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[1] The tidal flow field in a basin of small dimensions with respect to the tidal wavelength
is calculated. Under these conditions, the tide becomes a standing wave oscillating
synchronously (with a flat water surface) over the whole basin. The shallow water
equations can thus be strongly simplified, expressing the discharge vector field in terms of
a potential function and a stream function. The potential function can be independently
solved with the continuity equation, and is responsible for the total water balance in the
basin. Moreover, the flow field derived from the potential function is shown to represent
the tidal motion in a deep basin with flat bottom. Departures from this situation are treated
with a stream function, that is, a correction for the potential function solution, and is
solved through the vorticity equation. The stream function accounts for the nonlinear
inertial terms and the friction in the shallow water equations, as well as bottom
topography. In basins where channels incise within shallow tidal flats, the solution
demonstrates that friction redistributes momentum, increasing the flow in the channels and
decreasing it on the flats. The model is tested in San Diego Bay, California, with
satisfactory results. INDEX TERMS: 4560 Oceanography: Physical: Surface waves and tides (1255);

4203 Oceanography: General: Analytical modeling; 4235 Oceanography: General: Estuarine processes; 4255
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1. Introduction

[2] The oscillatory motion of the tide in a lagoon pro-
duces water fluxes inside the basin and at the inlets that are
of fundamental importance for several nearshore processes.
For example, from a geomorphic point of view, the tidal
flow is the main force responsible for the creation and
evolution of dendritic channels that often dissect tidal flats
and salt marshes. Clearly the tidal flow is determinant for
the sediment budget and the dispersion of contaminants in
shallow lagoons, and its correct modeling becomes crucial
in assessing an eventual environmental risk.
[3] A powerful and widely used technique for the deter-

mination of tidal fluxes in a basin is based on the numerical
resolution of the shallow water equations, given the basin
shape and tidal characteristics. The numerical resolution of
this problem, accomplished with several refined methods
[see Velyan, 1992], yields to results of remarkable precision,
when compared to measured tidal velocities [e.g., Wang et
al., 1998]. However, in determinated situations, a correct
analysis of the equations and the application of suitable
simplifications that enhance the leading terms can be of
great scientific interest and provide simplified but physi-

cally based tools for different important applications. In the
context of tidal basins it is natural to wonder what is the
influence of the basin shape on the tidal flow, and whether it
is possible to separate this influence from the effect of the
basin bottom topography.
[4] This paper shows that, under precise hypotheses, it is

possible to split the tidal flow in a component dependent on
the basin shape and a component dependent on the basin
bottom topography. This mathematical development is not
only a mere exercise, but opens the door to physical
applications of great interest. In cases where the bathymetry
of tidal basins is not available, say for example when remote
sensing data are used, a simplified method that estimates the
tidal discharge within the basin, neglecting the bathymetry,
becomes helpful. Clearly we are also interested in knowing
what correction we need to add to this solution in order to
obtain realistic discharges with different bottom configura-
tions. Furthermore, the basin boundaries and the basin
bottom are features of the coastal landscape that evolve at
different timescales. The boundaries, often determined by
the shape of river paleo-valleys, usually vary with sea level
oscillations, i.e., in thousands of years. On the other hand,
the basin bottom is modified by several agents, including
for example a change in the sediment input from rivers and
the dredging of channels for navigation, that typically act at
a smaller timescale, from decades to centuries. Thus a
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method able to separate the component of the flow field
due to the basin shape from the component determined by
the bottom topography results straightforward in studying
the short term evolution of tidal basins and their channel
networks.
[5] When the tide enters a basin of limited dimensions,

the signal is reflected at the mainland boundaries, and the
tide assumes characteristics of a standing wave, with strong
currents around mid-tide and minimum velocity at high and
low water (slack water) [Wright et al., 2000].
[6] The fact that in small basins the tidal wave is similar

to a standing wave was pointed out by Schuttelaars and De
Swart [2000], as compared with the progressive character of
the tide in a large estuary [Lanzone and Seminara, 1998;
Friedrichs and Aubrey, 1994]. In a small basin an intuitive
approach is to consider water elevation to be flat and
oscillating synchronously with the tide at the inlet. This
assumption is common in classical studies of tidal inlets,
where the tidal basin is treated as a reservoir with oscillating
elevation and the flow along the inlet is calculated by means
of open channel hydraulics [Bruun, 1978].
[7] Schuttelaars and De Swart [1996] showed that, for

small tidal basins, the tidal wavelength is long with respect
to the basin dimensions, so that the water surface can be
considered flat as a first approximation (i.e., the phase
difference in different locations of the basin is negligible
and the water surface is oscillating synchronously every-
where). This hypothesis has been previously utilized to
calculate the discharge [Boon, 1975] and to explain the
velocity asymmetry [Pethick, 1980] in salt marsh creeks.
Healey et al. [1981] questioned the applicability of this
simplification in salt marshes, and Rinaldo et al. [1999b]
showed that discrepancies arise from the complex nonlinear
phenomenon of wetting and drying of the marsh surface.
The same hypothesis of a flat surface was adopted to study
the equilibrium bottom configuration in a rectangular tidal
basin [Schuttelaars and de Swart, 1999], to single out the
drainage area of salt marsh creeks [Rinaldo et al., 1999a],
and to model the cross-sectional evolution of marsh chan-
nels [Fagherazzi and Furbish, 2001].
[8] Even though the hypothesis of basin dimensions small

with respect to the tidal wavelength (hereinafter referred to
as ‘‘small embayment hypothesis’’) and the consequent flat
water surface has already been utilized in different studies,
there is an evident need to develop in detail the simplifica-
tions that this hypothesis yields to the tidal flow. We will
first present the simplified unidimensional formulation that
allows us to understand the basic concepts; the rest of the
paper is then the extensions of the same concepts to the full
bidimensional shallow water equations.
[9] In shallow water the unidimensional propagation of a

wave of small amplitude can be formulated with two
equations, continuity and conservation of linear momentum
[Stoker, 1957, p. 24],

@h
@t

¼ �h
@u

@x
; ð1aÞ

@u

@t
¼ �g

@h

@x
; ð1bÞ

with h the water surface elevation with respect to Mean Sea
Level (M.S.L), h the depth of the bottom with respect to

M.S.L., u the water velocity averaged over the vertical, g
the gravity acceleration, t time and x the space coordinate.
Equations (1a) and (1b) were derived considering an
incompressible fluid, eliminating inertial and diffusion
terms, neglecting the friction at the bottom and averaging
the unidimensional equations over the vertical direction. A
sinusoidal tidal wave traveling in one direction in an
unconfined domain is then governed by the two following
equations, derived from equation (1):

h ¼ a sinw t � x

c

� �
u ¼ c sinw t � x

c

� �
;

ð2Þ

where a is the wave amplitude, w is the angular frequency,
and c ¼

ffiffiffiffiffi
gh

p
the wave celerity in shallow water. Both

surface elevation and velocity vary in space and time, but
they are in phase, in the sense that u and h simultaneously
reach their maximum at a given time. Moreover the velocity
u scales with c = wl, where l is the tidal wavelength. On
the contrary, if the tidal wave reaches an obstacle, say a
vertical wall, it gets reflected, forming a standing wave. The
equations for the standing wave, obtained by summing two
waves given by equation (2) traveling in opposite direc-
tions, are

h ¼ 2a sinwt cos
w
c
x

u ¼ 2c coswt sin
w
c
x;

ð3Þ

where now x is the distance from the wall. In this case the
surface elevation and the velocity are out of phase, with the
maximum of velocity occurring for zero elevation and vice
versa. At a distance L from the wall small with respect to the
wavelength then wL/c = L/l is small and the approximations
cos w

c
L � 1 and sin w

c
L � w

c
L hold. Equation (3) then be-

comes

h ¼ 2a sinwt

u ¼ 2wL coswt;
ð4Þ

with the velocity proportional to Lw. The same equations
are obviously valid for each point closer to the wall.
Consequently, equation (4) show that for x < L the water
elevation is flat and oscillates synchronously with the tide,
whereas the velocity decreases proportionally to the
distance from the wall, going to zero for L = 0.

2. Shallow Water Equations

[10] The barotropic tidal motion in a well mixed basin is
described by the two-dimensional shallow water equations.
This system of equations is derived from the Reynolds
equations after vertical integration, with the hypothesis of
hydrostatic pressure distribution along the vertical
[Pedlosky, 1987, p. 59]. In conservative form the equations
read

@h*
@t*

þ @q*

@x*
þ @p*

@y*
¼ 0 ð5Þ
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@q*

@t*
þ @

@x*

q*2

h*þ h*

� �
þ @

@y*

q*p*

h*þ h*

� �

¼ �g h*þ h*ð Þ @h*
@x*

� Cf q*2 þ p*2
� �1=2 q*

h*þ h*ð Þ2
ð6Þ

@p*

@t*
þ @

@x*

q*p*

h*þ h*

� �
þ @

@y*

p*2

h*þ h*

� �

¼ �g h*þ h*ð Þ @h*
@y*

� Cf q*2 þ p*2
� �1=2 p*

h*þ h*ð Þ2
; ð7Þ

where q* and p* are the discharges per unit width in the x
and y direction, Cf a friction coefficient, h* and h* the
elevation of the water surface and the water depth with
respect to M.S.L. (for fixed bottom h* does not vary in
time). Herein the asterisk indicates dimensional quantities.
Introducing a scale H for the water depth, a length scale L, a
scale w for the tidal angular frequency, and a velocity scale
U, the quantities in equations (5), (6), and (7) are
nondimensionalized with

h* ¼ Hh; h* ¼ Hh; t* ¼ t=w; x* ¼ xL;

y* ¼ yL; p* ¼ UHp; q* ¼ Uhq;
ð8Þ

where p, q, h, h, t, x, y are the corresponding nondimen-
sional quantities. For traveling tidal waves the length scale L
is the wavelength [Prandle, 1991]. On the contrary, in a
limited basin, the tidal motion is constrained by the
proximity of the reflecting boundaries. The length scale L
is then the distance from the mainland, or, as expressed
here, the basin dimension.
[11] After nondimensionalization, the continuity equation

(5) becomes

@h
@t

þ U

Lw
@q

@x
þ @p

@y

� �
¼ 0: ð9Þ

Since the variations in water elevation have to be balanced
by the divergence of the water discharge, it follows that U �
Lw. This corresponds to equation (4), and shows that the
velocity in proximity of a reflecting boundary is propor-
tional to the distance from the boundary itself. Applying this
scaling to the nondimensional equations results in

@h
@t

þ @q

@x
þ @p

@y
¼ 0 ð10Þ

�
@q

@t
þ @

@x

q2

hþ h

� �
þ @

@y

qp

hþ h

� �� 	

¼ � hþ hð Þ @h
@x

� �� q2 þ p2
� �1=2 q

hþ hð Þ2
ð11Þ

�
@p

@t
þ @

@x

qp

hþ h

� �
þ @

@y

p2

hþ h

� �� 	

¼ � hþ hð Þ @h
@y

� �� q2 þ p2
� �1=2 p

hþ hð Þ2
; ð12Þ

where the two nondimensional parameters � and � are

� ¼ w2L2

gH
; � ¼ Cf

L

H
: ð13Þ

The parameter � is the squared ratio of the time it takes for a
long wave in shallow water to travel along the basin
L=

ffiffiffiffiffiffiffi
gH

p
ð Þ to the tidal period (1/w). The parameter �
measures the relative importance of the friction in the
specific basin. A small value of � implies a tidal wave
traveling at a fast speed and a water level almost in phase at
every point in the basin. Since the period of the tidal wave is
very long (12 or 24 hours), in basins of limited dimensions,
the tidal wave can be considered in phase everywhere.
Herein the basin dimensions are considered to be small, so
that L is negligible with respect to the tidal wavelength. In
this case the terms of order � can be neglected in equations
(10), (11), and (12). Under this simplification, equations
(11) and (12) reduce to @h/@x = 0 and @h/@y = 0,
respectively, showing that the water surface is flat and its
elevation equal to the value of the oscillating elevation at
the inlet (h(t) = hInlet(t)). Only equation (10) remains for the
determination of the two variables q and p, and the system is
undetermined. To obtain a solution, equations (10), (11),
and (12) are rewritten in terms of vorticity, subtracting the
derivative with respect to x of the third equation from the
derivative with respect to y of the second equation, thus
eliminating the derivatives of the water surface elevation h
[Zimmerman, 1978]. Another equation springs from the
sum of the x-derivative of the second equation and y-
derivative of the third equation. After elimination of the
terms in �, the new system is

@h0
@t

þr 	 q0 ¼ 0 ð14Þ

@�0

@t
þ q0

h0 þ h0
	 r

� �
�0 ¼

�0

h0 þ h0

@h0
@t

þ q0

h0 þ h0
	 rh0

� 	

�r
 �
jq0j

h0 þ h0ð Þ3
q0

" #
ð15Þ

r2h0 ¼ 0; ð16Þ

where the vector of the discharge per unit width q0 and the
vorticity �0 are, respectively

q0 ¼ q0; p0ð Þ; �0 ¼ r
 q0

h0 þ h0
; ð17Þ

with the subscript 0 indicating that the system has been
determined neglecting the terms of O(�). The two systems
(equations (14), (15), and (16) without the terms of order �)
and equations (10), (11), and (12) are equivalent if no part
of the basin floor dries during the tidal cycle and if the water
depth and the discharge per unit width are continuous with
continuous derivatives [Courant and Hilbert, 1953].

3. Potential and Stream Function

[12] To solve equations (14), (15), and (16) the vector
field q0 = (q0, p0) is rewritten as the sum of two new vector
fields, one irrotational (zero curl), and one solenoidal (zero
divergence) [Batchelor, 1967]. The transformation has gen-
eral validity, since any vector field can be split in this way
[Jeffreys and Swirles, 1972]. After introduction of a poten-
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tial function � for the irrotational field and a stream
function � for the solenoidal field, the discharge per unit
width is rewritten as

q0 ¼
@�

@x
þ @�

@y
; p0 ¼

@�

@y
� @�

@x
: ð18Þ

In vectorial form, introducing a potential vector B = (0, 0,
�), equation (18) reads

q0 ¼ r�þr
 B: ð19Þ

Substitution of equation (19) into equation (14) leads to the
following Poisson equation in � [Fagherazzi, 2002]:

r2� ¼ � dh0
dt

; ð20Þ

while substitution of equation (19) into equation (15) gives
a partial differential equation linking �, � and h0,

@�0

@t
þ r�þr
 B

h0 þ h0
	 r

� �
�0

¼ �0

h0 þ h0

@h0
@t

þr�þr
 B

h0 þ h0
	 rh0

� 	

�r
 �
jr�þr
 Bj

h0 þ h0ð Þ3
r�þr
 Bð Þ

" #
; ð21Þ

where the vorticity �0 expressed in terms of the potential
function and potential vector is

�0 ¼
r2C

h0 þ h0
� 1

h0 þ h0ð Þ2
r
 h0 	 r�þr
 Bð Þ: ð22Þ

[13] Under the hypothesis of small embayment, the
shallow water equations are then reduced to the two
equations ((20) and (21)) plus the water elevation as a
function of time. The advantages of this formulation are
many. Only two unknowns (�, �) remain instead of the
original three unknowns (q, p, h), since the water elevation
is everywhere equal to the elevation at the inlet. The value
of � is calculated directly from equation (20), and it is
independent of �. Moreover, equation (20) is linear and
allows the superposition of the results for each tidal
harmonic. The potential function � depends on the value
of dh0/dt at the instant in consideration, and it is not related
to the flow field at other instants of the tidal cycle. Once �
is calculated, the stream function � is derived from
equation (21). The stream function is nonlinear, so that �
cannot be calculated for each harmonic separately, and the
solution at the time under consideration is intrinsically
linked to the past solution. The system (equations (20)
and (21)) can be readily applied in basins with many
codominant tidal components. First the potential function
derived from the linear equation (20) is calculated for every
tidal component. Then the different solutions are added up
to form the total potential function, and equation (21) is
solved with � = ��i.

[14] With the introduction of a potential function and a
stream function, the solution is separated into two parts,
each bearing different characteristics of the flow field. The
potential function, determined through the continuity equa-
tion, accounts for the mass balance in the basin, and is
responsible for the exchange of water volume with the
ocean. It does not depend on bottom elevation, but only
on the area and shape of the basin, which, under the
hypothesis of flat water surface, are responsible for the total
mass balance. The solution based on the stream function,
with zero divergence, does not modify the amount of water
entering in the basin, but redistributes momentum (dis-
charge per unit width) taking into account bottom friction
and inertia. As will be seen later, the depth distribution
strongly influences the stream function and related flow
field.
[15] In order to solve equations (20) and (21), suitable

boundary conditions must be specified. At the border with
the mainland (boundary �1),the water flux is set to zero.
The no-flux condition is expressed as @�

@n ¼ 0 and @�
@r ¼ 0;

where n and r are the normal and tangent vector to the
boundary. In particular, the condition @�

@r ¼ 0 along the
boundary implies that the stream function has to be constant
on it. It thus can be set to zero, since adding an arbitrary
constant to � and � does not affect the solution. At the
basin inlets (boundary �2), the discharge normal to the inlet
cross section is exactly calculated from equation (20),
knowing the water surface variation inside the basin. How-
ever, at the inlet boundary the value of the discharge in the
direction tangent to the inlet cross section must be specified.
In general this flux depends on the inlet shape and inter-
action with the ocean. Herein it is assumed that the
discharge is always perpendicular to the inlet cross section
(zero tangent discharge). Hence along the inlet, @�

@n ¼ 0
and @�

@r= 0. As for � at the mainland boundaries, � is set
to zero at the inlet. The b.c. then become

@�

@n
¼ 0; � ¼ 0 on �1

� ¼ 0;
@�

@n
¼ 0 on �2;

ð23Þ

with n the normal direction to the boundary directed inward.

4. Small Oscillations Hypothesis

[16] To solve the bidimensional shallow water equations,
a common simplification considers the wave amplitude to
be small with respect to the water depth, allowing the
treatment of nonlinear terms with perturbation techniques
[Stoker, 1957]. This approach is based on the general
framework of small oscillations around an equilibrium
configuration of a physical system, where, in our case, the
equilibrium configuration is represented by still water in the
basin (a tidal amplitude approaching zero corresponds to no
motion). It is important to stress that this hypothesis is
independent of the hypothesis of basin of small dimensions
with respect to the tidal wavelength, even though the two
can be utilized simultaneously [Schuttelaars and De Swart,
1999].
[17] With the aim of shedding light on the structure of the

system (equations (20) and (21)), the assumption is made
that the tidal oscillation is small compared to the water
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depth. The water elevation can then be rescaled with the
tidal amplitude a,

h* ¼ ah ¼ cHh; with c ¼ a

H
; ð24Þ

where the parameter c represents the ratio between the tidal
amplitude and the water depth (for small oscillations c !
0). Substituting the new scaled variables in the continuity
equation (5), the velocity scale becomes U = cwL, showing
that for small oscillations the velocity is O(c). The vorticity
equation (15) becomes

@�0

@t
þ c

q0

h0 þ h0
	 r

� �
�0 ¼

�0

h0 þ h0
c
@h0
@t

þ c
q0

h0 þ h0
	 rh0

� 	

�r
 c�
jq0j

h0 þ h0ð Þ3
q0

" #
: ð25Þ

Both the convective inertial term and the friction term are
proportional to the square of the velocity, and can thus be
neglected. Elimination of the terms of O(c) in (25) yields

@�0

@t
¼ 0: ð26Þ

Moreover, supposing that the bottom elevation is constant,
substitution of equation (18) into equation (26) yields

@

@t
ðr2�Þ ¼ 0 ð27Þ

This, together with the b.c. (equation (24)), leads to the
result � = 0. This means that for small oscillations and flat
basin bottoms, the discharge per unit width is irrotational
and the potential function is sufficient for calculating the
flow field. Consequently, as already indicated by Fagher-
azzi [2002], the solution derived from the potential function
represents the tidal motion in deep basins with flat bottom
and weak friction, where the small oscillations hypothesis
holds.

5. Basin Friction Dominated

[18] For shallow estuaries, LeBlond [1978] showed that
frictional forces exceed acceleration over most of the tidal
cycle, and thus cannot be ignored. Utilizing the same
concept, Friedrichs and Madsen [1992] analyzed the gen-
eration of overtides from the nonlinear diffusion equation
determined by neglecting the inertial terms and balancing
friction with gravity in the De Saint Venant equations. In the
context of tidal motion in a small basin, the motion can be
considered frictionally dominated when � 1 and ��� 1.
The first condition assures that the friction term dominates
the inertial terms, whereas the second condition is necessary
for the hypothesis of small basin and flat water surface. If
this is the case, the friction term is not able to balance the
gravity term, as formulated by LeBlond [1978] and Frie-
drichs and Madsen [1992], and the flat water surface
approximation is still valid. At the same time, a large
friction term makes it possible to neglect the inertial terms
in the vorticity equation (21), which reduces to

r
 jr�þr
 Bj
h0 þ h0ð Þ3

r�þr
 Bð Þ
" #

¼ 0: ð28Þ

This nonlinear equation can be utilized to derive the stream
function from the potential function at each instant of the
tidal cycle. Because time derivatives are not involved, the
solution does not depend on the solution at other instants of
the tidal cycle. The parameter � does not appear in equation
(28) because only the relative value of the frictional term
between two different locations is important, rather than the
absolute value of the friction itself. The parameter � instead
plays a role when the frictional term is comparable to the
inertial terms. However, in the part of the tidal cycle near
slack water, when velocities are negligible, inertial terms are
important, and their elimination becomes questionable. The
three hypotheses, (1) basin of small dimensions, (2) small
amplitude of the tidal oscillation, and (3) basin frictionally
dominated, are independent of each other, and their
application depends upon the geometric and dynamic
characteristics of the tidal basin. In particular, the splitting
of the discharge in a potential function component and in a
stream function component is always valid if the basin has
small dimensions, even for tidal amplitudes comparable to
water depths. The small oscillation hypothesis was only
introduced to give a physical meaning to the potential
function solution, but this solution exists even if the water
depths are small and the bottom is uneven. In the same way,
the hypothesis of basin friction dominated was introduced to
further simplify the vorticity equation (21), but the stream
function solution is also valid in basins where the friction
does not dominate. In the examples reported in the next
section, equation (28) is adopted, since we consider small
embayments friction dominated. That does not alter the fact
that the same method can be applied to basins with weak
friction, substituting equation (28) with equation (21).

6. Results

[19] As a test example, the method is applied to a
schematic squared basin with a sinusoidal tidal signal with
amplitude 52 cm and period 12.42 hours. The basin is 5 km
wide, and a tidal inlet is situated in the middle of the right
side (Figure 1a). A channel 8 m deep departs from the inlet
and branches inside the basin in two separate channels that
end in tidal flats having water depth of 4 m and 2 m,
respectively (Figure 1a). Assuming a friction coefficientCf =
0.0023 and an average water depth H = 4 m, the represen-
tative nondimensional parameters become � = 0.009, � =
2.3. Since � is small, the small embayment theory can be
utilized. Also, while �� � 1, � > 1, so that friction
dominates the inertial terms. As a first approximation,
equation (28) can be utilized instead of equation (21).
[20] The numerical scheme utilized to solve equation (28)

is a finite difference method. Since equation (28) is non-
linear, the discharge module jr� + r 
 Bj is set to one for
the first iteration. Equation (28) is then solved discretizing
(r� + r 
 B) with central differences and solving the
resulting linear system with a preconditioned biconjugate
gradient method, since the corresponding matrix is not
symmetrical. Then the term jr� + r 
 Bj is updated with
the new solution values and equation (28) solved a second
time to derive a new approximation for the stream function
�. The method is repeated until convergence.
[21] We focus our attention on the maximum discharge

field, when dh0/dt is maximum.
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h ¼ a sin wtð Þ; dh0

dt

����
max

¼ aw ¼ 7:255 10�5m=s; ð29Þ

where a is the tidal amplitude and w the angular frequency.

[22] The portion of the flow calculated from the potential
function shows the typical vector field of a source point,
with the source corresponding to the inlet and the discharge
vectors with a sunburst pattern (Figure 1b). The stream
function portion of the discharge redistributes momentum
from the tidal flats to the channels, particularly for the lower
branch, where the elevation difference between tidal flats
and channel is higher. On the contrary the upper channel has
less influence on the tidal flow (Figure 1c). The total
discharge field shows a concentrated flux in the central
and lower channel and a uniform discharge in the upper part
of the basin (Figure 1d). The competition between channels
is then in favor of the most incised ones, that convoy the
highest water volume.
[23] The second example utilizes a squared basin with

two islands located in the middle and the same tidal forcing
of the first example (Figure 2a). The bottom elevation is
constant in the basin, a part from a deep channel departing
from the inlet. The same hypotheses, small embayment and
basin friction dominated, are valid for this example as well.
The presence of the islands modifies the potential function
portion of the flow field, characterized by currents wrapping
the two islands that provide water to the whole basin (Figure
2b). The channel has a local influence on the tidal flow, but
does not considerably change the fluxes in the zones far
from the inlet (Figures 2c and 2d). The splitting of the flow
field presented herein is thus valid even when complex
boundaries, islands, and multiple inlets are present.
[24] In the third example the method is applied to San

Diego Bay, California (Figure 3a). San Diego Bay is a tidal
basin connected to the Pacific Ocean by an inlet with an
artificial jetty that controls beach erosion. Since freshwater
flow in the bay is low, as is the average wind magnitude,
currents are predominantly produced by tides [Wang et al.,
1998]. The astronomical tide in San Diego Bay is mixed,
with the amplitude of the semidiurnal component M2 equal
to 52 cm (period 12.42 hours) and the amplitude of the
diurnal component K1 equal to 35 cm (period 23.93 hours)
[Wang et al., 1998]. The bathymetry of the bay shows the
presence of a channel that extends from the inlet through the
southern part of the bay, cutting the bay bottom close to the
eastern boundaries, in front of the city port (Figure 3b).
[25] The hypothesis of a flat water surface is particularly

valid for a small embayment with deep bottom. If the
surface of the basin is limited, then the time spent by the
tidal wave to propagate from the inlet to the extreme
boundaries is negligible with respect to the tidal period,
and the water surface is almost in phase everywhere. On the
contrary, bottom friction in shallow areas reduces the tidal
wave speed and attenuates the tidal peak as a consequence
of energy dissipation. In San Diego Bay the phase shift
between the inlet and the extreme boundaries is only 8 min
for the M2 tidal component [Wang et al., 1998], thus

Figure 1. (oppsosite) (a) Schematic tidal basin with
incised channels and tidal flats having different water
depths. (b) Component of the maximum flood discharge
calculated from the potential function. (c) Component of the
maximum flood discharge calculated from the stream
function. (d) Total maximum flood discharge (sum of the
potential and stream solutions).
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justifying the application of the present model. Moreover,
the phase difference between tides and tidal currents is
approximately 90, indicating that the tide is essentially a
standing wave [Wang et al., 1998]. The representative
parameters for San Diego Bay are L ’ 16 km (basin length),
w = 1.37 10�4s�1 (semidiurnal tide), H ’ 5 m, Cf ’ 0.0023,
[from Wang et al., 1998]. As a consequence, � = 0.015 and
the small embayment hypothesis holds. Since � = 7.4 and
�� = 0.11, we utilize equation (28) instead of equation (21).
[26] The potential function and the stream function can be

solved at any instant of the tidal cycle, for each tidal
component. Here results for the M2 component when the
flood discharge is maximum, (maximum dh0/dt), are shown.
The solution of the potential function is reported in Figure
4a, whereas the corresponding portion of the discharge per
unit width is shown in Figure 4b.

Figure 2. (a) Schematic tidal basin with incised channels
and islands. (b) Component of the maximum flood
discharge calculated from the potential function. (c)
Component of the maximum flood discharge calculated
from the stream function. (d) Total maximum flood
discharge (sum of the potential and stream solutions).

Figure 3. (a) San Diego Bay, California. N1 to N13 are
the locations where NOAA collected velocity data in 1983.
(b) Bathymetry.
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[27] The part of the discharge calculated from the poten-
tial function has a well-defined distribution. This compo-
nent decreases from the inlet to the farthest part of the bay,
proportionally to the decrease in surface area. The flow is
uniformly distributed over bay cross sections, without
concentrating in channels. This is because bottom elevation
is not considered in the calculation of �, and the calculated
flow is independent of the water depth.

[28] Once calculated the potential function, the stream
function can be derived from equation (28). The boundary
condition � = 0 on the bay perimeter facilitates the presence
of bulges, either with positive or negative value, in the C

solution (Figure 5a). At each bulge a circulatory motion is
associated, clockwise for positive �, and counterclockwise
for negative values (Figure 5b). These ‘‘circulations’’
springing from the stream function solution are responsible
for the redistribution of momentum between zones with
different depth and discharge, as also indicated by Fagher-
azzi and Furbish [2001]. When the two solutions derived
from � and � are added up, the discharge is increased

Figure 4. (a) Contour lines for the potential function � in
San Diego Bay. (b) Component of the maximum flood
discharge calculated from the potential function.

Figure 5. (a) Contour lines for the stream function � in
San Diego Bay. (b) Component of the maximum flood
discharge calculated from the stream function.
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where the circulation motion derived from � has same
direction as the solution derived from � and is decreased
where the two solutions have opposite direction. Since the
stream component of the discharge has zero divergence, the
circulations do not change the water balance. In two
locations this mechanism is particularly evident. At the
inlet, two circulatory motions redistribute the stream com-
ponent of the discharge from the shallow areas near the
banks to the deep central channel. Simultaneously, another
circulation of bigger size is present in the southern part of
the bay, and it is responsible for flow concentration in the
channel in front of the San Diego port. As a conclusion, the
total discharge per unit width strongly depends upon bottom
topography, with higher discharge in deep areas (Figure 6).
[29] The maximum velocity produced by the model is

compared with data collected by NOAA in 11 locations
during a tidal current survey conducted in 1983 [Wang et
al., 1998]. The M2 and K1 velocity components were
extracted with a harmonic analysis, and direction and
maximum value calculated [Wang et al., 1998]. Here these
data are compared to model simulations for the M2 compo-
nent (Table 1) and the K1 component (Table 2). For the M2
component, dh0/dtmax = 7.255 10�5 m/s, whereas For the
K1 component dh0/dtmax = 2.448 10�5 m/s. Where the
bottom of the bay is almost uniform (locations N8, N10,
and N12; see Figures 3a and 3b), the portion of the
discharge derived from the potential function is close to
measured values, both in magnitude and direction. Here a
10-m water depth reduces the frictional influence, and the
hypothesis of small oscillations with constant depth is
probably applicable as a first approximation. In the southern
part of the bay, on the other hand, an uneven bottom
strongly influences the tidal hydrodynamics. Close to the
city port a deep channel carries a large amount of the
incoming (outgoing) discharge (Figure 3b). The water is

then redistributed from the channel to the shallow areas
(depth around 4 m) of the southern bay.
[30] The discharge component calculated from the poten-

tial function does not account for the bottom topography, so
that the flow entering or leaving the bay is uniformly
distributed in the bay cross section. As a consequence, the
potential function portion of the discharge overestimates the
velocity where the water depth is limited (location N4), and
underestimates the velocity in the channel (locations N1,
N2, and N5). In this part of the bay, friction is responsible
for the concentration of discharge in the channel. When the
stream function solution is added to the potential solution,
the discharge in the channel increases (locations N1, N2,
and N5) whereas the discharge in the tidal flat decreases
(location N4) (see Table 1). Moreover, the flow direction
over shallow areas changes, from parallel to the channel
flow in the weak friction solution (Figure 4b) to oblique to
the channel when considering the stream function correction
(Figure 6). This behavior is in agreement with measure-
ments in salt marsh environments. In marshes dissected by a
channel network [Fagherazzi et al., 1999], the water veloc-
ity over the marsh surface is always perpendicular to the
channels direction, near the channels banks [Christiansen et
al., 2000]. This is due to the high difference in water depths
(1–2 m in the channel against a few centimeters on the
marsh surface). The correction added by the stream function
reduces the difference between calculated and measured
values, for both M2 and K1 components (Tables 1 and 2).
However, it is important to note that the application of the
model to the K1 tidal component produces less precise
results, mainly because neglecting the nonlinear inertial
terms has a higher influence on secondary tidal components.
Finally, it is possible to show from equation (20) that the

Figure 6. Total maximum flood discharge (sum of the
potential and stream solutions).

Table 1. Present Amplitude and Phase Data Both Calculated and

Observed for the M2 Tidal Componenta

Station

� � + � Measured

Vmax,
cm/s

Diff.,
%

Direction,
deg

Vmax,
cm/s

Diff.,
%

Direction,
deg

Vmax,
cm/s

Direction
deg

N1 4.1 �64 150 10.1 �10 178 11.2 179
N2 4.2 �61 164 12.0 11 180 10.8 178
N4 19.9 70 176 12.4 6 176 11.7 176
N5 6.4 �65 135 12.5 �32 130 18.4 134
N8 32.9 �14 121 39.6 4 124 38.2 134
N10 27.5 �6 63 30.1 3 63 29.2 63
N12 16.6 �11 101 16.7 �10 98 18.6 106
N13 9.8 �54 146 13.3 �27 127 21.2 130

aData reported by Wang et al. [1998].

Table 2. Present Amplitude and Phase Data Both Calculated and

Observed for the K1 Tidal Componenta

K1
Station

� � + � Measured

Vmax,
cm/s

Diff.,
%

Direction,
deg

Vmax,

cm/s
Diff.,
%

Direction,
deg

Vmax,

cm/s
Direction,

deg

N1 1.4 �55 150 3.1 0 173 3.1 177
N2 1.4 �79 164 3.9 �42 189 6.7 188
N4 6.7 458 176 4.2 250 180 1.2 219
N5 2.2 �60 135 4.2 �24 130 5.5 138
N8 11.1 32 121 11.3 35 152 8.4 140
N10 9.3 37 63 9.9 45 64 6.8 70
N12 5.6 �16 101 5.7 �15 107 6.7 112
N13 3.3 �60 146 3.9 �52 127 8.1 134

aData reported by Wang et al. [1998].
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total volume of water flowing inside the bay during a half
tidal cycle (i.e., the tidal prism) is exactly equal to the
volume of water contained between the two horizontal
planes corresponding to the maximum and minimum tidal
level. In small basins like San Diego Bay where the tide has
almost the same amplitude and phase everywhere, the tidal
prism calculated by the model is then very close to the real
tidal prism. (For San Diego Bay we obtain a tidal prism of
74.8 
 106 m3 compared to 73 
 106 m3 reported by
Peeling [1975].)

7. Conclusions

[31] In this analysis a simplified model for tidal flow in a
basin has been presented. If the dimensions of the basin are
small with respect to the tidal wavelength, the assumption
of flat water level oscillating synchronously in the whole
tidal basin is valid. Under this hypothesis, the discharge per
unit width can be decomposed in the sum of two vector
fields, respectively governed by a potential function and a
stream function. In the shallow water equations the con-
tinuity equation then becomes a Poisson equation for the
potential function, with suitable boundary conditions. On
the other hand, the stream function and corresponding
vector field can be calculated from the vorticity equation,
once the potential function is known. Both parts of the
solution bear a specific meaning. The part of the discharge
calculated from the potential function represents the solu-
tion for a tidal wave of small amplitude with respect to the
water depth, oscillating in a basin with flat bottom. This part
of the solution is responsible for the total discharge entering
or leaving the basin. The part of the discharge calculated
from the stream function, on the other hand, is a correction
that has to be added to the potential function solution. The
stream function solution redistributes the discharge in the
basin as a result of bottom friction, variations in water depth
as well as the effect of nonlinear inertial terms. At the same
time, the stream function solution does not change the
overall volume balance (zero divergence). This study has
focused on the effect of friction in momentum redistrib-
ution, since for basins with limited depth, inertial terms
have a weak influence. In this framework, it is possible to
show that the stream function solution is composed by
several circulatory motions that transfer momentum from
shallow to deep areas. This is particularly valid for basins
with channels cutting shallow flats, where most of the water
volume is carried by the channel network. The model is
tested in San Diego Bay, where the tidal propagation is
relatively fast and the tide is essentially a standing wave.
The solution extracted from the potential function captures
the hydrodynamics of the basin in areas where the bottom is
flat, with a reasonable approximation considering the strong
simplifications involved. In areas where the water transport
mostly occurs in channels, the correction coming from the
stream function is necessary in order to increase the pre-
dicted flow in the channels and reduce it in the tidal flats.
The application of the model to two schematic tidal basins
further corroborates the role of the channels in redistributing
the discharge within a tidal basin.
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