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Abstract

A numerical model that couples water flow and sediment transport over a non-cohesive bed is developed to simulate

the initiation and evolution of transportational cyclic steps. Transportational cyclic steps are periodic bedforms

characterized by corresponding hydraulic jumps that form when a supercritical flow erodes and deposits bottom

sediments on a steep bed. The flow transition at the hydraulic jump leads to bed erosion on the supercritical part and

deposition on the subcritical part of the step, with consequent upstream migration while the form is preserved. The

numerical scheme developed to study transportational cyclic steps utilizes an approximate Riemann solver to capture

the exact location of the hydraulic jumps present in the domain. Simulations of step growth from small perturbations

on an initially flat bed are carried out and partly answer the question of how transportational steps form. Results show

that both an initial infinitesimal bottom perturbation and a random distribution of bottom elevations evolve in a series

of steps migrating upstream. Moreover, numerical simulations clearly show that the final configuration strongly

depends on initial conditions.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Uniform water flow over a steep erodible bed creates,

in particular conditions, periodic bedforms character-

ized by corresponding hydraulic jumps. The coupling of

water flow and suspended sediment transport produces a

spatially varying pattern of deposition and erosion that

initiates and subsequently maintains upstream migrating

bottom steps. Each step is divided into two parts, with a

flat or gently sloping sill where the flow is subcritical and

a steep lee side where the flow is supercritical. Two

contiguous steps are further connected by a hydraulic

jump and the corresponding flow transition leads to

increased bed erosion on the supercritical side and

increased deposition on the subcritical side, with

consequent step migration. Over a wavelength,

deposition balances erosion thus preserving the shape

of the steps. This spontaneous formation of

bedforms was termed transportational cyclic steps by

Whipple et al. (1998), when they observed this

peculiar phenomenon in their alluvial fan experiments.

Transportational cyclic steps were also noticed in

the Netherlands, during the construction of sand

dams. When a hyperconcentrated sand–water mixture,

guided by two man-made bunds along the

sandbody, was flowing from the pipelines toward the

head of the dam under construction, a terrace-like

sand bed formed on the dam (Winterwerp et al.,

1992). This unexpected bed topography raised the

engineering concern in how steps affect the efficiency

of sediment transport. Based on these observations,

Winterwerp et al. (1992) calculated the water flow

velocity and sediment concentration using a fixed bed

profile with steps.
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Flume experiments carried out by Taki and Parker (in

press) shed light on the formation and evolution of

transportational cyclic steps. In these experiments water

and sediment were introduced at a constant rate from the

upstream end of a flume, while at the downstream end

both were allowed to escape freely across a low tail weir.

In the first part of the experiment, the sediment bed

prograded and aggradated towards and equilibrium

profile. Once this equilibrium profile was reached, steps

started forming at the downstream end of the flume and

migrated upstream at a constant speed. This allowed to

obtain measurements of equilibrium slope and water

depth both in absence and presence of steps. Taki and

Parker were then able to study the step shape as a

function of discharge, sediment concentration and

average bottom slope. A recent mathematical model

proposed by Sun and Parker (in press) represents a major

improvement in our understanding of transportational

cyclic steps. The theory is based on the observation that

cyclic steps migrate upstream while maintaining a

constant shape, and therefore seeks for the self-preser-

ving solution of the governing equations. In transporta-

tional steps, erosion and deposition are in equilibrium, so

that the average elevation of the bed remains constant

during the step formation and migration. Shape and

dimension of steps, as well as the upstream migration

speed, are predicted by the theoretical model as a

function of water discharge and suspended sediment

concentration. This nonlinear theory explains the regime

of formation of transportational cyclic steps, which

depends on the Froude number of the flow in absence of

steps and on the threshold condition for bed erosion. The

corresponding results compare favorably with experi-

mental data (Taki and Parker, in press), producing steps

with dimensions of the same order of magnitude of real

steps. Finite-slope effects near the downstream end of the

step, inaccuracy in the measurement of water depth, and

some model simplifications (the hypothesis of constant

sediment concentration in the vertical and the neglecting

of bedload sediment transport) however reduce the

accuracy of the theoretical results.

Closely related to that of Sun and Parker (in press), a

mathematical model for steps that form in absence of

sediment deposition (named erosional cyclic steps to

differentiate them from transportational cyclic steps) has

been developed by Parker and Izumi (2000). In Parker

and Izumi’s model, it is assumed that once the material

is eroded from the bed, it is carried out of the system as

washload without redeposition. In the purely erosional

picture, the transport of sediment is not considered and

the entire system constantly degrades. While erosional

cyclic steps often form in cohesive beds, such as in

hillslopes with abundant clay or organic materials

(Izumi and Parker, 2000), in environments characterized

by sand the transport and redeposition of sediment play

an important role in the process.

Both Winterwerp et al.’s and Sun and Parker’s

mathematical models for transportational cyclic steps

are based on a steady bottom configuration consisting of

a regular series of steps equally spaced. In Winterwerp

et al. (1992) the step is supposed to be formed by three

consecutive segments: the terrace, the sill, and the lee

side. The length of the three segments as well as the

water height and sediment concentration are determined

solving the equations that govern the water flow and

sediment transport. In these equations no temporal

derivatives are considered (steady state).

In Sun and Parker (in press) the shape of the step is

not set a priori but is calculated as part of the solution.

The equations governing the water flow field and the

suspended sediment transport are steady, without

temporal derivatives. The bottom instead can vary in

time, producing the step migration. Both models start

from an already existing step in equilibrium with other

identical steps, and are therefore unable to capture the

transient evolution of the steps and, in particular, their

formation.

Herein a numerical model based on the complete set

of equations is developed and utilized to study the

formation and evolution of transportational steps in

time and space. Since hydraulic jumps are in any effect

shock waves propagating in the domain, it is possible to

utilize methods developed for discontinuous solutions of

hyperbolic equations, in the framework of conservation

laws (LeVeque, 1992). The system of equations is thus

resolved utilizing a first order Riemann solver, which is

able to capture the hydraulic jump and the complex

interaction between water flow and sediment transport.

Even though more accurate techniques are already

available for the study of hydraulic jumps, based on

second order shock-capturing methods (Burguete and

Garcia-Navarro, 2001; LeVeque, 1992), herein a first

order scheme is utilized for its simplicity, robustness,

and for the absence of spurious oscillations that can

poison the final results. The final goal of this work is not

the development of a new numerical scheme but the

utilization of a widely accepted scheme for the study of a

physical process. Furthermore, a detailed discussion of

the coupling between the De Saint Venant equations and

the sediment transport equations is presented. This

discussion is the extension of the theory of shock waves

in shallow waters (easily found in Stoker, 1957;

LeVeque, 1992) to the new system of equations. The

present numerical model is developed to study trans-

portational steps created by a supercritical flow with a

small water depth, highly concentrated suspended

sediment, and a sand bed with constant granulometry.

A succession of steps and pools with related hydraulic

jumps also exists in mountain streams (Chin, 1989;

Chartrand and Whiting, 2000). Contrary to transporta-

tional cyclic steps observed in experiments or during

engineering works, the formation of natural steps and
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pools is influenced by several factors, as, for example,

the sediment granulometry spanning from silt to

boulders, the presence of a bedrock surface, and the

intensity and frequency of rainfall discharges. The

present paper can thus represent a first step toward a

more comprehensive model suitable for studying the

formation and evolution of mountain steps and pools in

spatially heterogeneous and time-varying geological

settings.

2. The equations

Four equations describe the formation and evolution

of transportational steps. The water flow is governed by

the one-dimensional De Saint Venant equations (con-

tinuity and conservation of linear momentum):

@h

@t
þ

@uh

@x
¼ 0; ð1Þ

@u

@t
þ u

@u

@x
¼ �g

@h

@x
� g

@Z
@x

�
Cf

h
u2; ð2Þ

where x is a downstream coordinate, h is the water

depth, t denotes time, u is the depth averaged velocity,

Z the elevation of the bed above a reference level, g is the

gravity acceleration and Cf a friction coefficient. The

conservation of suspended sediment in the water column

can be written as

@hw
@t

þ
@uhw
@x

¼ vsðE � rwÞ ð3Þ

with w the volume concentration of suspended sediment
averaged over the vertical, vs the settling velocity, E the

rate of entrainment of sediment from the bed into

suspension, r the ratio between near bed sediment

concentration and depth-averaged concentration. Since

the considered water depths are small, we suppose that

the sediment concentration is uniform along the vertical

and we set r ¼ 1: Eq. (3) states that the temporal

variation of suspended sediment volume in the water

column is equal to the divergence of the suspended

sediment flux plus (minus) the sediment volume en-

trained (deposited) at the bottom.

The fourth equation (Exner equation) links the local

variation in bed elevation to the sediment removed or

accumulated at the bottom. It reads

ð1� nÞ
@Z
@t

¼ vsðrw� EÞ; ð4Þ

where n is the porosity of the bed sediments. To close

system (1)–(4) the nondimensional entrainment function

E needs to be specified. Several examples of entrainment

functions E for cohesionless sediments can be found in

Garcia and Parker (1991). Here we use the empirical

relationship utilized in Sun and Parker (in press) to

model the experiments of Taki and Parker (in press):

E ¼ at½t� � t�th�
n; ð5Þ

where t�th is the threshold Shields stress for the

entrainment of sediment into suspension, at an empirical

coefficient, n is an exponent ranging between 1.5 and 2.0,

and t� a Shields stress given by the relationships

t� ¼
t

ðrs � rÞgD
; t ¼ rCf u2 ð6Þ

with t the bottom shear stress, D sediment grain size,

r and rs density of water and sediment respectively. As

showed in Taki and Parker (in press) the coefficient at

and the critical Shields stress t�th are empirically related
to a particle Reynolds number and can be determined as

a function of the sediment characteristics. With the aid

of (6), the entrainment function is rewritten as

E ¼
atðt�thÞ

n u

uth

� �2

�1

" #n

if u > uth;

0 if uputh;

8>><
>>: ð7Þ

where

uth ¼
ðrs � rÞgDt�th

rCf

	 
1=2
ð8Þ

is the threshold velocity for sediment entrainment.

System (1)–(4) is hyperbolic and nonlinear, therefore

discontinuous solutions might form in the domain when

time advances (shock waves). In order to correctly

capture these weak solutions, the system of equations is

reformulated in conservation form, introducing the

following conservative variables:

q ¼ hu; c ¼ hw; m ¼ ð1� nÞZþ hw; ð9Þ

where q is the discharge, c the suspended sediment in the
water column, and m the sediment volume in a vertical

column above a reference level that can be separated in

the sediment volume belonging to the bed ð1� nÞZ; and
the suspended sediment in the water hw (Fig. 1). System
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(1)–(4) can thus be rewritten as

@U

@t
þ

@F

@x
¼ S; ð10Þ

where U is the vector of the conserved variables, F the

flux and S the source term. They read

U ¼

h

q

c

m

2
6664

3
7775; F ¼

q

q2=h þ 1
2

gh2

ðcqÞ=h

ðcqÞ=h

2
6664

3
7775;

S ¼

0

�ghð@Z=@xÞ � Cf u2

vsðE � rc=hÞ

0

2
6664

3
7775: ð11Þ

The source term equal to zero in the first and fourth

equations of (10) shows that the total volume of water

and the total volume of sediments are conserved in time.

On the other hand, linear momentum may vary,

increasing or decreasing because of the gravity force

on a tilted bottom. At the same time momentum is also

reduced by bottom friction. The sediment volume in

suspension may change as well, because of deposition or

entrainment at the bottom.

3. The Riemann problem

In order to solve system (10), we first study in detail

the homogeneous case, governed by the system:

@U

@t
þ

@F

@x
¼ 0: ð12Þ

Moreover, we suppose that the initial conditions are the

union of two states, a left state ðLÞ and a right state ðRÞ;
with constant conservative quantities. Since the right

values are different from the left values, a discontinuity

in U rises at the contact point (Riemann problem). To

solve the Riemann problem, we study the Jacobian of

the flux

A ¼

0 1 0 0

c2 � u2 2u 0 0

�uw w u 0

�uw w u 0

0
BBB@

1
CCCA; ð13Þ

where, by definition, Aij ¼ @Fi=@Uj : Its eigenvalues are

l1 ¼ u � c; l2 ¼ u þ c; l3 ¼ u; l4 ¼ 0; ð14Þ

where c ¼
ffiffiffiffiffi
gh

p
is the celerity of small amplitude

gravitational waves.

The corresponding eigenvectors are

r1 ¼

1

u � c

w

w

2
6664

3
7775; r2 ¼

1

u þ c

w

w

2
6664

3
7775;

r3 ¼

0

0

1

1

2
6664

3
7775; r4 ¼

0

0

0

1

2
6664

3
7775: ð15Þ

Because one eigenvalue is zero the system is degenerate.

Each eigenvalue (and corresponding eigenvector) de-

scribes a characteristic field, and identifies a family of

characteristic lines. On these lines information travels

with celerity equal to the associated eigenvalue. Accord-

ing to the theory of hyperbolic equations, the general

solution in time of the Riemann problem can be a

rarefaction wave, a shock wave or a contact disconti-

nuity for each characteristic field (LeVeque, 1992). In a

rarefaction wave the conserved quantities vary continu-

ously, whereas in a shock there is a jump in their value.

Finally, a contact discontinuity is a discontinuity that is

advected linearly with speed equal to the characteristic

speed l:
From (14) and (15) the following relationships are

derived

=l1 � r1a0; ð16aÞ

=l2 � r2a0; ð16bÞ

=l3 � r3 ¼ 0; ð16cÞ

=l4 � r4 ¼ 0; ð16dÞ

showing that the first two characteristic fields are

genuinely nonlinear, the third and the fourth are in-

stead linearly degenerate (Lax, 1957). In other words,

Eq. (16a), Eq. (16b) are the necessary conditions for

the propagation speeds l1 and l2 to monotonically

increase and decrease in a rarefaction wave. Since these

two eigenvalues are referred to the De Saint Venant

equations, Eq. (16a), Eq. (16b) show that a rarefaction

wave is a possible solution for these characteristic fields.

As a consequence, the solution of the Riemann problem

for the De Saint Venant equations consists of two

shocks, two rarefaction waves or a shock plus a

rarefaction wave.

On the contrary, Eqs. (16c), (16d) state that in the

third ðl3Þ and fourth ðl4Þ characteristic fields we can
have neither rarefaction waves nor shocks, and therefore

the solution of the Riemann problem is a contact

discontinuity. This can also be seen for the sediment

concentration combining the first and third equations
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of Eq. (12):

@w
@t

þ u
@w
@x

¼ 0: ð17Þ

An initial discontinuity in concentration w travels

undisturbed in the flow field with celerity u; without
mixing of sediment particles through the discontinuity

(we note that system Eq. (12) is based on the assumption

of negligeble molecular and turbulent viscosity and

related mixing).

Where there is a jump in the variables, the left ðLÞ and
right ðRÞ states of a Riemann problem are linked

through the Rankine–Hugoniot conditions, written as

s ¼
FðURÞ � FðULÞ

UR �UL
; ð18Þ

where s is the speed of the shock or contact disconti-

nuity. For system Eq. (11), the Rankine–Hugoniot

conditions are then

hRuR � hLuL ¼ sðhR � hLÞ;

u2RhR þ
1

2
gh2R

� �
� u2LhL þ

1

2
gh2L

� �
¼ sðhRuR � hLuLÞ;

wRuRhR � wLuLhL ¼ sðwRhR � wLhLÞ;

wRuRhR � wLuLhL ¼ s½ð1� nÞZR þ wRhR

� ð1� nÞZL � wLhL�: ð19Þ

When there is a discontinuity in water depth and

velocity, the first two equations of (19) represent the

standard hydraulic jump conditions (Henderson, 1966).

From the third and fourth Rankine–Hugoniot condi-

tions we can derive the relationship:

ZR � ZL ¼ 0: ð20Þ

The bottom elevation is then continuous both at the

shock and contact discontinuity locations. For the

contact discontinuity, defined by the condition of no

mass flow through the discontinuity ðuL ¼ uRÞ; and
continuous water depth ðhL ¼ hRÞ; we note that Eq. (19)
are satisfied irrespective of the values of wL and wR: For a
shock with uLauR and hLahR; it is possible to derive
from the first and third Rankine–Hugoniot conditions:

ðwR � wLÞðuR � uLÞ ¼ 0: ð21Þ

This equation is satisfied only if the concentration is

continuous at the shock location.

4. The numerical method

We solve system Eq. (10) on a regular Cartesian grid

with a finite difference scheme. At the generic point i of

the grid, system Eq. (10) can be descritized with the

following first order upwind scheme:

’Ui þ
1

Dx
½Fiþ1=2 � Fi�1=2� ¼ Si; ð22Þ

where ’Ui is the temporal derivative of the conserved

variables at the point i; Dx is the distance between two

mesh points, and Fiþ1=2ðUi�1;UiÞ; Fi�1=2ðUi;Uiþ1Þ are
suitable flux functions that connect the states Ui�1;Ui

and Ui;Uiþ1 resolving the corresponding local Riemann

problems. Here we utilize the numerical flux based on

the Roe’s approximate Riemann solver. The corre-

sponding flux function will be studied in detail in the

following paragraph. Since the source term S becomes

stiff (i.e. it grows consistently) when the bottom slope is

high, a fully explicit scheme in time for Eq. (22) must not

only satisfy the Courant–Friedrichs–Lewy condition for

the advection term, but it also has to resolve the

relaxation time connected to the source term (Jin, 1995).

For a stiff source term, solving the relaxation time

implies the utilization of a very small time step, thus

limiting the applicability of the method.

To circumvent the problem, the source term is treated

implicitly, using a simple predictor–corrector scheme.

The predictor step is

U
nþ1=2
i ¼ Un

i �
Dt

2Dx
½Fn

iþ1=2 � Fn
i�1=2� þ Sn

i ð23Þ

with Un
i the solution at time n and Dt the time step.

Whereas the corrector step is

Unþ1
i ¼ Un

i �
Dt

Dx
½Fnþ1=2

iþ1=2 � F
nþ1=2
i�1=2 � þ Snþ1

i : ð24Þ

The implicit corrector step is then resolved with

functional iteration until convergence, i.e. correcting

iteratively the value of Unþ1
i : The method is first order in

time, avoiding in this way a oscillatory behavior if the

relaxation time is unresolved (Lowrie and Morel, 2000).

The source term is calculated at the point i; and the only
space derivative present in it, the slope gradient, is

descritized with a centered difference scheme.

5. The Roe numerical flux

The determination of the numerical flux hinges on the

solution of a Riemann problem at the boundary of two

elements (see Toro, 1992). Following Roe (1981),

instead of solving the original nonlinear system derived

from the Riemann problem, a modified conservation law

is solved, leading to a linear system:

@ #U

@t
þ #AðUL;URÞ

@ #U

@x
¼ 0: ð25Þ

The matrix #A; with constant coefficients, depends on the
states at the left and at the right of the boundary, and

has to respect particular conditions (Roe, 1981). A way

to derive the matrix is to calculate the Jacobian of the

flux for some average values of U; i.e. #A ¼ AðUaveÞ: For
the shallow water equations, the averages can be defined
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as (Alcrudo and Garcia-Navarro, 1993; Glaister, 1993)

%u ¼
cLuL þ cRuR

cL þ cR
; %c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðc2L þ c2RÞ

r
;

%h ¼
1

2
ðhL þ hRÞ: ð26Þ

For the sediment concentration, following the outlines

reported in LeVeque (1992), it is possible to show that

the average is

%w ¼
cLwL þ cRwR

cL þ cR
: ð27Þ

The Roe flux is then

FðUL;URÞ ¼
1

2
ðFðULÞ þ FðULÞÞ � j #AjðUR �ULÞ

¼
1

2
ðFðULÞ þ FðURÞÞ �

X
i

j%li jmodDwiri ð28Þ

where Dwi are the wave strengths:

Dw1 ¼
1

2
ðhR � hLÞ þ

%h

2%c
ðuR � uLÞ;

Dw2 ¼
1

2
ðhR � hLÞ �

%h

2%c
ðuR � uLÞ;

Dw3 ¼ %hðwR � wLÞ; ð29Þ

and the eigenvectors ri are calculated with the averaged

quantities. The eigenvalues j%li jmod are equal to

j%li jmod ¼
j%li j if j%li jXe

e if j%li joe

(
ð30Þ

to avoid entropy violating shock solutions (see Harten

and Hyman, 1983). j%li j are calculated from (14) with the

averaged quantities (26), (27) while e is

e ¼ max½0; ð%li � lLiÞ; ðlRi � %liÞ�: ð31Þ

In this framework the numerical fluxes in Eq. (23) and

Eq. (24) simply become Fiþ1=2 ¼ FðUi;Uiþ1Þ; Fi�1=2 ¼
FðUi�1;UiÞ:

6. Threshold bed slope and boundary conditions

A limit solution for the first and second Rankine–

Hugoniot equations Eq. (19), subject to the condition

uLhL ¼ uRhR ¼ q; is the following:

uL-N; hL-0; uR-0; hL-N: ð32Þ

From a mathematical point of view, given a constant

discharge, the velocity can grow indefinitely before the

jump, reducing the water depth to zero. As a conse-

quence, after the jump the velocity decreases to zero and

the water depth becomes infinite. When this limit

solution is coupled with sediment transport, nothing

seems to prevent the bottom slope before the jump to

grow indefinitely producing increasingly higher veloci-

ties. A closure condition is then needed to limit the

maximum velocity and stop the deepening of the step. In

Sun and Parker (in press) the velocity after the jump is

posed equal to the critical velocity for sediment

entrainment; herein we instead prefer to limit the

maximum slope of the bottom, which is a natural

condition for cohesionless sediments. In order to do

that, we introduce a multiplicative coefficient for the

entrainment function:

E0 ¼ pE; with

p ¼
1 if

@Z
@x

o0:9Scr;

@Z=@x � 0:9Scr

Scr � @Z=@x
þ 1 if

@Z
@x

X0:9Scr;

8>><
>>: ð33Þ

where E0 is the new entrainment function, Scr the

maximum slope for the bed material, and 0.9 an

arbitrary number close to 1. Numerical simulations

show that the results are not sensitive to the value of this

parameter. This is a first approximation, considering

that system Eq. (10) has been derived with the assump-

tion of small bottom slope. A more rigorous formulation

should consider a finite value of bottom slope for the

water flow and sediment transport (Parker and Izumi,

2000). The introduction of the parameter p in the

equations leads to a rapid increase in sediment entrain-

ment at the bottom when the slope approaches the

maximum value, with a rise of suspended sediment

concentration. As a result the slope at the end of each

step cannot exceed this value. It is intuitive to suppose

that the maximum slope is linked to the angle of repose

of the cohesionless sediment forming the bed. As a

matter of fact experimental results showed that the

maximum slope is less than the angle of repose (Taki

and Parker, in press), indicating that the sediment

immerse in flowing water is less stable than sediment at

repose. We then suppose that the maximum slope can be

obtained from experiments.

In order to solve system Eq. (10) suitable boundary

conditions have to be imposed. In this paper we

implement cyclic boundary conditions, setting the values

of discharge, water depth and sediment discharge at the

end point x ¼ L equal to the values at the starting point

x ¼ 0: The bottom slope at the first and last point is

written as an average between two backward differences,

avoiding in that way to explicitly account for the total

difference in bed elevation between the first and the last

point, and leaving the bottom slope free to change. In

reality, since cyclic boundary conditions are equivalent

to an infinite series of domains of length L and slope S; a
change in bottom slope becomes impossible during the

simulation, because it would create a bottom disconti-

nuity between a domain and the following one.

Finally, with cyclic boundary conditions, the amount

of water and the volume of sediment in the domain

are conserved during the simulation. To facilitate the
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comprehension of the model implementation, a flow

chart with all the numerical components is reported

in Fig. 2.

7. Numerical simulations

The formation and evolution of transportational

cyclic steps is simulated in a domain of length 3 m with

a mesh of 150 nodes (a further increase of nodes does

not sensibly change the final result). As showed in Taki

and Parker (in press) experiments and supported by the

theory of Sun and Parker (in press), the sediment bed

evolves toward a stable configuration consisting of a

series of hydraulic jumps that creates regular steps at the

bottom. The set of parameters utilized in the first

simulation is shown in Table 1, and corresponds to the

properties of uniform quartz sand having diameter equal

to 19 mm (Taki and Parker, in press). Furthermore, we
assume the maximum slope to be equal to 0.46, which is

the average value of the experimental results (Taki and

Parker, in press).

For the first numerical experiment we start from a

uniform flow over a bed of constant slope S ¼ 0:05: The
flow and the bed are in equilibrium, in the sense that the

amount of deposited sediment is equal to the amount of

entrained sediment. The initial conditions are then

identical to the initial conditions of Taki and Parker’s

experiments, with a uniform flow over a flat bed. This

state is fully identified by setting the source term of the

system equal to zero:

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cf gh0

p
; E0 ¼ w0: ð34Þ

Substituting Eq. (7) in Eq. (34) we obtain two equations

in four unknowns u0; h0; w0; S0: If we specify the slope,
another parameter is needed to determine the uniform

state. We take a initial discharge q0 ¼ h0u0 ¼
0:002 m3=s: The slope is higher than the critical slope
hence the flow is in supercritical condition.

In Taki and Parker’s experiments the flume end is the

location where a perturbation is likely to develop in a

hydraulic jump. In the numerical model we can

introduce a perturbation (i.e. a bump at the bottom) in

any position of the domain and let the system evolve

(Fig. 3a). In a first stage the bump is growing until a

hydraulic jump forms upstream of the bump since the

flow is obliged to become subcritical in order to gain

enough specific energy to pass the bump (Fig. 3b). After

the top of the bump where, neglecting curvature effects,

the critical condition establishes, the flow is accelerated

by a slope higher than the initial slope, and it reconnects

to the uniform flow with a gradually varying profile.

Here the higher velocity produces erosion. On the other

hand, just before the bump, the subcritical regime

encourages sediment deposition, since the flow velocity

ARTICLE IN PRESS
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Calculate the bottom slope 
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 with the Roe-Riemann solver

Calculate the solution at time
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Print the solution at time t+dt 

No

Yes

Fig. 2. Flow chart with numerical components of model.

Table 1

Simulation parameters

Sediment D ðmmÞ vs (cm/s) Cf uth t�th at ðn ¼ 2Þ Scr

Quartz 19 19 0.032 0.0117 10.13 0.389 0.00169 0.46

Silica 45 45 0.180 0.0134 8.23 0.125 0.0130 0.46

Silica 120 120 1.010 0.0160 10.59 0.092 0.0104 0.46

After Taki and Parker (in press).
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decreases consistently. Because of this twofold effect

the bump migrates upstream. The flow acceleration

after the bump significantly scours the bed sediment,

lowering the bottom level at an elevation less than the

initial elevation. The current thus has to pass an

increasingly higher difference in bottom elevation to

reconnect to the uniform flow, until this difference is so

marked that the flow passes in subcritical condition to

gain enough energy (Fig. 3c). A second step thus forms

downstream and so on, resulting in the creation of a

series of steps. As a final result a perturbation of the

initial bottom profile propagates in both directions, with

migration of steps upstream and creation of new steps

downstream (Fig. 3d). Since we imposed cyclic bound-

ary conditions, the steps migrating upstream will

encounter the steps forming downstream, and, after a

transition period (Fig. 3e), a steady configuration of

identical migrating steps will take place (Fig. 3f).

While the total volume of water and the total amount

of sediments in the domain are conserved during the

simulation, discharge and suspended sediments decrease

from the configuration without steps to the configura-

tion with steps. At time t ¼ 1000 s the velocity is high

and, consequently, the difference in water depth at the

hydraulic jump (Fig. 4a–c). On the other hand, at time

t ¼ 80 000 s when the steps are steadily migrating

upstream, the average velocity is sensibly reduced, as

well as the difference in water depth at the hydraulic

jump (Fig. 4f, g). The concentration increases where the

flow accelerates reducing its depth, while it decreases

where the flow is in subcritical conditions (Fig. 4d). We

note that the velocity and the water depth have a

discontinuity at the hydraulic jump, whereas the

concentration is continuous (even though with a steep

gradient), as expected from the discussion previously

presented.

A second simulation is performed with a tilted bottom

to which are added small random elevations selected

from a uniform distribution between 70:0005 m (Fig.

5a). During the simulation, the initial bottom perturba-

tions get amplified until a series of hydraulic jumps

forms (Fig. 5b, c). The hydraulic jumps are unevenly

distributed at the bottom, depending on the initial

conditions. Moreover, because of the high frequency of
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Fig. 3. (a)–(f) Formation and evolution of transportational steps from a single bump at bottom. (——-) Bottom; (- - -) water surface.
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the initial perturbation, there are more hydraulic jumps

than in the previous simulation. Once formed, the steps

migrate upstream at a different speed, trying to reach an

equilibrium configuration. To this end, the big jumps

compress the small ones until their disappearance, thus

reducing the total number of steps (Fig. 5c–e). At the

final state, the number of steps is different from the steps

formed from a single bottom perturbation (compare

Fig. 4 with Fig. 6). This second example clearly shows

that initial conditions are of fundamental importance in

setting the final number of steps.

Several simulations were performed with different

bump elevations. The bump always grew, even for

vanishing initial elevation, until a hydraulic jump

formed. We further compared the numerical simulations

with the experimental results of Taki and Parker (in

press, see Table 5) for three different kinds of sand,

whose characteristics are reported in Table 1. The

comparison proceeds as follow. As initial conditions

we utilize a single bump (see Fig. 3) that corresponds to

the experimental conditions (in the experiments a single

bump migrates upslope triggering the formation of other

bumps). We then fix the slope in the simulation equal to

the resulting experimental slope with steps. We try

different values for the initial discharge until the final

discharge with steps differs less than 10% from the

experimental value. The sediment concentration and the

step dimensions depend on this initial choice of slope

and discharge. The dimensions of the simulated

steps have the same order of magnitude of the

experimental results (Table 2), but some differences are

present in both step length and sediment concentration
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Fig. 4. Comparison between solution at t ¼ 2000 s and at t ¼ 80 000 s (steady solution) for simulation showed in Fig. 2. At t ¼ 2000 s:
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depth; (g) velocity; (h) concentration.
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(see Table 2). These incongruities reflect the degree of

approximation of the sediment parameters reported in

Table 1 (see Taki and Parker, in press for a discussion),

as well as the sensitivity of the numerical results with

respect to the closure hypothesis regarding the bottom

maximum slope and the initial conditions. Improve-

ments in both experiments and numerical models are

demanded in order to reduce the gap between the

results. From a numerical point of view a correct

implementation of the full equations keeping in account

a finite bottom slope and a deeper investigation

regarding the limiting conditions for step growth might

consistently improve the model. Comparison of the

experimental step shape reported in Taki and Parker

(in press, Fig. 8) with a numerical simulation shows that

the model is able to capture the structure of the step

and related water depth (Fig. 7). Despite the level of

approximation involved, we can conclude that the

results presented herein are consistent, to a

first approximation, with the experiments. It is impor-

tant to note that the extension of the present model

in two- and three-dimensions can provide insights

on the planimetric structure of transportational

steps and their three-dimensional formation and

evolution.

8. Conclusions

A numerical model for the initiation and growth

of transportational cyclic steps is presented. An
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Table 2

Comparison between experiments and simulations

q ðcm2=sÞ w S DZ (cm) L (cm)

Quartz 19 run 23 7.14 0.0421 0.0505 2.31 48

Simulation 6.52 0.010 0.0505 2.53 50

Silica 45 run 6 7.00 0.0836 0.0617 2.21 70

Simulation 7.48 0.072 0.0617 2.3 38

Silica 45 run 8 11.08 0.026 0.043 2.77 113

Simulation 11.4 0.074 0.043 2.1 50

Silica 45 run 7 11.06 0.0266 0.0485 2.36 106

Simulation 11.3 0.091 0.0485 2.4 50

Silica 120 run 7 11.9 0.030 0.0655 2.55 49

Simulation 11.6 0.014 0.0655 1.83 28

Silica 120 run 9 14.3 0.0342 0.0723 3.48 65

Simulation 14.0 0.023 0.0723 2.7 38
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approximate Riemann solver is used to treat the velocity

and water depth discontinuities associated with the

hydraulic jumps. Results show that an initial infinitesi-

mal bottom perturbation grows in a step with a

transition of flow from subcritical to supercritical before

and after it. Once formed, the step migrates upstream

and triggers the development of new steps in the

downstream direction. A series of steps thus appears

having same shape and dimensions. On the other hand,

a different initial condition, for example a random

distribution of bottom elevation, may create a high

number of hydraulic jumps. These jumps are not in

equilibrium, since they are caused by the high frequency

of the initial perturbations. As a result, the bottom is

reworked mostly by the bigger jumps that compress

the small ones until they are eliminated. Under these
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conditions the final number of steps is higher than the

steps created by a single perturbation, showing that the

equilibrium configuration strongly depends on initial

conditions. Comparisons with experiments proves that

the simulated steps are consistent, in first approxima-

tion, with the real ones.
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