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[1] A simplified model for tidal flow in a basin is presented. The

model is based on the assumption of a flat water surface

oscillating synchronously in the tidal basin. Under this

hypothesis the depth-averaged continuity equation becomes a

Poisson equation that can be easily resolved at each instant of the

tidal cycle. This formulation, which is particularly valid for small,

deep basins, provides a simplified solution of the depth-integrated

shallow water equations and suggests a possible approach to

model long-term morphodynamic evolution of tidal basins. The

model is tested in San Diego Bay, California, and the results are

briefly discussed. INDEX TERMS: 4560 Oceanography:

Physical: Surface waves and tides; 4235 Oceanography: General:

Estuarine processes; 4255 Oceanography: General: Numerical

modeling

1. Introduction

[2] Tidal motion in a basin produces a complex flow field that
depends on the basin shape and bathymetry. Calculation of water
fluxes caused by the tidal oscillation is not an easy task, and it is
commonly performed solving the two-dimensional shallow water
equations [Velyan, 1992]. On the other hand, the advantage of a
simplified solution of the problem is twofold. The solution can be
directly utilized in models where the complexity of the problem
requires a high simplification of the processes involved, as in
models of long-term morphodynamic evolution, where the study
of the hydrodynamics is coupled with that of sediment transport.
At the same time the simplified solution can be utilized as a
starting point for studies that make use of perturbation techniques
to shed light on the structure of the full set of equations. A
simplified solution needs to have three characteristics in order to
be effective: a) a strong physical basis, b) an origin from general
principle (conservation of mass, momentum, or energy), c) if a full
set of equations already describes the problem, the solution has to
satisfy these equations. A typical example of a complex problem
where a simplified solution is crucial for modeling purposes is
water flow in a river. Here a steady uniform solution can be
derived from a balance between the gravity force and bottom
friction. Drainage basin evolution models directly use this solution
[Howard, 1994], whereas models of river meandering take the
uniform flow as a starting point (zeroth order solution) for analyses
based on perturbation techniques [Blondeaux and Seminara, 1985;
Ikeda et al., 1981].
[3] Contrary to rivers, the tidal motion in a basin is driven by

the oscillation of water elevation, which is intrinsically unsteady.
An intuitive approach is to consider the water surface to be flat and
to oscillate synchronously with the tide at the inlet. This hypothesis
was already proposed for salt-marshes [Boon, 1975], utilized to
study the equilibrium bottom configuration in a tidal basin [Schut-
telaars and de Swart, 1999], the channel network in salt-marshes
[Rinaldo et al., 1999a, 1999b], and the cross sectional shape of
tidal creeks [Fagherazzi and Furbish, 2001]. In the present

analysis a method is presented for calculating the flow field in a
bidimensional embayment under this hypothesis.

2. Method

[4] The integration of the Reynolds equations over the vertical
direction leads to the system of shallow water equations, consisting
of two equations for the conservation of momentum plus the
continuity equation [e.g. Dronkers, 1964]. Herein the hypothesis
of flat surface makes it possible to neglect the two momentum
equations [Schuttelaars and de Swart, 1999], so that the flow field
can be resolved utilizing only the continuity equation, which reads:

@h

@t
þ @qx

@x
þ @qy

@y
¼ 0 ð1Þ

where qx and qy are the discharges per unit width in the x- and y-
direction, h is the water depth and t is time.
[5] It is important to notice that in (1) the temporal variation in

water depth @h/@t is the same in each point of the basin and is
equal to the water depth variation at the inlet. If I introduce the
potential function � defined as:

qx ¼
@�

@x
; qy ¼

@�

@y
ð2Þ

the continuity equation then becomes a Poisson equation:

r2� ¼ � dh0

dt
ð3Þ

which can be solved in the tidal basin at each time step knowing
the variation of water elevation at the mouth dh0/dt. A similar
equation, without potential function, has been utilized in Boon
[1975]. However, Boon [1975] only focused on a salt marsh
channel, and he was obliged to assign the contributing area for
each channel cross section in order to calculate the discharge. Here
the introduction of a potential function makes it possible to
calculate the water discharge at each point of a tidal basin,
independently of the basin shape.
[6] In order to solve (3), I have to specify suitable boundary

conditions. At the border with the mainland (boundary �1), I impose
the water flux equal to zero. At the basin inlets (boundary �2),
the discharge normal to the inlet cross section is exactly calcu-
lated knowing the water surface variation inside the basin, and
will be derived solving (3). What instead is not identified is the
value of the discharge in the direction tangential to the inlet
section, which will depend in general on the inlet shape and on
the interaction between basin and open sea.
[7] To complete the boundary conditions I then need to specify

the value of the gradient of � in the direction tangent to the inlet
cross section. Since the discharge per unit width inside the basin is
the gradient of the potential function, I can add to the potential
function an arbitrary constant without changing the result. I then
set this constant in order to have the potential function equal to
zero in a specified point of the inlet section, and derive the value
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for the other section points as a function of the discharge in the
tangential direction. The b.c. become:

@�

@n
¼ 0 in �1 ð4Þ

� ¼ �0 in �2 with
@�0

@r
¼ qr ð5Þ

where n is the normal direction to the boundary directed inward, r
the tangent direction to the boundary, and qr the value of the
discharge at the inlet in the direction tangent to the cross section.
Herein we assume the discharge to be perpendicular to the inlet
cross section, so that qr = 0.

3. Results and Discussion

[8] As a test example I apply the method to San Diego Bay,
California (Figure 1). San Diego bay is a tidal basin connected to

the Pacific Ocean by an inlet with an artificial jetty that controls
beach erosion. Since freshwater flow in the bay is low as well as
wind magnitude, currents are predominantly produced by tides
[Wang et al., 1998]. The astronomical tide in San Diego bay is
mixed, with the amplitude of the semidiurnal component M2 equal
to 52 cm (period 12.42 hr) and amplitude of the diurnal component
K1 equal to 35 cm (period 23.93 hr) [Wang et al., 1998]. Equation (3)
can be solved at any instant of the tidal cycle, and, since it is linear, it
is possible to calculate separately the flow for each tidal component
and add together the corresponding results. Here I show results for
theM2 component when the time derivative of the water elevation is
maximum, i.e.:

h ¼ a sin
2p
T

t

� �
;

dh0

dt

����
max

¼ a
2p
T

¼ 7:255 10�5 m=s ð6Þ

where a is the tidal amplitude and T the period. As boundary
conditions, I impose zero flux at the border with the mainland. I
also assume that the flow at the inlet is perpendicular to the inlet
cross section, so that the tangential discharge is zero as well as the
tangential gradient of the potential. As a result of this hypothesis I
impose the potential function equal to zero for the boundary points
at the inlet. The solution of the potential function is reported in
Figure 2; the discharge per unit width is shown in Figure 3.
[9] It is important to note that the computation of the discharge

is independent of bottom elevation. With the hypothesis of flat
water level, the water enters and exits from the inlet independently
of the value of the bottom elevation in the basin. The water depth
instead comes into play in the determination of the averaged
vertical velocity, using the equations:

ux ¼ qx=h; uy ¼ qy
�
h ð7Þ

where ux and uy are the vertically averaged velocities in the x- and
y-directions, and h the water depth. Furthermore, since the
Laplacian operator is symmetric, the flow in ebb is identical to
the flow in flood.
[10] The hypothesis of flat water surface is particularly valid for

a small embayment with deep bottom. If the surface of the basin is
limited, then the time spent by the tidal wave to propagate from the

Figure 1. San Diego Bay, California. N1 to N13 are the locations
where NOAA collected velocity data in 1983. The bathimetric data
show that a deep channel is present in front of the city waterfront.

Figure 2. Contour lines for the potential function � in San Diego
Bay during flood.

Figure 3. Maximum discharge during flood calculated from the
potential function.
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inlet to the extreme boundaries is negligible with respect to the
tidal period, and the water surface is almost in phase everywhere.
On the contrary, bottom friction in shallow areas reduces the tidal
wave speed and attenuates the tidal peak as a consequence of
energy dissipation. In San Diego bay the phase shift between the
inlet and the extreme boundaries is only few minutes [Wang et al.,
1998], thus justifying the application of the present model. The
maximum velocity produced by the model is compared with data
collected by NOAA in 11 locations during a tidal current survey
conduced in 1983 [Wang et al., 1998]. A harmonic analysis makes
it possible to extract the M2 and K1 components of the velocity
from the data, and to calculate their maximum value and direction.
These values are then compared to the model simulations (Table 1).
Where the bottom of the bay is uniform (locations N8, N10, and
N12), model results are close to measured values, both in
magnitude and direction. In the southern part of the bay, instead,
an uneven bottom strongly influences the tidal hydrodynamics.
Close to the city waterfront the bay is deeper (with depths around
10 m) whereas in the remaining areas the depth decreases to 4 m
(Figure 1). The present model does not utilize the bottom top-
ography when the discharge per unit width is calculated, so that
the flow entering or leaving the bay is uniformly distributed in the
bay cross section. In reality, as pointed out in Fagherazzi and
Furbish [2001], differences in depth produce a momentum redis-
tribution with a velocity increase in incised channels and a
velocity decrease in shallow areas. As a consequence, the model
overestimates the velocity where the water depth is limited
(location N4), and underestimates the velocity in the channel
(location N1, N2, and N5). The flow direction can be also
influenced by the topography, but in the San Diego Bay I do
not notice strong disagreement between model results and field
data (Table 1). Similar results were also found for the diurnal
component K1 (Table 1), with dh0/dt = 2.447 10�5 m/s.
[11] Finally, it is possible to show from (3) that the total volume

of water flowing inside the bay in half tidal cycle (i.e. the tidal
prism) is exactly equal to the volume of water contained between
the two horizontal planes corresponding to the maximum and
minimum tidal level. In small basins like San Diego Bay where
the tide has everywhere about the same amplitude and phase, the
tidal prism calculated by the model is then very close to the real
tidal prism.

4. Conclusions

[12] In this analysis I present a simplified model for tidal flow in
a basin. The model is based on the assumption of flat water level
oscillating synchronously in the whole tidal basin. The solution of
the continuity equation under this hypothesis is a Poisson equation
with suitable boundary conditions. The formulation is physically
based, satisfies the depth averaged shallow water equations, and it
is valid for small basins with deep water. At each instant of the tidal

cycle the flow field can be derived solving a simple Poisson
equation, instead of the more complex 2-dimensional shallow
water equations (I only have one unknown � against the three
unknowns h, qx, qy for the shallow water equations). Since the
equation solved is linear, it is possible to superimpose the effects of
each tidal component and to calculate the flow field at any instant
of the tidal cycle independently of previous solutions. On the
contrary, for the shallow water equations, the flow field can be
determined only carrying the simulation for several tidal cycles.
The strong simplification adopted herein makes the present model
ideal for studies in long term morphodynamic evolution.
[13] The method, however, is unable to capture the momentum

redistribution between shallow and deep areas, which increases the
flow velocity in incised channels. Nonetheless the basic solution
presented herein can be considered as a simple approximation.
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Table 1. Comparison Between Model Results and Measurementsa

Station
M2 K1

Model Measured Model Measured

Vmax

(cm/s)
Direction

deg
Vmax

(cm/s)
Direction

deg
Vmax

(cm/s)
Direction

deg
Vmax

(cm/s)
Direction

deg

N1 4.1 150.3 11.2 178.6 1.4 150.2 3.1 176.6
N2 4.2 163.9 10.8 177.7 1.4 163.9 0.7 187.9
N4 19.9 176.2 11.7 175.9 6.7 176.3 1.2 219.2
N5 6.4 135.4 18.4 134.1 2.2 135.3 5.5 138.1
N8 32.9 121.1 38.2 133.8 11.1 121.1 8.4 139.8
N10 27.5 62.6 29.2 63.3 9.3 62.6 6.8 70.1
N12 16.6 101.5 18.6 105.7 5.6 101.1 6.7 112.2
N13 9.8 145.9 21.2 130.4 3.3 145.9 8.1 134.1
aData reported in Wang et al., 1998.
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