
  PROOF COPY [HY/2002/022956] 001406QHY  

  PRO
O

F CO
PY [HY/2002/022956] 001406Q

HY  
Numerical Solution of the Dam-Break Problem

with a Discontinuous Galerkin Method
Sergio Fagherazzi1; Patrick Rasetarinera2; M. Youssuff Hussaini3; and David J. Furbish4

Abstract: A discontinuous Galerkin method for the solution of the dam-break problem is presented. The scheme solves the shallow
water equations with spectral elements, utilizing an efficient Roe approximate Riemann solver in order to capture bore waves. The
solution is enhanced by a projection limiter that eliminates spurious oscillations near discontinuities. The main advantage of the model is
the flexibility in approximating smooth solutions with high-order polynomials and resolving at the same time discontinuous shock waves.
Furthermore, the finite element discretization is capable of handling complex geometries and producing correct results near the bound-
aries. Both theh- andp-type extensions are investigated for the one-dimensional dam break, and the results are verified by comparison
with analytical solutions. The application to a two-dimensional dam-break problem shows the efficiency and stability of the method.
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Introduction

In recent years, several new numerical methods have been devel-
oped to solve systems of hyperbolic equations. A typical example
of a hyperbolic system is the shallow water equations utilized in
modeling fluid flow in rivers and estuaries. The solution of hy-
perbolic equations is complicated by the fact that, under particular
conditions, they lead to discontinuous solutions. This is the case
of the break of a dam in a river, in which the sudden dam collapse
produces a bore of finite amplitude~shock! traveling at fast speed
in the domain.

Common computational techniques utilized to solve the shal-
low water equations are based on finite difference methods that
solve the differential form of the shallow water equations~Leen-
dertse 1967; Abbot et al. 1973!. These methods, however accurate
where the solution is smooth, are not suitable to solve the hyper-
bolic equations near discontinuities~shock waves!. Recent meth-
ods, which can be named shock-capturing high-resolution
schemes, compute flow discontinuities sharply and without oscil-
lations. These methods solve the shallow water equations in inte-
gral form, keeping in account, in that way, discontinuous solu-
tions. To increase the resolution of discontinuities, the
incorporation of the physical properties of wave propagation is
necessary, as is, in particular, the solution of the Riemann prob-
lem springing between two nodes or elements with a jump in the

values of the variables. These methods can be developed on Car-
tesian grids~Toro 1992; Zoppou and Roberts 2000! or through a
finite volume discretization~Mingham and Causon 1998; Zhao
et al. 1994; Alcrudo and Garcia-Navarro 1993!, where the latter
increases the flexibility in dealing with boundary conditions and
complex flow geometries.

In each of these methods, the link between two nodes takes
place with an approximate Riemann solver. Particularly effective
are the HLL flux method~Harten et al. 1983! utilized in Mingham
and Causon~1998!, the Roe approximate Riemann solver~Roe
1981! utilized in Alcrudo and Garcia-Navarro~1993! and Jha
et al.~1995!, and the weighted average flux~WAF! introduced by
Toro ~1989! and utilized in Zoppou and Roberts~2000!, Toro
~1992!, and Fraccarollo and Toro~1995!. Higher-order methods
often present oscillations near discontinuities that can be elimi-
nated through suitable flux or slope limiters, which have to be
incorporated in the finite difference or finite volume formulation.
Examples are van Leer’s monotonic upstream schemes~MUSCL!
approach~van Leer 1979! applied in Alcrudo and Garcia-Navarro
~1993! and Mingham and Causon~1998!, and the SUPERBEE
~Roe 1985! and the MINIMOD@see Hirsch~1989!#, both applied
in Fraccarollo and Toro~1995!.

At the same time, far from discontinuities, the solution can be
smooth and suitable for calculation with high-order approximat-
ing polynomials, i.e., spectral methods~Fornberg 1996; Canuto
et al. 1998!.

Discontinuous Galerkin methods@see Cockburn et al.~2000!
for a review# are then optimal candidates for the solution of com-
plex problems such as the dam break. These methods couple a
discontinuous spatial discretization involving flux balances across
the interfaces of the elements~technique at the base of shock-
capturing schemes! with a high-order polynomial approximation
inside each element.

The weak formulation of the equations and the discontinuous
polynomial basis lead to an accurate representation of bore waves
~shocks!. At the same time, the spectral approximation increases
the convergence where the solution is smooth, allowing the use of
fewer computational nodes. Finally, the discretization of the do-
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main in finite elements is extremely effective in modeling com-
plex geometries.

In this paper, a discontinuous Galerkin method, the RKDG
method~Cockburn and Shu 1998; Bassi and Rebay 1997!, is uti-
lized to solve the dam-break problem@see also Schwanenberg and
Kongeter ~2000!#. The method applies an explicit Runge-Kutta
time discretization and is highly parallelizable. High-order poly-
nomials inside each segment in 1D or each quadrilateral in 2D are
utilized. The elements are connected through numerical fluxes
expressed as an approximate Riemann solver~Roe numerical
flux!, and a projection limiter prevents oscillations near solution
discontinuities~Biswas et al. 1994!. The method is applied to the
classical one-dimensional problem. In the part of the domain
where the shock is not present~reservoir!, two convergence
analyses forh refinement~increasing the number of elements! and
p refinement~increasing the order of the polynomials utilized in
each element! are performed. In the part where the shock is
present~tailwater!, the limiter prevents the formation of oscilla-
tions and only theh-type extension is studied. The method is then
applied to a two-dimensional dam-break problem where its flex-
ibility can suitably model the complex geometry of the system.

Discontinuous Galerkin Formulation

To illustrate the discontinuous Galerkin method, the conservation
form of the two-dimensional shallow water equations is consid-
ered
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wheref5gh; v5(u,w) is the velocity vector;g5gravity accel-
eration; andh5water depth. In Eq.~1!, a flat bottom surface is
assumed and bottom friction is neglected@for a complete descrip-
tion of the shallow waters equations, see Dronkers~1964!#.

To compute an approximate solutionUh of Eq. ~1!, the domain
is partitioned into nonoverlapping quadrilateralsEi . In each ele-
mentEi , Uh is written as a polynomial expansion
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where the basis functionsCk5polynomials;K5number of de-
grees of freedom in the elementEi ~i.e., the number of collocation
points!; and Ûk

i 5degrees of freedom that are computed by solv-
ing a weak formulation of Eq.~1!
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with Fh5F(Uh
i ) and Gh5G(Uh

i ). Using Green’s formulas, Eq.
~4! is recast as
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where]Ei5boundary ofEi andn5(n1 ,n2) denotes the unit out-
ward normal vector. The third term in Eq.~5! is the integral of the
function~F,G! on the element boundary and represents the flux of
the conserved variables~momentum and water volume! outside
~or inside! the element. This term is the only connection between
two contiguous elements and allows the construction of the solu-
tion within the domain. Since the conserved quantities are in gen-
eral discontinuous across the interfaces of contiguous elements,
we replace the flux (Fhn11Ghn2) with a numerical fluxH̄ that is
an approximation of the real flux on the edges of the mesh ele-
ments. Clearly the numerical flux will be a function of the con-
served variables at the left and at the right of each edge, but,
instead of taking a simple average of the two values, a suitable
Riemann solver is utilized to capture the wave properties of the
solution. The numerical flux is thus the determinant factor for a
correct approximation of discontinuous solutions.

If Uh
i andUh

j are the values of the conserved variables at the
inside and outside interface of the element, the numerical fluxH̄
can be defined as

~Fhn11Ghn2!u]Ei
5H̄~Uh

i ,Uh
j ,n! (6)

To evaluate Eq.~5!, it is convenient to map the elementEi into
the reference square@21,1#3@21,1#. The integrals in Eq.~5! are
then computed using the Gauss quadrature formula
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that is exact for polynomialsf of order up to 2N11. Here
jk5Gauss-Legendre collocation nodes associated with the weight
vk @see Canuto et al.~1998! for a detailed description#. Using a
tensor product of the Lagrange interpolating polynomials as basis
functions, the approximate solution~3! in Ei reads
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(8)

with Ûk,l
i 5Uh

i (jk ,h1) and Lk5Lagrange polynomial of orderk.
N and M are the number of collocation points in thex and y
directions, respectively, so that the total number of degrees of
freedom isK5N3M . Hence, from Eq.~5!, K equations for the
nodal values of the solution at the Legendre quadrature points
~also called collocation points! are obtained.

To complete the method, an explicit third-order TVD Runge-
Kutta scheme~Shu and Osher 1988! is used to discretize the
temporal derivative in Eq.~5!. The time stepDt is then restricted
by a Courant-Friedrichs-Levy condition

Dt<c1 minS hmin
i

Cmax
i max~1,N2,M2!

D (9)
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where hmin

i 5length of the smallest edge ofEi and
Cmax

i 5maximum, in absolute value, of the wave speeds inEi . For
the shallow water equations we have

Cmax5max~ uAu21w21Afu,uAu21w22Afu! (10)

The constantc1 depends on the order of the Runge-Kutta method
implemented and on the orderN andM of the polynomial basis in
thex andy directions, respectively. In the present study, this con-
stant is set toc150.5.

Roe Numerical Flux

The choice of the numerical flux in Eq.~6! is important because it
determines the properties of the method. The computation of the
numerical flux~6! has been the subject of several works in recent
years~Toro 1992!. In the present paper, we use the Roe numerical
flux that is often utilized in finite-difference and finite-volume
methods.

The Roe numerical flux function is given by

H̄~Ui ,Uj ,n!5
1

2
@H~Ui !1H~Uj !#2uĀu~Ui2Uj ! (11)

whereH5Fn11Gn2 andĀ5]H/]U is the Roe matrix that is the
Jacobian matrix of the projection of the flux in the normal direc-
tion n, evaluated at some average state to satisfy the relationship

H~Ui !2H~Uj !5Ā~Ui2Uj ! (12)

In Eq. ~11!, the matrix uĀu introduces numerical viscosity that
artificially smears discontinuities.

For the two-dimensional shallow water equationsĀ is
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To evaluate the flux~11!, uĀu is computed as

uĀu5RuLuR21 with Ā5RLR21 (15)

HereR is the matrix of the right eigenvectors ofĀ
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ū2 c̄n1 n2 ū1 c̄n1
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D
andL5diag(v̄"n2 c̄,v̄"n,v̄"n1 c̄) is a diagonal matrix whose en-
tries are the eigenvalues ofĀ.

Projection Limiting

Because of the polynomial representation~3! of the solution, the
presence of discontinuities might cause spurious oscillations
when high-order polynomials are used. To avoid these nonphysi-
cal oscillations, a limiting procedure developed in Biswas et al.
~1994! is performed before each Runge-Kutta stage. For the sake
of simplicity, we first describe the method for the one-
dimensional case.

First, the Legendre coefficients of the solution in each element
Ei are computed as
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i 5
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wherel k5Legendre polynomial of orderk ~Canuto et al. 1998!.
Then, fork5N,...,1 thecoefficientsak

i of each elementEi are
limited using
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It must be noted that the coefficientsak are limited for all the
elements before the coefficientsak21 . The limited solution in
each elementEi is then
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For the two-dimensional case, the Legendre coefficients in the
elementEi are computed as
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where coefficients$ak,0%k5N,...,1 and $a0,l% l 5N,...,1 are limited
using the one-dimensional procedure in thex direction andy di-
rection, respectively. The limited solution in the elementEi is
given by

Uh
i ~j,h!5 (

k,l 50

N

ak,l
i l k~j!l 1~h! (22)

A better accuracy may be obtained when the limiter~18! is
applied to the Legendre coefficients of the characteristic variables
g5R21U where the matrixR is evaluated using the average val-
ues ofU in each element. Operatively the limiting procedure is
implemented as follows:~1! first the variables~water height and
discharges! are transformed in the characteristic variables with a
matrix multiplicationg5R21U; ~2! the Legendre coefficients of
the solution in each element are then calculated with Eq.~21!; ~3!
the coefficients are modified~limited! applying Eqs.~18! and~19!
first in thex and then in they direction; ~4! the limited solution
expressed in terms of the original variables is finally recon-
structed multiplying the characteristic variables byR (U5Rg).
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One-Dimensional Dam Break

In the first numerical test, the one-dimensional dam break is
solved in the domain@0,1#. At the beginning of the simulation, a
dam divides the domain in two parts: the reservoir at the left and
the tailwater at the right. The initial conditions are

f~x,0!5H fL51.0, 0<x< 1
2

fR50.1, 1
2,x<1

(23)

u~x,0!50, xP@0,1# (24)

The dam is instantaneously removed and the solution computed in
time until t50.4. The exact solution for this problem can be

found in Stoker~1957! and Wu et al.~1999!. Using the charac-
teristic lines@Fig. 1~a!#, the corresponding water levels are calcu-
lated@Fig. 1~b!#. The critical depth and the critical velocity estab-
lish at the dam location, and do not vary during the entire
simulation. In the reservoir, a rarefaction wave propagates to the
left, whereas in the tailwater a shock wave forms and propagates
to the right~Fig. 1!. The application of the Hugoniot conditions
allows us to analytically find the shock height and speed~Stoker
1957!.

In the numerical simulation, the domain is descritized using
100 collocation nodes, 50 in the left and 50 in the right part. In
the tailwater region, the domain is divided into 25 elements, each
containing two collocation points (N51, order 1 polynomial
basis!; the projection limiting procedure is applied in this region
in order to avoid oscillations due to the shock discontinuity. In the
reservoir, we use 10 elements each containing five collocation
points (N54, order 4 polynomial basis!. As we can see in Fig. 2,
the solution is free of oscillations near the discontinuity and the
shock wave is resolved with two to four collocation points. We
can directly compare the discontinuous Galerkin solution with the
high-resolution finite volume method utilized in Toro~1992!. The
solution shown in Fig. 14 of Toro~1992! was calculated, with the
same number of mesh points, utilizing the WAF method with the
TS approximate Riemann solver and the TVD function SUPERA
@see Toro~1992! for the method implementation#. We note that
the high-resolution method utilized by Toro~1992! has a sharper
shock representation. This is because the shock occupies at least
one element and the elements in the discontinuous Galerkin
method are larger, or contain more points, than the elements in
finite-volume methods. On the other hand, the solution in the left
half of the domain is more accurate, with low dissipation and
good resolution of the rarefaction wave due to the high order of
the polynomials utilized.

Fig. 1. One-dimensional dam break.~a! Characteristic lines in the
x-t plane;~b! water levels. Numerical values describe the exact so-
lution at timet50.4.

Fig. 2. Numerical solution~circles! and exact solution~line! of dam-
break problem at timet50.4. In the left part~reservoir! polynomials
of order 4 with a filter are used; in the right part~tailwater! polyno-
mials of order 1 with a slope limiter capture the bore.

Fig. 3. Convergence analysis for theh-type extension in the tailwa-
ter. The number of collocation points is increased by augmenting the
number of elements. For each curve, polynomial orderk is fixed.
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To show the convergence properties of the discontinuous
Galerkin method, an error analysis using different refinement
strategies is presented. To this end, the domain is split in two parts
and each part is studied separately. The right part corresponds to
the domain@1/2,1# and a constant critical water height and critical
velocity are imposed at the left boundary. Att50, the initial

condition isf50.1 andu50. In the left part@0,1/2#, the flow is
subcritical andf51 is imposed atx50 while the critical height
is imposed atx51/2. The errors are measured using the discrete
L1 norm computed at the collocation points

Error5iEi15
( j 50

N uU j2uj u
N11

(25)

whereU j5numerical solution at the pointj and uj5exact solu-
tion at the same point. The simulations were carried out with a
SGI Origin 200 with 180 MHz CPU computer.

Fig. 3 shows the convergence rate of the solution in the right
domain when anh-refinement strategy is used, i.e., the number of
elements in the discretization is increased while the order of the
polynomial basis in each element remains the same. Four curves
are plotted, each corresponding to a different order of the poly-
nomial basis (N50,1,3,5, respectively!. The error is plotted
against the total number of collocation points. The results show
that the approximation with first-order polynomials (N51) leads
to the best convergence rate. On one hand, the use of constant
basis functions (N50) causes high diffusion, smoothing both the
shock and the rarefaction wave; on the other hand, the utilization
of polynomials with order greater than 2 is counterproductive
because the limiter lowers the order of the numerical approxima-
tion to 1 near the shock. Even a comparison of the CPU time
needed to reach the numerical solution with a predetermined error
is favorable to the use of a first-order polynomial basis~Fig. 4!.
The time step utilized in these simulations is derived from Eq.~9!.

In the reservoir, we know that a rarefaction wave is present
without shocks. The lack of discontinuities in the solution allows
us to study bothh- andp-type refinements without the projection
limiting procedure.

Fig. 4. CPU time with respect to the error forh-type extension in the
tailwater;k is the order of the polynomials utilized

Fig. 5. Convergence analysis for theh-type extension in the reser-
voir. The number of collocation points is increased by augmenting the
number of elements. For each curve, polynomial orderk is fixed.

Fig. 6. Convergence analysis for thep-type extension in the reser-
voir. The number of collocation points is increased by augmenting the
order of the polynomials inside each element. For each curve, the
number of elements is fixed.
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The error obtained with theh-type refinement is plotted as a
function of the number of collocation points in a bilogarithmic
plot, so that the slope of the curve indicates the convergence rate
of the method~Fig. 5!. Since the solution has a discontinuity in
the first derivative, we found that the convergence rate is at most
equal to 1 even with high-order polynomials~Fig. 5!. In the
p-type refinement, the number of elements is maintained constant
and the number of collocation points is increased by augmenting
the polynomial order in each element. The convergence rate of
the method is found to be close to 2, i.e., double that with theh
refinement~Fig. 6!. Similar results have been found for theh-p
extension of the finite element method applied to the Helmholtz
equation~Babuska and Suri 1994!.

These results confirm that, given a fixed number of collocation
points, it is preferable to choose few elements with high-order
polynomials than several elements with low-order polynomials
for smooth solutions. The utilization of high-order polynomials is
convenient even when comparing the processor time for the simu-
lation, and that despite the demanding CFL condition~9! for the
time step~Fig. 7!.

To show the superiority of the approximation with high-order
polynomials, we focus our attention on the pointx50.1 in the

Fig. 7. CPU time with respect to the error forh-type extension in the
reservoir;k is the order of the polynomials utilized

Fig. 8. Detailed comparison of numerical solution~circles! and exact
solution ~line! near pointx50.1

Fig. 9. Two-dimensional dam-break problem solved with a uniform
square grid. Each element has four collocation points~order 232!:
~a! water surface 7.2 s after break of dam,~b! contour plot of water
depth.
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reservoir at timet50.4. Although oscillations due to the discon-
tinuity in the first derivative are present, the solution with poly-
nomials of order 9@Fig. 8~c!# is closer to the exact solution than
the solutions with lower polynomial order@Figs. 8~a! and 8~b!#.
The solution can be enhanced utilizing an exponential cutoff filter
~Majda et al. 1978! @Fig. 8~c!#.

When combining the left and the right part, the time stepDt
must be identical in each element. A higher-order approximation
in the left part, leading to a small time step, automatically slows
down the computation in the right part, so that polynomial bases
of order lower or equal to 4 are preferred.

Two-Dimensional Dam Break

In this section, the discontinuous Galerkin method is applied to a
two-dimensional dam-break problem. The geometry of the com-
putational domain coincides with the example reported in Fen-
nema and Chaudhry~1990!, Alcrudo and Garcia-Navarro~1993!,
and Ambrosi~1995!. A dam is located in the middle of a square
domain of dimensions 2003200 m. At the beginning of the simu-
lation, the water level inside the reservoir is equal to 10 m and the
level of the water in the tailgate is 5 m. When the dam collapses,
the water invades the tailgate@Fig. 9~a!#.

The simulations were performed on two different grids. The
first grid is uniform with 40340 square elements and first-order
polynomial functions in each element. The projection limiting
procedure is applied in the tailgate region to avoid the nonphysi-
cal oscillations due to the shock discontinuity. Fig. 9~b! shows the
computed solution att57.2 s. We can see that the shock front is
sharply captured by the scheme. The second grid is nonuniform,
with larger rectangular elements and high-order polynomial bases
in the reservoir~Fig. 10!. Although the second grid has fewer
collocation points, the solution computed on both grids is identi-
cal, showing the flexibility of the discontinuous Galerkin method.

Conclusions

The discontinuous Galerkin method is particularly suitable to
model systems of hyperbolic equations. In the dam break prob-
lem, the nonlinear character of the shallow water equations is
responsible for the formation of a bore wave that propagates a
finite speed in the computational domain. The weak formulation
and the discontinuous bases utilized in the discontinuous Galerkin
method are straightforward in treating such shock waves. At the
boundaries of each element the fluxes are resolved by Roe ap-
proximate Riemann solvers, which keep in account the physics of
the wave propagation. A slope limiter eliminates the spurious os-
cillations always present near shock fronts when using high order
methods. At the same time, far from discontinuities in the flow
field, it is possible to increase the polynomial order in the ele-
ments, achieving higher accuracy. Numerical results show that the
method is stable without oscillations near the shock front for 1D
and 2D problems. At the same time, an error analysis proves that
where the shock is not present, i.e., in the reservoir, an exponen-
tial convergence rate is ensured by means of high order polyno-
mials. In zones where the solution is smooth, ap refinement,
increasing the order of the polynomials inside the elements, is
thus more convenient than anh refinement, i.e. increasing the
number of elements.

Notation

The following symbols are used in this paper:
Ā 5 Roe matrix;
Ei 5 elementi of domain;

F,G 5 flux function in thex andy directions;
Fh ,Gh 5 flux function approximations;

g 5 gravity acceleration;

H̄ 5 numerical flux;
h 5 water depth;
l k 5 Legendre polynomial of orderk;
n 5 (n1 ,n2) unit outward normal vector;
R 5 matrix of right eigenvectors ofĀ;
t 5 time;

U 5 vector of conserved quantities;
Uh

i 5 solution approximation at timei;
Ûk

i (t) 5 projection coefficients;
u,w 5 velocities in thex andy directions;
x,y 5 space coordinates;
ak

i 5 Legendre coefficients;
(jk ,hk) 5 Gauss-Legendre collocation nodes in reference

square;

Fig. 10. Two-dimensional dam-break problem solved with high-
order elements in the reservoir. Rectangular elements have twelve or
eight collocation points~order 334 and 234!: ~a! water surface 7.2 s
after break of dam,~b! contour plot of water depth.
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L 5 diagonal matrix whose entries are eigenvalues of

Ā;
F 5 gh;

Ck(x) 5 polynomial basis; and
vk 5 Gauss-Legendre weights.
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