divided into 100 elements with transmis-

sivity ranging from 1 to 0.001 m2/day (Fig. 8a). The

head at the higher and lower sides of the domain is

kept constant and equal to 100 and 90 m respectively,
whereas the lateral sides are set as impermeable (zero

flux). Since the solution derived in Mos�e et al. [29] was

calculated resolving the steady-state problem, we utilize

our time-dependent method with an initial condition of

90 m everywhere, and we run the model until it reaches

the final steady-state solution. The solutions of the two

methods can thus be qualitatively compared.

Once again we increase the order of the basis in each
element of the LDG, since we have already shown that a

p-refinement is more efficient than an h-refinement.

Solutions with polynomial order one, two, four, and

nine are reported in Fig. 8b–e respectively. A compari-

son with the results showed in Mos�e et al. [29] reveals

that only the solution with order nine realistically

approximates the exact solution, whereas in the other

approximations the resulting streamlines are poorly re-
solved. It is important to note that Mos�e et al. [29] al-

ready obtain accurate streamlines with mesh 40 · 40
(4800 unknowns), whereas the solution with the LDG

method with 100 elements of order 4 (7500 unknowns) is

still inaccurate in terms of streamlines. Thus the supe-

riority of the mixed finite-element method is fully

manifest when few degrees of freedom are used.
8. Conclusions

We applied the discontinuous spectral Galerkin

method to the groundwater flow problem and compared
the results with those obtained by a standard finite-

element and a mixed finite-element method. The dis-

continuous spectral Galerkin method provides highly

accurate results for the discharge field with a reasonable

CPU time. The following conclusions have been derived

from the simulations presented in this paper: (i) With the

discontinuous spectral Galerkin method it is possible to

improve the accuracy of the solution by increasing the
number of elements (h-refinement) of the polynomial

order inside each element (p-refinement). In aquifers

with homogeneous transmissivity the convergence rate

with a p-refinement is higher than the convergence rate

with an h-refinement. (ii) When the method is applied to

aquifers with a complex distribution of potential head,
the discontinuous formulation produces jumps at the

element boundaries, particularly when low order poly-

nomial basis functions are used. To circumvent this

problem the approximation order needs to be increased

in areas where the potential head surface is extremely
folded. (iii) The discontinuous formulation makes it

possible to locally increase the order of the elements.

This is the major advantage of the scheme, which pro-

vides extreme flexibility when complex flows are studied

(a local p-refinement is not possible with finite elements,

and finite differences). (iv) The weak formulation uti-

lized to match the different elements can produce poor

results at the boundaries, especially when low order
polynomials are utilized in the presence of non-smooth

solutions. (v) The discontinuous formulation is partic-

ularly effective in aquifers with differences in transmis-

sivity, where it is possible to assign different elements to

zones with different transmissivity. (vi) Comparison

between the LDG method and the standard FEM in a

aquifer with differences in transmissivity proves that the

LDG method with a p-refinement has a higher conver-
gence rate than the standard FEM. However the con-

vergence rate is not exponential because of differences in

transmissivity. For a given accuracy, the method re-

quires far fewer evaluation points than the finite-element

method. (vii) Comparison between the LDG and the

mixed finite-elements method in an aquifer with differ-

ences in transmissivity clearly shows that the mixed fi-

nite-element method is superior, especially when low
order polynomials are utilized in the LDG.

We then conclude that the LDG method is suitable

for the calculation of the groundwater flow field in

applications that require a very high accuracy, for which

the high order of the approximation and the high con-

vergence rate are necessary. The discontinuous formu-

lation allows to assign a different transmissivity to each

mesh element, favoring the application of the scheme to
heterogeneous aquifers. Once the transmissivity field is

assigned, it is more efficient to increase the polynomial

order (p-refinement) rather than to increase the number

of elements (h-refinement) in each aquifer zone. Since

the performance of the method increases when high

order elements are used, it is preferable to apply the

LDG method to aquifers that are divided in few zones

with different transmissivity, rather to aquifers with a
high heterogeneous transmissivity field. Finally the

simulations presented in this paper can be viewed as a

benchmark for a coupled flow field and mass transport

spectral model.
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