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[1] The long-term temporal evolution of soil thickness in hollows depends on the
processes controlling the rates of colluvium accumulation and erosion. Accumulation
is due to soil creep and mass-wasting processes from the adjacent slopes, while erosion of
colluvial deposits is mainly due to debris flow and landsliding. An analysis of the long-
term evolution of colluvial deposits is developed through a stochastic model of soil
mass balance at a point accounting for colluvium infilling, expressed as a deterministic
function of the deposit thickness, and soil erosion by shallow landslides, modeled as
a random (Poisson) process. Landsliding is related to the characteristics of the triggering
precipitation through an infinite-slope stability analysis, a kinematic model of hollow
response to rainfall, and the intensity-duration-frequency curves characterizing the regime
of extreme precipitation. This analysis provides a probabilistic representation of the
long-term dynamics at a point of colluvium thickness as a function of the timescale of
hollow infilling and of the frequency of triggering rainfalls. The model is solved both
numerically and (under simplified conditions) analytically, showing the existence of
different regimes in the temporal evolution of soil thickness. In the case of steep slopes
(i.e., with slope angles, b, greater than the soil repose angle, f) the hollow can be either
in a supply-limited state or in event-limited conditions, depending on whether the
dynamics are limited by the supply of sediment from the adjacent slopes or by the
occurrence of rainstorms able to trigger landslides. Nevertheless, since the likelihood of
landslide occurrence increases with increasing values of deposit thickness, colluvium
accretion always leads to conditions favorable to landsliding. Vice versa, in the case of
gentle slopes (i.e., b < f) the probability of landsliding decreases with increasing values of
soil thickness, and event-limited conditions may evolve into unconditionally stable
states. INDEX TERMS: 1625 Global Change: Geomorphology and weathering (1824, 1886); 1869

Hydrology: Stochastic processes; 1854 Hydrology: Precipitation (3354); KEYWORDS: landslide, hollow

hydrology, soil thickness, landscape evolution, rainfall
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1. Introduction

[2] The temporal evolution of regolith and colluvial
deposits in hollows is the result of nonlinear dynamics
[Minasny and McBratney, 1999] involving several hydro-
logical, geomorphological, and climatologic factors. In
steep, soil mantled landscapes, landslides triggered by
heavy rain remove colluvium, whereas transport of soil
from the adjacent slopes (by means of soil creep, animal
burrowing, tree throw, and rainwash [e.g., Dietrich et al.,
1987; Roering et al., 1999]) and weathering of the under-
lying bedrock contribute to hollow infilling. Colluvial
deposits in hollows are generally subject to more frequent
landsliding than convex ridges due to the convergent

topography and the consequently high concentrations of
water and sediment fluxes [e.g., Dietrich et al., 1986; Sidle,
1987; Reneau and Dietrich, 1987; Reneau et al., 1989;
Crozier et al., 1990].
[3] Some authors [e.g., Wu and Swanston, 1980; Dunne,

1991; Benda and Dunne, 1997; Iida, 1999; Lancaster et
al., 2001] suggest that because of their abrupt and random
character, landslides need to be modeled as discontinuous
stochastic processes. Thus the temporal evolution of col-
luvial deposits in hollows can be characterized by a
continuous process of deposit accretion, and a discontinu-
ous random process of denudation caused by rainfall-
triggered landslides and debris flow, which scour to
bedrock large portions of the hollow. The temporal evolu-
tion of colluvium thickness can thus be studied through a
stochastic soil mass balance, accounting for the supply of
debris from the adjacent slopes and for random denudation
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due to landsliding. A number of studies analyze the soil
mass balance to investigate the spatial and temporal
patterns of soil thickness. This approach has led to models
of equilibrium profiles in hillslopes [Kirkby, 1971; Carson
and Kirkby, 1972], of landform evolution [Ahnert, 1988],
as well as of the spatial variability of regolith thickness in
soil-mantled landscapes [Dietrich et al., 1995; Heimsath et
al., 2001].
[4] Two recent contributions have explored in detail the

linkage between rainstorm characteristics and landslide
frequency [Benda and Dunne, 1997; Iida, 1999]. In the
work of Benda and Dunne [1997] [see also Dunne, 1991]
the soil mass balance in hollows is studied through a
numerical model accounting for the random character of
both precipitation and forest fires. Their model suggests an
interesting approach to determine the sediment supply to the
channel network: it accounts for the process of colluvium
accretion, and for the conditions of slope stability, including
the reinforcement effect of roots. The latter is expressed as a
function of deposit thickness and fire occurrence. In the
hydrologic portion of the model, the peak saturated thick-
ness is estimated as a function of randomly generated values
of storm duration and intensity derived from exponential
distributions. However, the storm characteristics are not
related to the intensity-duration-frequency curves character-
izing the regime of extreme precipitation. Thus the link
between storm intensity, duration, and return period is
missing and this approach provides neither an analysis of
the probability distribution of the frequency of triggering
precipitation, nor a comparison between the timescale of
hollow infilling and the return period of the triggering
rainfall. A similar stochastic approach, based on the rainfall
model by Eagleson [1978], is used in models focusing on
the influence of the rainfall regime on landslides, soil mass-
wasting processes, and landscape evolution [Tucker and
Bras, 2000; Lancaster et al., 2001; Tucker et al., 2001].
These papers lay the foundations of the stochastic analysis
of landscape evolution.
[5] Fundamental in this direction is the stochastic model

developed by Iida [1999], where the frequency of landslide
occurrence is related to the return period of those rainstorms
that are able to exceed limit-equilibrium conditions. The
assessment of slope stability refers to the concept of immu-
nity depth, defined as the minimum value of colluvium
thickness required for the occurrence of landslides. The role
of the immunity depth, derived directly from the soil stability
model, becomes crucial in assessing the return period of the
triggering rainfalls, thus influencing the stochastic analysis
of landsliding. Moreover, the analysis of soil stability in
terms of soil thickness (immunity depth and maximum
depth, defined in the following sections) rather than soil
characteristics (repose angle and cohesion, both difficult to
measure in the field) introduces parameters that the author is
able to determine directly using field data. This model
accounts for the mutual dependence between rainstorm
duration and intensity, and relates the return period and scar
depth to the characteristics of extreme precipitation as well
as to the rates of soil development. However, this approach
does not explicitly analyze a soil mass balance, and does not
provide the probability distribution of the colluvium depth.
[6] A simplified framework has already been suggested

[D’Odorico, 2000; D’Odorico et al., 2001] for the study of

soil depth probability distribution in hillslopes. In this paper
a similar mechanistic approach is utilized for the analysis of
landsliding in hollows: the process of colluvium accretion is
expressed as a function of diffusion-like transport [Dietrich
et al., 1986] from the adjacent slopes, while landslide
occurrence is modeled at a point as a stochastic process of
Poissonian [Wu and Swanston, 1980] events that completely
scour the colluvium to bedrock. The assumption of com-
plete removal of regolith by landslides is supported by some
observational evidence that the failure surface generally
coincides with the regolith-bedrock interface [e.g.,
O’Loughlin and Pearce, 1976; Sidle and Swanston, 1982;
Trustrum and De Rose, 1988].
[7] Our model accounts for the mutual dependence

between intensity, duration, and frequency of extreme
precipitation [see Caine, 1980]. The coupling of storm-
frequency analysis with a simple model of hollow response
to precipitation relates landslide return period to the
frequency of triggering precipitation. The slope stability
portion of the model refers to the immunity depth concept
[Iida, 1999] and shows its significance to the temporal
evolution of colluvium thickness. The limited number of
parameters required by this simplified framework favors an
analysis of how landsliding is affected by the different
hydrologic, geomorphic, and geomechanical variables.
The framework introduced by Iida [1999], and in particular
the concept of immunity depth, is then extended to hollow
angles less than the repose angle of the material.
[8] Because of the random character of landsliding the

deposit thickness needs to be considered as a random
variable: Thus the properties of the colluvium depth are
expressed in terms of probability distributions of soil depth
at a point. This probabilistic framework is instrumental to
the study of different regimes of hollow dynamics and to the
understanding of their dependence on different hydrologic
and geomorphic parameters. Moreover, the estimation of the
probability distribution of landslide thickness and return
period allows for the evaluation of the long-term average
rate of sediment supply to the channel network as well as
the assessment, in the use of cosmogenic nuclides methods
[e.g., Heimsath et al., 1997, 2001], of the probability that
the existing deposit depth coincides with the long-term
average soil thickness under which the observed nuclide
accumulated.
[9] Finally, the introduction of a suitable potential func-

tion sheds light on the preferential states of the system and
the derivation of analytical results, under simplified con-
ditions, allows a direct calculation of the thickness distri-
bution of colluvial deposits.

2. Slope Stability Model

[10] In the characterization of landslide frequency a soil
mass balance needs to be studied in time and related to the
processes affecting colluvium deposition, soil stability, and
hollow hydrology. The soil stability model used in this
study is based on a Mohr-Coulomb failure law applied
to an infinite planar slope [Terzaghi and Peck, 1967]. The
assumption of infinite planar slope, extensively utilized
in geomorphic studies [e.g., O’Loughlin and Pearce, 1976;
Wu et al., 1979; Wu and Swanston, 1980; Sidle and
Swanston, 1982; Selby, 1983; Montgomery and Dietrich,
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1994; Dietrich et al., 1995; Iida, 1999; Iverson, 2000],
represents a good approximation when the soil thickness is
small with respect to the length of the slope. More
accurate models would not be justified, due to the lack
of knowledge on the soil geotechnical and hydrological
properties as well as of their spatial variability [e.g., Sidle
et al., 1985]. The failure condition can be expressed as
[Montgomery and Dietrich, 1994]:

gsath sin b ¼ cþ gsath cos b� gwH cos bð Þ tanf ð1Þ

where gsat and gw are the specific weights of saturated soil
and water, respectively; b is the slope angle, f is the soil
repose angle, c the soil cohesion, h the soil thickness, and H
the saturated water depth, with both H and h being
measured perpendicularly to the bedrock (Figure 1). In (1)
it is considered that the subsurface flow is uniform with
hydraulic gradient corresponding to the topographic slope.
Equation (1), solved for H, provides the minimum value of
landslide-triggering saturated depth:

H ¼ gsat

gw
h 1� tan b

tanf

� �
þ c

gw tanf cos b
: ð2Þ

Equation (1) expresses how the stability or instability of a
slope depends on slope angle and soil thickness. The
colluvium thickness for which H = h is defined as immunity
depth [e.g., Iida, 1999]

hcr¼
c

gw tanf cos bþ gsat cos b tan b� tanfð Þ : ð3Þ

Because saturated depth is necessarily smaller than
colluvium thickness (i.e., H � h), when h < hcr the deposit
is always stable (according to this model) independently of
rainfall intensity. After landsliding, soil mass-wasting from
the surrounding slopes accumulates new colluvium in the
hollow and the deposit is not susceptible to failure until its
thickness reaches hcr. This early stage of colluvium
accretion (i.e., for h < hcr) is termed immunity period (Timm).
[11] Figure 2 shows different conditions of slope stability

in a plot of soil thickness versus slope. The angle b0
represents the value of b cancelling the denominator of
(3); according to this model, when b < b0 the slope is always
stable because a saturated depth larger than the soil thick-
ness would be needed to trigger a landslide. Other destabi-
lizing factors, which are not part of this model (e.g., excess

of pore pressure), can trigger landslides even when b < b0.
For b > b0 the colluvium can be stable or unstable depend-
ing on whether the soil depth exceeds the immunity depth.
For b = b0 the immunity depth is infinite, and it decreases
with increasing values of b when b > b0. Equation (2) shows
that the saturation depth, H, needed for landslide triggering
increases linearly with the soil thickness for slope angles
less than the repose angle (b < f), while it linearly decreases
with h for b > f. The reason for this different dependence
can be found in the analysis of the components (normal and
parallel to bedrock) of the soil weight. In the case of b < f,
the overall effect of soil weight is to favor the slope
stability; vice versa for b > f an increase in soil mass
favors instability.
[12] From a hydrological viewpoint, for b < f, the

accumulation of colluvium in the hollow increases the storm
intensity needed for landslide triggering. Conversely, for b >
f, an increase in deposit thickness due to colluvium
accumulation in the hollow is associated with a decrease
of the intensity of the storms that are able to generate a
landslide. For a certain value of soil thickness, hmax, the
saturated depth necessary to trigger a landslide is zero and
the soil is always unstable, regardless of rainfall occurrence
[Iida, 1999]. For soil thickness higher than hmax the soil is
then always unstable (see Figure 2); hmax is determined from
(2) by setting H = 0.

hmax ¼
c

gsat cos b tan b� tanfð Þ ð4Þ

[13] When cohesion is neglected (i.e., c = 0 in equation
(1)), the immunity depth is zero and, for b > f, the soil is
always unstable because cohesion is not preventing land-
slide occurrence. Soil cohesion has been sometimes
neglected in the stability analyses of steep mantled slopes,
while the repose angle has been purposely increased to
unrealistic values to account for the overall shear strength
of the aggregates [e.g., Montgomery and Dietrich, 1994].
Even though this approach is effective in the analysis of
the spatial distribution of landsliding, it is not suitable for
the study of the temporal evolution of soil thickness

Figure 1. Schematic representation of a soil-mantled
slope.

Figure 2. Slope stability as a function of slope angle and
deposit thickness (equations (3) and (4)).
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because it does not include the immunity depth as a
threshold controlling landslide occurrence. The implica-
tions for modeling soil evolution are important because
without cohesion soils could never form on slopes greater
than f and even thin soils on slopes in the range b0 < b <
f would be extremely unstable since light (i.e., frequent)
rainfall would provide a saturated water depth H sufficient
to cause landslides. Both these implications are contrary to
observation and suggest that soil cohesion (and hence the
concept of immunity depth) are needed in slope stability
models.

3. Hydrologic Model

[14] The coupling of the soil stability model presented in
the previous section with a hydrologic model for hollow
response to precipitation allows the determination of the
rainfall characteristics (i.e., intensity and duration) associ-
ated with the occurrence of landsliding. A simplified yet
effective model has already been used to study the spatial
distribution of landsliding [Montgomery and Dietrich,
1994; Dietrich et al., 1995; Montgomery et al., 1998],
assuming that hollows respond to rainstorms with a steady
subsurface flow. The saturated depth is determined through
a steady state water balance equation for the hollow. The
incoming flux (precipitation) is equated to the outgoing
subsurface flow occurring through the saturated depth, RA =
HKsb sin b, where R is the (constant) rainfall intensity, Ks is
the soil hydraulic conductivity, Ks sin b is the specific
discharge of the subsurface flow (Darcy’s law in the
assumption of uniform flow), A represents the contributing
area to the failure point, and b the width of the hollow
boundary at the downhill side. The saturated depth can be
then expressed [O’Loughlin, 1986] as

H ¼ RA

Ksb sin b
ð5Þ

Notice that this steady state model does not provide any
information on rainfall duration. Nevertheless, the trigger-
ing precipitation needs to be characterized both in terms of
storm intensity and duration. In fact, the analysis of
landslide frequency requires the estimation of the return
period of the triggering rainfall through the intensity-
duration-frequency (IDF) curves. To this end, the rational
method [e.g., Chow et al., 1988] is applied to the subsurface
flow in the hollow to determine the most critical storm
duration, i.e., the duration of the storms that, for a given
return period, produces the highest values of H. This
method represents one of the simplest conceptual models of
basin response and is here applied to the subsurface water
flow in hollows. The rational method refers to the concept
of concentration time, Tc, defined as the travel time in the
subsurface flow between the furthermost point in the hollow
and the hollow outlet. The rational method assumes that Tc
is the most critical storm duration. In fact, for durations
shorter than Tc the hollow is never entirely contributing to
the flow (and to the related water depth, H, at the outlet)
because the contributing area is always smaller than A. On
the other hand, since for a given return period rainfall
intensity decreases with the duration, the concentration time
is the duration of the most intense storm associated with the
maximum contributing area (i.e., A). Thus the maximum
saturated depth generated by storms of a given frequency is

due to events of duration Tc. Of course landslides can be
triggered also by events shorter than Tc (i.e., with only
partial contributing areas) with high rainfall rates. The
framework of the rational method is used here only to
determine the duration and intensity of the most critical
storm (i.e., storm with lowest return period able to cause a
landslide). The concentration time can be expressed through
the ratio between the length of the longest drainage path and
the specific discharge of the subsurface flow

Tc ¼ C

ffiffiffi
A

p

Ks sin b
; ð6Þ

where the longest path is expressed as a function of the
square root of the hollow contributing area,

ffiffiffi
A

p
, and C is a

(dimensionless) coefficient accounting for other factors
affecting the concentration time (e.g., heterogeneity in soil
properties, hollow shape, etc.). Equation (6) assumes thatffiffiffi
A

p
is an appropriate scale for hollow length. Moreover, the

celerity of the response wave propagation through the
hollow is expressed as proportional to the specific discharge
of the subsurface flow with hydraulic gradient equal to the
topographic slope; the proportionality constant is buried in
C. The characteristics of the triggering precipitation are
expressed by (6) and by (5) with H being given by (2). This
implies that R (i.e., the minimum rainfall intensity needed to
trigger a landslide) is a function of h.

4. Frequency of the Triggering Precipitation

[15] Given the rainfall intensity and duration, the return
period of the rainstorms able to trigger landslides is derived
from the IDF curves. Since landslides are triggered by
extreme rainfalls, we use a Gumbel distribution [e.g., Chow
et al., 1988] to express the dependence between annual
maximum rainfall intensity (for events of duration Tc), and
return period, Tr

1

Tr
¼ l ¼ 1� exp � exp �R Tcð Þ � u

v

� �� �
ð7Þ

where Tr is the return period, R(Tc) is the maximum rainfall
intensity of duration Tc, u and v are the parameters of the
Gumbel distribution, l is the probability that a rainstorm of
intensity R occurs in a given year; u and v can be
determined as functions of the mean, mR, and variance, sR

2,
of R (u = mR � 0.577sR; v = 0.779sR). Thus, after having
determined the concentration time, Tc, for the hollow in
question, the parameters u and v can be estimated from the
data of extreme precipitation of duration Tc. Notice how l =
1/Tr is a function of the soil depth due to the dependence
existing between intensity of the triggering precipitation, R,
and h (equation (5)).

5. Colluvium Infilling

[16] The growth of colluvial deposits in a hollow is due to
the transport of soil from uphill as well as to the physical
weathering of the underlying bedrock. The transport of
debris from the surrounding hillslopes is caused by different
mechanisms such as soil creep, animal burrowing, tree
throw, rain splash, and overland flow and relies on the
production of regolith as well as on the existence of a slope.
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The soil production by bedrock weathering is due to a
number of chemical, physical, and biogenic processes [e.g.,
Birkeland, 1999]. In this paper we assume that soil produc-
tion by bedrock weathering beneath the hollow is negligible
with respect to soil accumulation due to diffusive processes
[e.g., Heimsath et al., 1997; Anderson et al., 2002].
[17] The rate of transport to the hollow due to diffusion-

like mass-wasting processes depends on the sediment flux at
each point of the hillslope. For a hollow composed of a tipped
triangular trough and two planar side slopes (Figure 3),
Dietrich et al. [1986] expressed the accretion of colluvial
deposits as:

h ¼ 2Dc cos b tan2 a� tan2 b
� �

t
� 	1=2 ð8Þ

where a is the angle between the side slopes and an
horizontal plane, b is the slope angle of the colluvium-
mantled hollow (Figure 3), and Dc is the soil creep
diffusivity [Culling, 1960] (for a recent discussion regarding
creep diffusivity and its dependence on soil thickness, see
also Furbish and Fagherazzi [2001]).
[18] Starting from a condition h = 0 at time t = 0, the

colluvium thickness increases proportionally to
ffiffi
t

p
(see (8)),

due to the linear increase of trough cross-sectional area.
Since a and b depend on the hollow geometry that - we
assume - does not vary substantially with time, we can
express (8) as:

h ¼
ffiffiffiffiffi
Kt

p
; K ¼ 2Dc cos b tan2 a� tan2 b

� �
ð9Þ

with K being independent of time.
[19] The differentiation of (9) with respect to time leads

to

dh

dt
¼ l hð Þ ¼ K

2h
; ð10Þ

showing that the rate of colluvium accretion decreases with
the depth, h, of the deposit.

6. Stochastic Soil Mass Balance

[20] The study of landslide occurrence and temporal
dynamics of colluvial deposits requires an analysis of the

processes responsible for the accumulation and removal of
soil waste material in the hollow. The temporal evolution of
the deposit thickness, h, can be modeled through the soil
mass balance equation [e.g., Carson and Kirkby, 1972]:

dh

dt
¼ l hð Þ � f h; tð Þ ð11Þ

where l(h) is a state-dependent function of net colluvium
accumulation expressed by (10) and f (h,t) is the rate of soil
removal by debris flow and shallow landslides. Because of
the catastrophic and random nature of landsliding, the
erosion function, f ( h ,t ), in equation (11) is modeled as a
stochastic Poisson process. Rainstorms able to trigger
landslides occur at random times ti and remove the whole
soil column h, as long as the deposit thickness exceeds the
immunity depth:

f h; tð Þ ¼ w hð Þ
X
i

d t � tið Þ ð12Þ

where

w hð Þ ¼
0; 0 � h � hcr

h; h > hcr:

8<
: ð13Þ

In equation (12), d represents a d-Dirac function and the
sequence ti (i = 1, 2, . . .) is such that the recurrence interval
of the triggering precipitation, t = ti+1 � ti, is an
exponentially distributed random variable as in Wu and
Swanston [1980]; the probability density function of t is
thus p(t) = l e�lt, with l being the frequency of the
triggering precipitation. Notice how l (equation (7)) is
state-dependent (i.e., l = l(h)) since the intensity, R, of the
triggering precipitation depends on h through equations (5)
and (2).
[21] Equations (10), (11), and (12) provide a representa-

tion of the dynamics of hollow infilling and erosion and
incorporate the main relevant processes along with their
mutual dependence and interaction. In fact, the temporal
variability of colluvium thickness is controlled by the rates
of colluvium accretion and erosion (i.e., landslides), and
both of them depend on the actual state (i.e., deposit
thickness) of the system. The model accounts for the
randomness of landsliding, the regime of extreme precipi-
tation (IDF curves), and the dependence on slope angle and
soil mechanical properties (infinite-slope stability analysis).
In the following sections the stochastic differential model
(equations (10), (11), and (12)) is numerically solved
providing a probabilistic analysis of deposit thickness,
landslide depth, and landsliding frequency in a hollow. An
analytical solution of these equations is then provided under
some simplifying assumptions. Analytical and numerical
solutions are finally compared.

7. Numerical Simulation of Hollow Dynamics

[22] After having determined the concentration time Tc of
the hollow, the parameters u and v in (7) are estimated from
data available on extreme precipitation of duration Tc. The
stochastic model of colluvium infilling and landsliding
(equation (11)) is then numerically resolved starting from

Figure 3. Schematic representation of regolith mantle and
bedrock in a hollow (modified from Dietrich et al. [1986]).
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the initial condition h = 0 at time 0 (i.e., hollow scoured to
bedrock); the following steps are performed with a time
step, �t, of one year: (1) Equation (2) is used to calculate
the saturated water depth, H, able to trigger landslides with
the existing soil thickness, h; (2) the rainfall intensity, R,
corresponding to H is calculated using (5); (3) the proba-
bility l�t of having a landslide-triggering event in the
current year is calculated through equation (7); (4) a random
number generated between 0 and 1 is compared to l�t to
simulate the random occurrence or nonoccurrence of the
triggering rainstorm in that year. In the case that such a
rainstorm occurs a landslide scours the hollow to bedrock
only if the deposit thickness exceeds the immunity depth,
otherwise no landslide occurs; (5) the soil thickness in the
hollow is increased according to equation (10); (6) back to
step 1 for the subsequent time step.
[23] The model simulates the temporal evolution of

deposit thickness in time, determines the inter-arrival time
between consecutive landslides as well as the depth of the
landslide scar (defined as the colluvium thickness at the
time of landslide occurrence).

8. Results and Discussion

8.1. Case of Steep Hollows (B > F)

[24] The model is applied to a parameter set derived from
published data from the Oregon Coastal range. The conduc-
tivityKs is taken as 65 m d�1, the soil repose angle is f = 33
,
while gsat = 20 kN m�3 [Montgomery et al., 1998], the
diffusivity coefficient for colluvium infilling Dc = 0.0032 m2

yr�1 is the average value for bioturbation and soil creep
transport rate in the Oregon Coastal range [Benda and
Dunne, 1997; Reneau et al., 1989]. A value of soil cohesion
c = 11 kPa is adopted to account for the root effect in a mature
forest [Montgomery et al., 1998; Benda and Dunne, 1997];
we also assume a ratio between hollow gradient and side
gradients (corresponding to tan b/tan a in equation (8)) equal
to 0.8, as reported by Dietrich et al. [1986]. The consequen-
ces of forest fire and logging are not considered in this
analysis, as well as the reduction of soil cohesion due to an
increase in soil thickness. In our numerical analysis we refer
to hollows having the same characteristics as the ones
extensively studied by Montgomery et al. [1997], Anderson
et al. [1997], and Torres et al. [1998]. The first hollow, the
dimensions of which approximately correspond to the hollow
CB2 of Montgomery et al. [1997], has a drainage area, A =
3700 m2, the outlet width, b, is of about 12 m, and the hollow
slope is b = 43
. Thus the immunity depth (equation (3)) is
hcr = 1.24 m. As discussed before, the fact that b > f implies
that the hollow becomes less stable as the deposit thickness
increases. A coefficient C = 0.38 is determined from
equation (6) using parameters (see the following example)
available for the smaller hollow (CB1) of Montgomery et al.
[1997]. If the same value of C is assumed for the hollow
CB2, equation (6) gives a concentration time Tc = 12 h.
Values of u = 2.78 mm h�1 and v = 1.07 mm h�1 have been
calculated using data of extreme precipitation of 12 h dura-
tion from Alleghany (Oregon, 1951–2000).
[25] The rainfall intensity saturating the immunity depth,

Rcr, in 12 hours is estimated through the hydrological model
(5) and it is found to be Rcr = 7.5 mm h�1. This value of R
with duration Tc = 12 h has a return period, 1/l(hcr) = 90 yrs

(equation (7)). For values of h larger than the immunity
depth the triggering rainfall decreases in intensity, with a
consequent sharp reduction of the return period. The
hollow has immunity period (i.e., time needed to accumu-
late a colluvium thickness h = hcr), Timm = 670 yr (from
equation (9) with h = hcr). If the accumulation of material
in the hollow is very slow compared to the temporal interval
between consecutive triggering storms (i.e., Timm �
1/l(hcr)) landslides occur soon after the thickness of the
colluvial deposit reaches the immunity depth because a
landslide-triggering storm will occur before the hollow is
able to develop a colluvium much thicker than hcr. The
comparison between the timescale of hollow infilling
(greater than 670 yr) and the return period of the triggering
rainfall (90 yr) shows that this is the case for the hollow in
question. Model results confirm this analysis: a plot of the
time series of colluvium thickness (Figure 4a) shows how
landslides occur with values of soil thickness slightly above
the immunity depth. The probability distribution of land-
slide thickness is clustered around the immunity depth
(Figure 4b) and the probability distribution of triggering
rainfall return period and landslide return period are
also concentrated close to 1/l(hcr) and Timm, respectively
(Figures 4c and 4d). The probability distribution of soil
depth sharply drops for values of h above the immunity
depth (Figure 4e).
[26] In these conditions (Timm � 1/l(hcr)) landslide

occurrence is limited by the supply of debris from the
adjacent slopes and not by the occurrence of triggering
precipitation: we denote this regime as ‘‘supply limited’’.
Landslide return period, Tslide, and depth, hslide, have a small
variance since Tslide 	 Timm, and hslide 	 hcr. The mode of
the probability distribution of h is at h = hcr.
[27] The occurrence of supply-limited conditions is com-

mon in landscapes having precipitation and rates of diffu-
sion-like mass wasting comparable to those considered in
this example [Dietrich et al., 1995; Benda and Dunne,
1997]. Nevertheless, a substantial decrease of hollow slope
(though still in the range b > f) or size is able to lead to
‘‘event-limited’’ conditions characterized by 1/l(hcr) �
Timm. For example, in smaller hollows the smaller contrib-
uting area is associated with larger values of R (equation (5)).
Thus landslides are triggered by less frequent events. As
pointed out by Montgomery and Dietrich [1994], drainage
area has a strong influence on slope stability, concentrating
shallow landsliding in areas with convergent topography
and larger contributing areas. Since less rainfall is concen-
trated at the hollow outlet, a higher rainfall intensity is
necessary to trigger a landslide. Figure 5 shows the case of
a hollow with the same characteristics as that of Figure 4
but with an area A = 860 m2, corresponding to the hollow
CB1 of Montgomery et al. [1997]. The values of hcr, hmax,
and Timm remain unchanged, while Tc = 6 h and Rcr is
15.9 mm/h. This value of Tc corresponds to the delay
measured between the peak of saturated head at the further-
most point and at the outlet of the hollow [Montgomery
et al., 1997, Figure 18]. Rainstorms with this intensity
and duration have return periods 1/l(hcr) 	 1400 yrs
(equation (7), with u = 4.23 mm h�1, v = 1.62 mm h�1),
which are larger than Timm. This regime can be defined as
‘‘event limited.’’ Figure 5a shows how, due to the lower
critical rainstorm frequency, mass-wasting processes are
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able to accumulate debris material in the hollow even when
the deposit thickness is greater than the immunity depth. An
increase in thickness makes the slope more prone to land-
sliding and reduces both intensity and return period of the
triggering precipitation. In the limit, when h = hmax = 2.66 m,
a landslide is triggered regardless of the rainfall. It will
be shown that this is not the case on gentle slopes (b < f).
Thus landslides occur when soil thickness is between hcr
and hmax (Figures 5a and 5b). The return period of the
triggering rainfall ranges from 50 to 1400 yr (Figure 5d),
and the return period of landsliding increases with respect to
the case of Figure 4, while its probability distribution is
sparser (Figure 5c). The mode of the probability distribution
of soil thickness is no more coinciding with hcr but is
located between hcr and hmax (Figure 5e). It should be
noted that the study of these rare events using Gumbel
distribution (equation (7)) with parameters estimated on
the basis of a 50-yearlong observation is just an extrapola-
tion. Nevertheless, it provides at least a qualitative indication
of the conditions controlling the occurrence of event-limited
and supply-limited regimes.

8.2. Case of Gently Sloped Hollows (B < F)

[28] In the last example we study a hollow with slope b =
30
, keeping the same soil hydraulic and strength character-
istics as in the previous examples. As mentioned before,
when b < f an increase in colluvium thickness favors slope
stability. Thus the likelihood of landslide occurrence is
maximum when h = hcr and decreases for higher values
of h. Different conditions can occur, which depend on the
ratio between landslide return period at h = hcr and
the length of the immunity period: (1) if 1/l(hcr) 
 Timm
the system is in a supply-limited regime with hslide 	 hcr and
Tslide 	 Timm; (2) if 1/l(hcr) � Timm the hollow can develop
a thick enough colluvium to become stable with respect to
(almost) any storm. This means that Tslide ! 1 and that
landslides (almost) never occur. This extreme condition of
the event-limited case can be named ‘‘unconditionally
stable’’; (3) if 1/l(hcr) 	 Timm the system can either be in
a supply-limited or in an unconditionally stable state;
however, once a transition into the unconditionally stable
state takes place the system is not likely to return to a
supply-limited regime.
[29] These different conditions can be obtained, for

example, by changing the hollow contributing area, keeping
the same soil properties as before. Figure 6 shows the
probability distribution of deposit thickness, landslide fre-
quency and depth for A = 7500 m2 (l(hcr)Timm = 0.025).
This case corresponds to supply-limited conditions, and the
shape of the probability distribution of h resembles that in
Figure 4e, with landslides occurring soon after the deposit
thickness exceeds hcr and hslide 	 hcr. The main difference

Figure 4. (opposite) Example of supply-limited processes
in a steep hollow (b = 43
, f = 33
, A = 3700 m2): (a) time
series of deposit thickness; (b) probability distribution of
scar depth (i.e., colluvium thickness when a landslide
occurs); (c) probability distribution of landslide return
period; (d) probability distribution of the return period of
landslide-triggering storms (1/l(hslide)); (e) probability
distribution of colluvium thickness.
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with respect to the supply-limited case of Figure 4 is that the
return period of the storms generating landslides, 1/l(hslide)
is larger than 1/l(hcr), due to the decrease of l(h) with
increasing values of h in the case of gentle slopes. Figure 7
shows a case with A = 4500 m2 (l(hcr)Timm 	 1): this is an
example of transition between supply-limited and uncondi-
tionally stable systems. When such a transition occurs there
is little probability that the system is able to reverse into a
event-limited state. It should be noted that some judgment is
needed in the interpretation of the case of unconditionally
stable systems: in fact this model does not account for the
decrease of cohesion with increasing values of deposit
thickness, due to the loss of the stabilizing effect of tree
roots. Moreover, the downhill movement of soil waste
material on gentle slopes does not necessarily occur as
landsliding: other relatively slow processes (e.g., earth flow,
mud flow, soil creep) characterize soil mass movement on
gentler slopes [Sidle et al., 1985]. These processes have not
been included in our model.
[30] The results presented here can be extended to hollows

with different geometric and hydrologic characteristics
(reflected in different parameter sets) and to different
conceptual models of hollow infilling and hydrologic
response. Four different regimes may characterize the tempo-
ral evolution of colluvial deposits in hollows: the system can
be supply limited (1/l(hcr)
 Timm) either on steep (b > f) or
gentle slopes (b < f); otherwise, the dynamics are event-
limited (1/l(hcr � Timm) on steep or gentle (unconditionally
stable) slopes. The attribution of a particular regime to a
hollow only depends on the slope and on the ratio between
the immunity period and the return period of the triggering
precipitation associated with values of soil thickness equal to
the immunity depth. These four regimes still exist when
different hydrological models and hollow infilling schemes
are used, as well as when soil production by weathering of
the underling bedrock is added to sediment supply from
the adjacent slopes (compare the models presented by
Dunne [1991], Montgomery and Dietrich [1994], Dietrich
et al. [1995], and Iida [1999]). These four regimes produce
qualitatively similar results provided that (1) equation (1) is
utilized to assess the slope stability, and (2) the hydrological
model expresses the saturated depth as an increasing (linear)
function of rainfall intensity.

8.3. Preferential States and Minima of the Potential
Function

[31] The occurrence of supply-limited, event-limited, and
unconditionally stable states can be studied through a
potential function [e.g., Hanggi et al., 1990; Porrá and
Masolivier, 1993] associated to equations (11)–(13). The
potential function is used to study some distinctive proper-
ties of the temporal dynamics of colluvial deposits and in
particular to determine the preferential state(s) of the system

Figure 5. (opposite) Example of event-limited processes
in a steep hollow (b = 43
, f = 33
, A = 860 m2): (a) time
series of deposit thickness; (b) probability distribution of
scar depth (i.e., colluvium thickness when a landslide
occurs); (c) probability distribution of landslide return
period; (d) probability distribution of the return period of
landslide-triggering storms (1/l(hslide)); (e) probability
distribution of colluvium thickness.
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[D’Odorico, 2000; D’Odorico et al., 2001]. Thus this
framework points out some important properties of the
evolution of colluvial deposits. Equation (11) can be
rewritten as

dh

dt
¼ � dV

dh
� x x; tð Þ ð14Þ

where x(x, t) = f (h, t) � l(h)w(h) is a zero-average noise
term (see equations (12) and (13)), while V(h) is the
potential function associated with the deterministic dy-
namics dh

dt
= l(h) + l(h)w(h). The minima of this function

represent stable states of the system: thus, in the absence of
noise, h changes in time in the direction of decreasing
values of V(h) (Figure 8a) until it reaches a stable state. The
noise moves the system away from the stable states and, in
the case of multistable systems (i.e., with multiple
preferential states as in Figure 8b), it can even move h to
the basin of attraction of another stable state. The system is
most likely to be found in the proximity of stable states and
the corresponding values of h are closely associated with
maxima (i.e., modes) of the probability distribution of h. In
the study of hollow dynamics we are in particular interested
in the analysis for h > hcr (for h < hcr the system undergoes a
deterministic dynamics of soil accretion, with the potential
function decreasing for h ! hcr); the potential function can
be expressed as

V hð Þ ¼ �
Z h

hcr

l hð Þ þ l hð Þh½ �dhþ const h � hcrð Þ ð15Þ

where l(h) is expressed through equations (2), (5), (6), and
(7).
[32] Figure 9 shows the potential functions of the exam-

ples discussed in the previous section. In the case of the
hollow of Figure 4 the potential function (Figure 9a) shows
a minimum at h = hcr. This is the case of a supply-limited
system, with a mode in the distribution of colluvium
thickness coinciding with the immunity depth, which also
represents the preferential state of the system. Landsliding
in the hollow of Figure 5 is event-limited in the sense
explained before. Landsliding occurs with soil depths larger
than the immunity depth; there is a larger variance in the
values of hslide and Tslide. The mode in the distribution of h is
between hcr and hmax (in this example the mode is slightly
above hcr), coinciding with the position of the potential well
in Figure 9b. The hollow discussed in Figure 6 is another
example of supply-limited systems with both potential well
and mode of h being at h = hcr = 2.51 m (Figure 9c). The
last example (Figure 7) is characterized by a potential

Figure 6. (opposite) Example of supply-limited processes
in a gentle-slope hollow (b = 30
, f = 33
, A = 7500 m2,
hcr = 2.51 m, Timm 	 6,000 yrs, R(hcr) = 5.5 mm h�1, Tc =
24 h, u = 1.84 mm h�1, v = 0.71 mm h�1, 1/l(hcr)	 160 yrs):
(a) time series of deposit thickness; (b) probability distribu-
tion of scar depth (i.e., colluvium thickness when a landslide
occurs); (c) probability distribution of landslide return
period; (d) probability distribution of the return period
of landslide-triggering storms (1/l(hslide)); (e) probability
distribution of colluvium thickness.
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function with two potential wells, one at hcr, corresponding
to a supply-limited regime, and the other at h ! 1,
corresponding to an unconditionally stable system; a poten-
tial barrier at h = 3.5 m separates the two regimes.

9. An Analytical Solution

[33] Asmentioned before, according to this model, supply-
limited conditions are common both in steep and in gentle-
slope hollows. We suggest an analytical solution of the
stochastic differential equation (11) that is valid for the
case of l independent of h. This condition is met in supply-
limited systems, where landslides occur soon after the
deposit depth exceeds hcr; in this case the frequency of the
triggering storm can be assumed constant and equal to l(hcr).
Equations (11)–(13) can be written as a function of the
dimensionless depth c = h/hcr

dc
dt

¼ lL cð Þ � F c; tð Þ ð16Þ

where F(c, t) = �(c)�i d(t � ti) and L(c) =
l hð Þ
lhcr

; with
�(c) = w(h)/hcr. When the rate of colluvium accretion, l(h),
is given by (10), L(c) becomes

L cð Þ ¼ l hð Þ
lhcr

¼ 1

2zc
ð17Þ

with z = lhcr
2 /K. The solution of (16) provides the

probability density function of c (see Appendix)

p cð Þ ¼

C

L cð Þ ; 0 � c < 1

C

L cð Þ e
�� cð Þ; c � 1

8>><
>>:

ð18Þ

where

� cð Þ ¼
Z c

1

dc
L cð Þ ¼ z c2 � 1

� �
: ð19Þ

and C ¼ 1
1�� 0ð Þ½ � ¼

1
1þz . It can be shown that p(c) has only

one mode value (at c = 1 when z � 0.5, or at c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2zð Þ

p
,

when z < 0.5).
[34] The average recurrence period, TL, of landslides is

lTL ¼ 1

p 0ð Þ L 0ð Þ ¼ 1�� 0ð Þ ¼ 1þ z; ð20Þ

Thus the landslide return period, TL, can be expressed as
sum of the average time between two consecutive extreme
rainstorms and the recovery time, Timm, of the hollow, i.e.,
the time needed by the hollow to develop a deposit
thickness from zero (immediately after a landslide) to the
immunity depth

TL ¼ 1

l
þ Timm ¼ 1

l
þ h2cr

K
; ð21Þ

In equation (21) 1
l depends on the hydro-climatic forcing,

while Timm depends on the parameters of the soil accretion
function as well as on the immunity depth, hence on the
slope and shear strength parameters.
[35] Figure 10 shows the probability distribution of the

(normalized) regolith depth for different values of the
dimensionless parameter z = lhcr

2 /K. The probability dis-
tribution is an increasing function of c until c = 1; above
this value, the behavior is twofold. If z > 1/2 (i.e., hcr >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K= 2lð Þ
p

) the distribution decreases monotonically,
whereas if z < 1/2 (i.e., hcr <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K= 2lð Þ

p
) the distribution

continues to increase until c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2zð Þ

p
and it decreases for

larger values of c. This difference reflects the distinction
between event-limited and supply-limited systems, dis-

Figure 7. Example of transition from an event-limited
state to an unconditionally stable state in the dynamics of a
gentle-slope hollow (b = 30
, f = 33
, A = 4500 m2, hcr =
2.51 m, Timm 	 6000 yrs, R(hcr) = 9.1 mm h�1, Tc = 18 h,
u = 2.13 mm h�1, v = 0.82 mm h�1, 1/l(hcr) 	 5000 yrs):
time series of the deposit thickness.

Figure 8. Schematic representation of (a) system evolu-
tion toward its potential well; (b) bistable system with a
noise-induced transition from a potential well to another.
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cussed before. For z > 1/2, the mode of the distribution of
soil thickness is c = 1 (i.e., h = hcr) and the system is in a
supply-limited condition; in this case the analytical solution
(18) can be properly applied and it can be favorably
compared with the numerical results determined for the
examples analyzed in Figures 4 and 6. On the other hand, in
the event-limited condition, the analytical solution cannot
be applied since l strongly depends on the soil thickness h.
[36] The probability distribution of c can be used to

estimate the average (normalized) thickness of the regolith
and to assess its dependence on immunity depth, slope
angle and soil strength parameters

hci ¼
Z 1

0

cp cð Þ dc

¼ 2z
1þ z

1

3
þ 1

2z

�
þ

ffiffiffi
p

p
ez

4z3=2
1� Erf

ffiffiffi
z

p� �� ��
: ð22Þ

With the higher values of z (i.e., of the ratio between rate of
landslide occurrence and rate of deposit accretion) the long-
term average soil depth, hci, is smaller (equation (22))
because landslides occur before the hollow is able to
develop thick deposits. This means that, with a given hcr,
large rates of transport (with respect to the rates of deposit
accretion) correspond to smaller values of hci. The standard
deviation, s, of c is also a decreasing function of z. In fact,
large values of l correspond to a supply-limited process
where landslides occur when h = hcr; this limits most of the
variability of h within the interval (0, hcr) (i.e., of c in (0,1))
and the variance is contributed mostly by the variability in

the course of the immunity period (i.e., 0 � h � hcr or 0 �
c � 1).

10. Conclusions

[37] A stochastic (process-based) model has been sug-
gested for the study of the temporal evolution of regolith
thickness in a hollow. The model consists of a soil mass
balance equation with a deterministic representation of the
mechanisms of soil accumulation in the hollow due to
transport of soil from the lateral hillslopes, and of their
dependence on the thickness of the deposit. The erosion of
the soil mantle due to landslides is modeled as a stochastic

Figure 9. Potential function for the hollows of (a) Figure 4 (supply limited); (b) Figure 5 (event
limited); (c) Figure 6 (supply limited); (d) Figure 7 (bistable system).

Figure 10. Probability distribution of the (normalized) soil
thickness, c = h/hcr, for different values of z.
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(Poisson) process, with each landslide removing the whole
hollow fill. Landslides do not occur when the colluvium
thickness is less than the immunity depth; the latter
depends on the hollow slope and soil mechanical proper-
ties. Landslide frequency is linked to the rainfall intensity-
duration-frequency curves through a hydrological model.
This framework relates landslide return period to the
rainstorm frequency and to the rate of hollow recovery
after a landslide.
[38] This analysis has shown that (1) for hollow slope, b,

greater than the colluvium repose angle, f, an increase in soil
thickness favors instability, reducing the rain intensity nec-
essary to trigger a landslide. It is then possible to define a
maximum soil thickness hmax, above which a landslide would
occur, even in the absence of rainfall. Thus landslides always
occur when the soil thickness is between the immunity depth
and hmax. Conversely, when b < f, an increase in soil
thickness leads to an increase in the landslide-triggering
rainfall intensity, favoring the stability of the hollow. (2) In
the case of b > f two possible regimes are identified depend-
ing on the ratio between the immunity period (i.e., time
needed by the hollow to fill up to the immunity depth), Timm,
and the return period, 1/l(hcr), of the landslide-triggering
rainfall when the soil thickness is equal to the immunity
depth. If 1/l(hcr)
 Timm the accumulation of material in the
hollow is slow compared to the time elapsing between two
consecutive triggering rainstorms. In this case, landslides
occur soon after the deposit thickness reaches the immunity
depth and the return period of landsliding is close to the
immunity period, while the return period of the triggering
rainfall is approximately 1/l(hcr). Landslide occurrence is
limited by the supply of debris from the adjacent slopes and
not by the occurrence of triggering precipitation: we denote
this regime as ‘‘supply limited’’. Vice versa, if 1/l(hcr) �
Timm only rare (i.e., intense) rainstorms are able to trigger a
landslide when h = hcr. This means that the colluvium
thickness can significantly increase above the immunity
depth before the occurrence of landslides; this growth of
colluvial deposits in steep hollows is accompanied by
an increase in the hollow susceptibility to landsliding
(see point 1). The probability distribution of landslide return
period, as well as of the return period of the triggering rainfall
and of the scar thickness, strongly depend on the statistics of
extreme rainfall. The regime can be denoted as ‘‘event
limited’’ because landsliding is limited by the occurrence of
the triggering precipitation. (3) Two more regimes can be
similarly defined in the case of gentle slopes (b < f): when
1/l(hcr) 
 Timm the hollow is in supply-limited condition,
with rainfalls triggering landslides soon after the deposit
depth reaches hcr. When 1/l(hcr) 
 Timm the triggering
precipitation is characterized by high return periods; there-
fore the deposit accretion is likely to exceed the immunity
depth. The stability of the hollow increases with the deposit
thickness until the slope is no more prone to hydrologically
triggered landslides. This regime is here defined as ‘‘uncon-
ditionally stable.’’
[39] The analysis is further carried out with the introduc-

tion of a potential function, that allows the identification of
stable equilibrium configurations (corresponding to poten-
tial minima). If the system is characterized by more than one
stable configuration, the random forcing associated with the
stochastic representation of precipitation can lead to the

transition from a potential minimum to another. The anal-
ysis of the potential function agrees with results of the
stochastic soil mass balance model. For example, in supply-
limited conditions, there is a minimum at h = hcr, whereas in
the case of transition from supply-limited to unconditionally
stable there exist two minima, one at h = hcr and the other at
h ! 1, representing an unconditionally stable state.
[40] Furthermore, in the case of supply-limited condi-

tions, an analytical solution is derived from the stochastic
soil mass balance equation, considering a constant landslide
return period equal to the immunity period. This solution
well matches the numerical results. The supply-limited
condition produces a periodic delivery of sediments to the
channel network, with little variation in return period and
debris volume. Hollows less prone to landsliding, instead,
deliver material with a more variable return period and
debris volume, depending on the rainfall regime.

Appendix A

[41] The analytical solution of the stochastic differential
equations (10)–(11) can be constructed using the same
approach as by Cox and Miller [1965], Cox and Isham
[1986], and Rodriguez-Iturbe et al. [1999].
[42] The rate, l, of occurrence of the climatic forcing is

assumed to be independent of the thickness of the colluvial
deposit; nevertheless, due the existence of the immunity
depth, the rate of occurrence of landslides differs from l and
depends on the depth of the deposit. When soil depth is less
than hcr the occurrence of a triggering event does not result
in any soil removal. The probability distribution of the
amount of soil removed, w (equation (13)), is therefore a
Dirac delta-function centered on 0 (i.e., d(w)). When soil
depth is greater than hcr all soil is removed. The probability
distribution of landslide thickness is therefore a Dirac delta
function centered on h (i.e., d(w � h)). The combined depth-
dependent probability distribution of the amount of soil
removed is therefore

p wð Þ ¼
d wð Þ; 0 < h < hcr

d w� hð Þ; hcr � h

8<
: ðA1Þ

[43] In the interval (t, t + �t) there is a probability (1 �
l�t) that no landslide occur and that the deposit depth at
time t + �t is h(t + �t) = h(t) + �h(t), while with
probability l�t a landslide of depth w occurs and at time
t + �t the deposit depth is h(t + �t) = h(t) + �h(t) � w.
[44] The probability of having a deposit thickness, h, at

time t + �t is separately estimated for the cases h < hcr and
h � hcr

p h; t þ�tð Þ�h hð Þ

¼

p h��h; tð Þ 1� l�tð Þ �h h��hð Þþ

pðh��hþ w; tÞl�t �h h��hð Þ;

0 < h < hcrð Þ

p h��h; tð Þ 1� l�tð Þ �h h��hð Þ;

h � hcrð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ðA2Þ
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where, in the first equation, w = 0 because h < hcr
(equation (13)), while the second equation has been
obtained observing that the deposit thickness at time t +
�t is h only if it is h � �h at time t and no landslides occur.
After a Taylor expansion about (h, t), expressing �h as
l(h)�t, and dividing by �h �t, the above becomes

@p h; tð Þ
@t

¼
� @

@h
p h; tð Þ l hð Þ½ �; 0 < h < hcr

� @

@h
p h; tð Þ l hð Þ½ � � lp h; tð Þ; h � hcr

8>><
>>:

ðA3Þ

[45] The probability that h = 0 at time t + �t is the
probability that h � hcr at time t and that a landslide occurs
in the interval (t, t + �t); hence

p 0ð Þ l 0ð Þ ¼ l
Z 1

hcr

p h0ð Þ dh0 ðA4Þ

and this is also the probability of landslide occurrence.
[46] Equations (A3) and (A4) provide a piecewise repre-

sentation of the master equation [Cox and Miller, 1965] for
0 < h < hcr, h � hcr, and h = 0, respectively. In statistically
steady state conditions (t ! 1) the temporal derivatives are
null and equations (A3) become

d

dh
p hð Þl hð Þ½ � ¼ 0; 0 � h < hcr ðA5aÞ

d

dh
p hð Þl hð Þ½ � ¼ �lp hð Þ; h � hcr ðA5bÞ

with the boundary condition (A4).
[47] The integration of the system (A5a) leads to two

algebraic equations with two integration constants that are
estimated through the imposition of two conditions: the
normalization of p(h) (i.e., unit value of the integral of p(h)
in the interval [0, +1)) and equation (A4) granting the
continuity of the dynamics between h = 0 and h > 0 (in fact
the soil depth continuously grows from h = 0 to values of
h larger than zero; thus equation (A4) represents the
boundary condition for (A5a) leading to

p hð Þl hð Þ ¼ l
Z 1

hcr

p hð Þdh 0 � h < hcrð Þ: ðA6Þ

[48] At the same time, the integration of (A5b) gives

p hð Þ ¼ C

l hð Þ e
�l

R h

hcr

dh0
l h0ð Þ

¼ �C

l
d

dh
e
�l

R h

hcr

dh0
l h0ð Þ

� �
; h � hcrð Þ ðA7Þ

where C is an integration constant.
[49] Using (A7), equation (A6) becomes

p hð Þ ¼ C

l hð Þ 1� e
�l

R1

hcr

dh0
l h0ð Þ

� �
0 � h < hcrð Þ: ðA8Þ

[50] The probability density function of h finally reads as

p hð Þ ¼

C

l hð Þ 1� e�q 1ð Þ
� �

; 0 < hcr

c

l hð Þ e
�q hð Þ; h � hcr

8>><
>>:

ðA9Þ

where: q hð Þ ¼ l
R h

hcr

dx
l xð Þ . The constant C is found by

normalization (i.e.,
R
0
1p(h) dh = 1), leading to:

C ¼ l
1�q 0ð Þ½ � . In particular, it can be shown that, when l(h)

is expressed by (10), exp(�q(h)) = 0 for h ! 1, while
exp(�q(h)) = 1 for h = hcr. This grants the continuity of p(h)
at h = hcr.
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