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Abstract. The geomorphic behavior of a soil-mantled hillslope undergoing diffusive creep
involves a coupling between changes in land surface elevation, soil transport rates, soil
production, and soil thickness. A linear stability analysis suggests that the coupled
response of the soil mantle to small perturbations in soil thickness or surface topography
is influenced by two factors. The diffusive-like behavior of soil creep has a stabilizing
effect wherein perturbations in land surface elevation are damped. The relation between
the soil production rate and soil thickness may be either stabilizing or destabilizing. A
monotonically decreasing production rate with soil thickness reinforces the stabilizing
effect of diffusive land surface smoothing. An increasing production rate with soil
thickness has a destabilizing effect wherein perturbations in soil thickness or the soil-
bedrock interface are amplified, despite the presence of diffusive land surface smoothing.
This coupled behavior is insensitive to the transport relation, whether the soil flux is
proportional to the land surface gradient or to the product of the soil thickness and land
surface gradient. The latter type of relation, nonetheless, could lead to a more complex
hillslope form than might otherwise be expected for purely diffusive transport. Moreover,
the response to periodic (sinusoidal) variations in the rate of stream downcutting at the
lower hillslope boundary involves upslope propagation of coupled (damped) waveforms in
the land surface and the soil-bedrock interface. The distance of upslope propagation goes
with the square root of the product of the transport diffusion-like coefficient and the
period of the downcutting rate. The upper part of the hillslope is therefore insensitive to
relatively high-frequency variations in stream downcutting, so together with a stable
behavior of the coupled soil-mantle-bedrock system, this part of the hillslope may exhibit a
tendency toward uniform lowering, while the lower part behaves transiently. Conversely, in
the presence of low-frequency variations in stream downcutting, hillslope morphology and
soil thickness variations are more likely to reflect unsteady conditions over the entirety of
the hillslope.

1. Introduction

A longstanding premise in hillslope geomorphology holds
that for soils developing on bedrock, changes in land surface
geometry involve a coupling between the rate of soil transport,
the rate of soil production by chemical and mechanical pro-
cesses, and changes in soil thickness or bulk density. Carson
and Kirkby [1972, p. 104–106], following ideas proposed by
Gilbert [1877, 1909], clearly articulate the special role of soil
production in this coupling, in particular, the significance of
the form of the relation between the rate of soil production
and soil thickness (Figure 1). Inasmuch as soil production
mostly depends on weathering associated with circulation of
water, Carson and Kirkby [1972] suggest that this relation ought
to exhibit a maximum at an intermediate soil thickness. Then,
for a given rate of erosion (or deposition), perturbations in
thickness for soils to the right of the maximum are damped (a
stable behavior), whereas perturbations in thickness for soils to
the left of the maximum grow unstably. Note, however, that
this qualitative description of soil thickness stability is only

loosely related to transport rates; the question remains how
perturbations in soil thickness (or land surface elevation) mod-
ify transport rates which, via a feedback process, alter soil
thickness and production. Because transport rates generally
depend on land surface geometry and because changes in land
surface elevation generally involve a divergence of transport
rates, a full characterization of the feedback between land
surface geometry, soil transport, soil thickness, and soil pro-
duction must be obtained within the context of a specific model
that fully couples these four elements.

Toward this end, key ingredients of a fully coupled model
are currently in place for the case of soil-mantled hillslopes
undergoing diffusive creep. Specifically, there is a long record
of work suggesting that at scales larger than local roughening
processes [e.g., Jyotsna and Haff, 1997] such hillslopes evolve
according to a diffusion-like equation [e.g., Culling, 1963, 1965;
Kirkby, 1967; Carson and Kirkby, 1972; Hirano, 1975; Bucknam
and Anderson, 1979; Nash, 1980a, 1980b; McKean et al., 1993;
Dietrich et al., 1995; Fernandes and Dietrich, 1997; Heimsath et
al., 1999]. More recently, field measurements involving cosmo-
genic isotopes provide clear evidence that the rate of soil
production can be described as a monotonically decreasing
function of soil thickness in the presence of biomechanically
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driven creep [e.g., Heimsath et al., 1997, 1999], a result that is
qualitatively consistent with that part of the curve to the right
of the maximum in Figure 1. Taken together, these ingredients
provide necessary and sufficient conditions to formally charac-
terize the coupling between land surface geometry, soil trans-
port, soil thickness, and soil production.

A concise way to characterize this coupling is provided by
the formal framework of a linear stability analysis of a creeping
soil mantle. The basic idea of the analysis is this: The analysis
starts with a description of hillslope geometry compatible with
a specified, uniform soil thickness and a steady, uniform rate of
land surface lowering [e.g., Fernandes and Dietrich, 1997]. This
defines a basic state for the hillslope-soil-mantle system. The
analysis then “poses” the following: Suppose this basic state is
disturbed; that is, variations in land surface elevation or soil
thickness (or both) having the form of two-dimensional swales
or convexities are imposed on the basic state. Does the cou-
pling between land surface geometry, soil transport, soil thick-
ness, and soil production respond unstably by amplifying these
features, or does it respond in a stable manner by attenuating
them? The analysis then clarifies the specific physical and geo-
metrical conditions, the initial soil thickness, soil production
rate, and size of disturbance, under which these alternative re-
sponses occur, and it clarifies, for given conditions, the relative
rate of response. In a mathematical sense the analysis formally
pertains to infinitesimal-amplitude disturbances. That is, it leaves
open the possibility that a system predicted to be stable for small
disturbances may be unstable with large disturbances. Conversely,
the behavior of a system predicted to be unstable for small-
amplitude disturbances does not necessarily involve unbounded
amplification of these features, as additional factors may influ-
ence their behavior as they grow to “finite amplitude.”

In pursuing this stability analysis, we consider two formula-
tions for soil transport. The first assumes that the soil flux is
proportional to the land surface gradient, a formulation that is
most conventionally adopted, albeit possibly a special case of a
more general nonlinear relation [e.g., Roering et al., 1999]. The
second assumes that the soil flux is proportional to the product
of soil thickness and land surface gradient, an idea first pro-
posed by Ahnert [1967] and examined recently by Furbish and
Dietrich [1999, 2000], Braun et al. [2000], and W. E. Dietrich and
D. J. Furbish (On the use of a diffusion-like equation to describe

hillslope evolution, 2, Slope-dependent transport and the diffu-
sion coefficient, manuscript in preparation, 2001) (hereinafter
referred to as Dietrich and Furbish, manuscript in preparation,
2001). In addition, we consider a general relation for the rate of
soil production which mimics that in Figure 1 and which reduces
as a special case to the exponential function described by Heim-
sath et al. [1997, 1999].

The analysis suggests that a soil mantle on a hillslope un-
dergoing creep responds to small perturbations in soil thick-
ness and surface topography in a manner similar to that envi-
sioned by Carson and Kirkby [1972] (Figure 1). Two factors
influence this behavior. The diffusive-like behavior of soil
creep, because it tends to smooth topographic irregularities,
has a universally stabilizing effect wherein perturbations in
land surface elevation are damped. The relation between the
soil production rate and soil thickness may be either stabilizing
or destabilizing. A decreasing production rate with soil thick-
ness (to the right of the maximum in Figure 1) reinforces the
stabilizing effect of diffusive land surface smoothing. However,
an increasing production rate with soil thickness (to the left of the
maximum in Figure 1) has a destabilizing effect wherein pertur-
bations in soil thickness or the soil-bedrock interface are ampli-
fied, despite the presence of diffusive land surface smoothing.

Our results reinforce previous suggestions that there is a
need to more fully understand detailed effects of boundary
conditions at the base of a hillslope [e.g., Armstrong, 1987;
Fernandes and Dietrich, 1997], as these conditions influence the
long-term response of the hillslope to disturbances in soil
thickness and surface topography. In particular, we illustrate
how the response to periodic variations in downcutting rate
involves upslope propagation of coupled (damped) waveforms
in the land surface and the soil-bedrock interface. Because the
system is highly dissipative, only low-frequency variations in
downcutting rate and associated waveforms influence the up-
per part of the hillslope. The insensitivity of this part of the
hillslope to relatively high-frequency variations at the lower
boundary, together with a stable behavior of the coupled soil-
mantle-bedrock system, suggests that the upper part of the
hillslope may exhibit a tendency toward uniform lowering as
envisioned by Gilbert [1877, 1909], while the lower part be-
haves transiently. Conversely, in the presence of low-frequency
variations in stream downcutting, hillslope morphology and
soil thickness variations are more likely to reflect unsteady
conditions over the entirety of the hillslope. We also demon-
strate that if the soil flux is proportional to the product of soil
thickness and land surface gradient and if the rate of soil
production, for given soil thickness, increases with downslope
distance for hydrogeochemical reasons, then it is entirely con-
ceivable to have a convex-concave hillslope profile with a
steady, uniform rate of land surface lowering, a situation that
is not normally attributed to purely diffusive transport.

2. Model of Hillslope Evolution by Soil Creep
Consider a Cartesian xyz coordinate system associated with a

hillslope (Figure 2). The horizontal x axis is positive in the
downslope direction with origin ( x � 0) at the hillslope crest.
The base of the hillslope is positioned at x � X . The horizon-
tal y axis is positive toward the left when looking downslope,
with origin ( y � 0) along the hillslope “axis.” For later ref-
erence a convenient hillslope “width” b is defined by y �
�b/ 2. The z axis is positive upward. Let z � � denote the local
position of the land surface and let z � � denote the local

Figure 1. Schematic diagram of soil production rate versus
soil thickness showing stable and unstable responses of initial
states (circles) to perturbations in soil thickness, modified from
Figure 5.5 of Carson and Kirkby [1972, p. 105].
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position of the base of the active soil. By definition, the active
soil thickness h � � � � .

An appropriate depth-integrated equation of conservation
of mass is [Furbish and Dietrich, 1999; see also Heimsath et al.,
1999; D. J. Furbish and W. E. Dietrich, On the use of a
diffusion-like equation to describe hillslope evolution, 1, For-
mulation and scaling, manuscript in preparation, 2001 (here-
inafter referred to as Furbish and Dietrich, manuscript in prep-
aration)]

�2 � �hq� �
�

�t �hch� � c�

��

�t � 0, (1)

where �2 � i�/� x � j�/� y , q � iqx � jqy [L t�1] is the
depth-averaged, volumetric soil flux density, ch is the vertically
averaged soil concentration, and c� is the concentration at
the base of the soil ( z � �). (By definition, the concentration
c � 1 � n, where n is the soil porosity.)

Several phenomenological relations have been proposed to
describe the depth-integrated volumetric flux hq [L2 t�1] for
soil creep. It is conventionally assumed that this flux satisfies a
relation of the form

hq � �DV�2� , (2)

where DV [L2 t�1] is a diffusion-like coefficient. An analysis
of the time-averaged creep rate data provided by McKean et al.
[1993] alternatively suggests the possibility that the depth-
averaged flux density is proportional to slope [Furbish and
Dietrich, 1999, 2000; Dietrich and Furbish, manuscript in prep-
aration, 2001]; namely,

q � �D�2� , (3)

where D � DV/h [L t�1] is a quasi-local transport coefficient.
In this formulation the depth-integrated flux hq is proportional
to the depth-slope product, an idea suggested by Ahnert [1967].

Using � � � � h , substitution of (2) into (1) then leads to

�2 � �DV�2�� � h�	 �
�

�t �hch� � c�

��

�t � 0, (4)

whereas using (3),

�2 � �Dh�2�� � h�	 �
�

�t �hch� � c�

��

�t � 0. (5)

Field measurements involving cosmogenic isotopes further
suggest that the rate of soil production varies with soil thick-
ness [e.g., Heimsath et al., 1997, 1999]; namely,

��

�t � �W0e�h/�, (6)

where W0 is a nominal rate of soil production when h 3 0 and
� is a length scale that characterizes the rate of decline in the
soil production rate with increasing soil thickness. Here soil
production is envisioned as being largely a mechanical process
wherein biogenic activity plays a dominant role in mechanically
disrupting the underlying bedrock, albeit in concert with chem-
ical weathering and possibly other mechanisms [Heimsath et
al., 1999, pp. 153–154]. Note that the essence of (6) is to
characterize a stabilizing, negative feedback mechanism, con-
sistent with that part of the curve to the right of the maximum
in Figure 1.

On heuristic grounds we generalize (6) to

��

�t � �W0� 1 � �h
1 � ��� e�h/�, (7)

which describes a curve having the form of that in Figure 1
while retaining the essence of (6). Here �[L�1] is a coefficient
that modulates the intercept and the rate of increase in the soil
production rate with increasing soil thickness (Figure 3). Our
motivation for considering (7) is to enable us to explore the
consequences of this form of soil production curve, with the
understanding that it does not yet have a clear justification
from experimental or field evidence, as does (6) [e.g., Heimsath
et al., 1999, p. 169]. The parenthetical part of (7) may be
interpreted as approximately representing the influence of in-
creasing soil thickness on retarding water runoff, whereby the
residence time of moisture and associated chemical weathering
increase. Notice that as the length scale � becomes very
small, W0 may be considered a rate of weathering of bare
rock (chemical plus mechanical), and as � 3 0, (7) reduces
to (6) and W0 retains its interpretation as in (6) (Figure 3).
For later reference the maximum of (7) occurs at a soil
thickness h1 � � � 1/�. The two pairs (4) and (7) and (5)
and (7) form the basis of our stability analysis presented in
section 3.

Figure 3. Diagram of dimensionless soil production rate ver-
sus dimensionless soil thickness based on equation (7) for
different values of the parameter �.

Figure 2. Definition diagram of coordinate system adopted
for soil-mantled hillslope.
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3. Linear Stability Analysis
3.1. Flux Proportional to Land Surface Gradient

Assuming for simplicity that DV is independent of x and y
and that ch is independent of time, these quantities are re-
moved from the differentials in (4). Then, let

h� x , y , t� � H � h
� x , y , t� ,

�� x , y , t� � �� x , t� � �
� x , y , t� ,
(8)

where H and � are values of soil thickness and elevation,
respectively, of the soil-bedrock interface associated with a
basic state and h
 and �
 are small local fluctuations about the
basic state. Substitution of (8) into (4) then provides the basic
state condition:

�2�

� x2 �
c�

DV

��

�t . (9)

Substituting (8) into (7) then expanding this as an exponential
series provides the additional basic state condition:

��

�t � �W0� 1 � �H
1 � �� � e�H/� � � W . (10)

Further, substituting (10) into (9) then integrating once with
respect to x gives

��

� x � �
c�W
DV

x (11)

for ��/� x � 0 at x � 0, which is equivalent to (6) of
Fernandes and Dietrich [1997]. Together, (9), (10), and (11)
characterize the steady state condition envisioned by Gilbert
[1877, 1909], wherein the surface slope steadily increases with
distance from the divide to provide the increasing soil flux
necessary to accommodate steady, uniform soil production.

Using (8) through (11), (4) and (7) provide the following
linearized relations involving fluctuating quantities:

DV

�2h


� x2 � DV

�2h


� y2 � DV

�2�


� x2 � DV

�2�


� y2 � ch

�h


�t

� c�

��


�t � 0, (12)

W� 1
�

�
�

1 � �H� h
 �
��


�t � 0. (13)

Note that a change of sign occurs in (13) when the basic state
soil thickness equals that associated with the maximum soil
production rate (Figure 3), namely, when H � H1 � � � 1/� .

Relevant boundary conditions include a zero flux condition
at the hillslope crest ( x � 0) and a flux that is equal to that of
the basic state at the base of the hillslope ( x � X):

� ��


� x �
�h


� x �
x�0, x�X

� 0. (14)

The boundary condition at x � X physically coincides with a
situation in which, over a period of time, the bounding stream
removes sediment at a rate equal to that delivered by the basic
state condition. In addition, lateral boundary conditions ( y �
�b/ 2) involve zero flux:

� ��


� y �
�h


� y �
y��b/ 2

� 0. (15)

These lateral boundaries physically represent, for example,
local “divides” between swales.

It is then assumed that h
 and �
 can be described as doubly
periodic functions:

h
 � h0ei�m	x�
y���t, �
 � �0ei�m	x�
y���t. (16)

Here h0 and �0 denote complex amplitudes, � is a complex
number whose real part represents a growth rate and whose
imaginary part represents a waveform celerity, i is the imagi-
nary number defined by i2 � �1, m is a waveform mode
(m � 0, 1, 2, � � � ), and

	 � �/X , 
 � 2�/b (17)

are the fundamental wave numbers. To satisfy the boundary
condition (14), the mode m sets the wave number of h
 and �

to be an integer multiple of the fundamental wave number 	.
Thus the first few modes (m � 1, 2, 3, � � � ) coincide with
wavelengths of 2X , X , 2X/3, and so forth. (Mode m � 0
coincides with an infinite wavelength, which corresponds to
setting h
 and �
 to zero.) To satisfy the boundary condition
(15), the transverse wavelength is set equal to b .

Using (16), (12) and (13) become

� �DVm2	2 � DV
2 � ch��h


� �DVm2	2 � DV
2 � c����
 � 0, (18)

W� 1
�

�
�

1 � �H� h
 � ��
 � 0. (19)

Introducing the following dimensionless quantities denoted by
circumflexes,

h
 � Hĥ , �
 � H�̂ , 	 �
1
X 	̂ ,


 �
1
b 
̂ , � �

W
�

�̂;
(20)

substitution into (19) leads to

� 1 �
��

1 � �H� ĥ � �̂�̂ � 0. (21)

Using this result together with (20) and the boundary condi-
tions (14) and (15), (18) becomes

�̂2 � � �

chW
��2m2DV

X2 �
4�2DV

b2 � �
c�

ch
� 1 �

��

1 � �H� � �̂

�
�

chW
� 1 �

��

1 � �H� ��2m2DV

X2 �
4�2DV

b2 � � 0. (22)

According to (22) a condition of marginal stability (�̂ � 0)
occurs when H � H1 � � � 1/� , that is, when the basic state
soil thickness equals that associated with the maximum soil
production rate (Figure 3). This result immediately allows con-
struction of a simple stability field in terms of the dimension-
less quantities H/� and �� (Figure 4). The line given by (H/
�)c � 1 � 1/�� separates the H/� � �� field into regions of
stable and unstable behavior. For a given value of �� an extant
ratio H/� less than the critical ratio (H/�)c leads to an unsta-
ble response to a perturbation in soil thickness; this critical
ratio increases with increasing ��. Moreover, because H/�
must be positive, an unstable response is possible only if
H/� � 1. For an extant ratio H/� greater than the critical
value (H/�)c, all remaining coefficients in (22) are positive,
which requires that �̂ � 0 for all m  1 and finite values of b .
This means that infinitesimal perturbations to the basic state
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decay unconditionally. Note, moreover, that stability is guar-
anteed when H/�  1 and for the special case where � � 0, in
which (7) reduces to the exponential soil production function
(6). These results are fundamentally consistent with the qual-
itative analysis provided by Carson and Kirkby [1972, p. 104–
106] with reference to Figure 1.

The quantity �̂ in (22) has either two real roots or two
complex conjugates. Considering the real roots first, it is useful
to form the ratio TR/TD, where TR � �/W is a measure of the
mean soil particle residence time and TD � X2/DV is a hill-
slope “diffusive” timescale. For TR/TD � �DV/WX2  0, one
of the two real roots is everywhere negative. The other real
root may be positive or negative depending on values of para-
metric quantities in (22), notably the product �� (Figure 5).
Together, these characterize a coupled response between the

land surface and the soil-bedrock interface that involves two
parts. The first is the effect of the diffusive-like behavior of soil
creep which, because it tends to smooth topographic irregu-
larities, has a universally stabilizing influence wherein pertur-
bations in land surface elevation are damped. For �� �1 both
roots are negative such that the stabilizing influence on soil
thickness associated with a monotonically decreasing soil pro-
duction rate with increasing soil thickness reinforces the effect
of land surface smoothing. For ��  1, wherein the soil pro-
duction curve possesses a part where the production rate in-
creases with soil thickness, one of the real roots is everywhere
positive over TR/TD. In this situation, perturbations in soil
thickness or the soil-bedrock interface are amplified despite
the presence of diffusive land surface smoothing.

The effect of increasing mode m is to strengthen the stabi-
lizing influence of the diffusive behavior of creep by shortening
the downslope wavelength of �
, thereby locally steepening the
x component of the land surface gradient, ��
/� x (Figure 6).
Similarly, for given hillslope length X the effect of increasing
aspect ratio X/b (decreasing b) is to strengthen this stabilizing
influence associated with the transverse component of creep
(Figure 7). The role of the ratio c�/ch is to couple the rates of
response of the land surface and the soil-bedrock interface.
When c�/ch � 1, which implies an isovolumetric conversion
of bedrock to soil, these responses are decoupled according to
(12). One root is unconditionally negative and entirely repre-
sents (physically) diffusive land surface smoothing (Figure 8).
The other root becomes constant over TR/TD and entirely
represents the behavior of the soil-bedrock interface associ-
ated with soil production.

Turning to the complex conjugates of �̂, these exist when
F1 � H/� � F2, for which

F1��� , F2��� � � 1 �
�2m2 � 4�2�X/b�2

2ch � c� � 2 �ch
2 � chc�

TR

TD
��1

�
1

��
,

(23)

where the parenthetical sign with F1 and F2 designates the
(middle) corresponding sign used in the denominator. Accord-

Figure 4. Stability field associated with dimensionless soil
thickness H/� versus dimensionless product ��. The line sep-
arating stable and unstable behavior is given by (H/�)c � 1 �
1/�� .

Figure 5. Plot of dimensionless growth rate �̂ versus dimen-
sionless ratio TR/TD � �DV/WX2 based on equation (22)
showing first root (solid lines) and second root (dashed lines)
of �̂ for different values of the product ��. The parametric
values are H � 0.4 m, � � 0.5 m, X � 100 m, b � 50 m, c� �
0.7, and ch � 0.6.

Figure 6. Plot of dimensionless growth rate �̂ versus dimen-
sionless ratio TR/TD � �DV/WX2 based on equation (22)
showing first root (solid lines) and second root (dashed line) of
�̂ for different values of mode m . The parametric values are
H � 0.4 m, � � 0.5 m, X � 100 m, b � 50 m, c� � 0.7, and
ch � 0.6.
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ing to (23), however, these conjugates occur only when c� �
ch, which is physically unlikely. Thus the two roots of (22) are
always real for the physically realistic case where the bedrock
concentration is greater than that of the soil (c�  ch).

3.2. Flux Proportional to Product of Soil Thickness
and Land Surface Gradient

Turning to the pair (5) and (7) and assuming that D is
independent of x and y , the basic state condition (9) becomes

�2�

� x2 �
c�

DH
��

�t , (24)

and (11) becomes

��

� x � �
c�W
DH x . (25)

The linearized relation involving fluctuating quantities is

DH
�2h


� x2 � DH
�2h


� y2 �
c�W

H x
�h


� x �
c�W

H h


� DH
�2�


� x2 � DH
�2�


� y2 � ch

�h


�t � c�

��


�t � 0 (26)

Notice that the third term in (26) has a coefficient that depends
on x . Boundary conditions analogous to (14) are

� ��


� x �
�h


� x �
x�0

� 0, � ��


� x �
�h


� x �
c�WX
DH2 h
�

x�X

� 0.

(27)

It is then assumed that

h
 � h0f� x�ei
y��t, �
 � �0f� x�ei
y��t. (28)

In this formulation, f( x) does not necessarily contain a para-
metric quantity describing a length scale over which h
 and �

vary, analogous to 	 in (16). Making use of the dimensionless
quantities in (20) and (21),

�2ĥ
� x̂2 �

X2

b2

�2ĥ
� ŷ2 �

c�WX2�̂

DH2� � 1 �
��

1 � �H� � �̂� x̂
�ĥ
� x̂

�
WX2

DH� � 1 �
��

1 � �H� � �̂�
� � c�� 1

H �
1
�� 1 �

��

1 � �H� � �̂ �
ch

�
�̂2� ĥ � 0, (29)

where the boundary conditions in (27) become

� �ĥ
� x̂�

x̂�0

� 0,

	 �ĥ
� x̂ �

c�WX2

� � 1 �
��

1 � �H� � �̂�DH2

ĥ

x̂�1

� 0.
(30)

Solutions of (29) and (30) consist of confluent hypergeomet-
ric functions [Abramowitz and Stegun, 1965, p. 503–535] which
generally must be evaluated numerically. Relevant examples
are presented below. Meanwhile, we examine one important
analytical solution that exists.

To simplify the coefficient notation, (29) is rewritten as

�2ĥ
� x̂2 � A

�2ĥ
� ŷ2 � Bx̂

�ĥ
� x̂ � Cĥ � 0. (31)

Here we assume a solution of the form

ĥ � ĥ0 exp�Ex̂2 � i
̂ ŷ� , (32)

where ĥ0 denotes the value of ĥ at x̂ � 0. This leads to

2E�2E � B� x̂2 � 2E � A
̂2 � C � 0, (33)

which is satisfied when B � 2E and C � B � A
̂2 or when

Figure 7. Plot of dimensionless growth rate �̂ versus dimen-
sionless ratio TR/TD � �DV/WX2 based on equation (22)
showing first root (solid lines) and second root (dashed line) of
�̂ for different values of the aspect ratio X/b . The parametric
values are H � 0.4 m, � � 0.5 m, X � 100 m, c� � 0.7, and
ch � 0.6.

Figure 8. Plot of dimensionless growth rate �̂ versus dimen-
sionless ratio TR/TD � �DV/WX2 based on equation (22)
showing first root (solid line) and second root (dashed lines) of
�̂ for different values of the product �� and the special case of
c�/ch � 1. The parametric values are H � 0.4 m, � � 0.5 m,
X � 100 m, b � 50 m, c� � 0.7, and ch � 0.7.
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�̂2 � � c�

ch
� 1 �

��

1 � �H� �
4��DH
chWX2

X2

b2� �̂

�
4��DH
chWX2

X2

b2� 1 �
��

1 � �H� � 0. (34)

In turn, E � B/ 2, so the solution (32) looks like

ĥ � ĥ0 exp	
c�WX2�̂

2DH2� � 1 �
��

1 � �H� � �̂� x̂2 � i
̂ ŷ
 , (35)

which is monotonic in x̂ and periodic in ŷ .
According to (34) a condition of marginal stability (�̂ � 0)

occurs when H � H1 � � � 1/� , and it follows that the
simple stability field involving H/� and ��, as described in the
preceding analysis (Figure 4), also applies to this case. More-
over, the quantity �̂ in (34) has two real roots whose interpre-
tation, and behavior, is similar to that of the two roots of (22)
described above (Figure 9).

Additional solutions of (29) and (30) can be evaluated nu-
merically with integration of (29) using a shooting technique
[Press et al., 1986, p. 578–588]. These solutions consist of a set
of oscillating curves whose amplitudes increase downslope
(Figure 10) and whose (integer) number of zero crossings is
analogous to the mode m in the previous analysis involving
sinusoidal solutions of �
 and �
. The behavior of the two roots
of �̂ is similar to that associated with the monotonic solution
(35) presented above. The effect of increasing number of zero
crossings is like that of increasing mode m in the previous
analysis, to strengthen the stabilizing influence of diffusive land
surface smoothing with respect to the downslope direction.

4. Implications for Hillslope Evolution
4.1. Time-Varying Boundary Conditions

The preceding analysis assumes, for convenience, a steady,
uniform rate W of land surface lowering, which implies steady
downcutting by a stream at the lower hillslope boundary at the
same rate W (measured relative to the uplift rate). It is argu-

able, however, whether this condition occurs for any significant
period in nature, and so it is important to consider the influ-
ence of time variations in the lower boundary condition [e.g.,
Armstrong, 1987] (also see review by Fernandez and Dietrich
[1997, p. 1307–1308]).

Whereas a stream may be capable of lowering its bedrock
surface [e.g., Sklar and Dietrich, 1998], a change in the rate of
lowering of the soil-bedrock interface at a finite distance from
the stream, relative to the rate of lowering of the basic state,
must involve the coupling between the soil production rate and
soil thickness. This means that a local change in the soil-
bedrock interface (about the basic state) must be initiated by a
local change in soil thickness (and therefore land surface ele-
vation). Thus, to describe changes in the lower boundary con-
dition, we specify changes in the land surface elevation at this
position and allow the soil-bedrock interface to respond ac-
cordingly.

Here it is momentarily convenient to adopt a coordinate
system whose horizontal axis is positive in the upslope direc-
tion with origin at the lower boundary. Letting s denote this
axis, we apply the transformation s � X � x . It is also
convenient to describe the land surface elevation �(0, t) as a
periodic function:

��0, t� � ��0, t� � �
�0, t� � ��0, t� � A� cos��t� , (36)

where � is the basic state elevation, A� is the amplitude of
fluctuations in �
(0, t), and � � 2�/T is the angular fre-
quency with period T . In turn, the rate of lowering at s � 0 is

���0, t�
�t � �W �

��
�0, t�
�t � �W � A�� sin��t� , (37)

where we insist that �A�� � � �W � , ensuring that neither �(s , t)
nor �(s , t) increases in an absolute sense (which would imply
an increase in land surface elevation due to net deposition and
a “reversal” of bedrock-to-soil conversion, respectively). Note
that when A�� � W � 0, the elevation �(0, t) is unchanging
in a global reference frame. Thus (37) describes a periodic
waxing and waning of stream downcutting about a mean low-
ering rate W .

For the case where the soil flux is proportional to the land
surface gradient, as in (2), and when � � 0 in (7), the coupled

Figure 9. Plot of dimensionless growth rate �̂ versus dimen-
sionless ratio TR/TD � �DH/WX2 based on equation (34)
showing first root (solid lines) and second root (dashed lines)
of �̂ for different values of the product �� . The parametric
values are H � 0.4 m, � � 0.5 m, X � 100 m, b � 50 m, c� �
0.7, and ch � 0.6; compare with Figure 5.

Figure 10. Plot of numerical solutions to equations (29) and
(30) for number of zero crossings nc � 1, 2. The parametric
values are c� � 0.7, ch � 0.6, X/b � 4, TR/TD � �DH/
WX2 � 0.1, and ĥ � 0.0001.
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equations (4) and (7) are nonlinear only because (7) involves
the exponential function (assuming constant ch). This nonlin-
earity, moreover, is very weak for small perturbations �
, h
 ,
and �
. For this reason (and simplicity) we examine the re-
sponse of a soil-mantled hillslope to the boundary condition
(36) using the linear forms (12) and (13) with � � 0 (Appendix
A). In this situation we also apply the more restrictive con-
straint that �A�� � � �W0� , ensuring that �(s , t) is not lowered
to the level of �(s , t), which would imply exposure of bedrock.

Specifically, �(s , t) and �(s , t) are given by

��s , t� � ��s , t� � A� cos�ks � �t�e�ks, (38)

��s , t� � ��s , t� � A�G cos�ks � �t � ��e�ks, (39)

where, in our redefined coordinate system with the hillslope
crest at s � X ,

��s, t� � �
c�W
2DV

�X � s�2 � ��X , t� , ��s , t� � ��s , t� � H .

(40)

Further, k and � in (38) and (39), respectively, denote a wave
number and a phase shift given by

k � � ch�G�c�/ch � 1� � 1	�

2DV
� 1/ 2

,

� � tan�1� ��

W � � tan�1� 2�TR

T � ,
(41)

and G is a gain (the ratio of the amplitudes of �
 and �
) given
by

G � �1 � ���/W�2	�1 �  1 � �2�TR/T�2 �1. (42)

Together, (38) and (39) describe a coupled response, be-
tween the land surface �(s , t) and the soil-bedrock interface
�(s , t), to the periodic boundary condition defined by (36) and
(37). Specifically, a change in � involves a change in h , which
leads to a change in � via the soil production function (6); this
change in �, in turn, leads to a response in � via nonisovolu-
metric conversion of bedrock to soil, characterized by the fac-
tor (c�/ch � 1) in (41). Note that when c�/ch � 1 (an
isovolumetric conversion), this latter feedback vanishes ac-
cording to (A1). That is, conversion of a unit of bedrock pro-
duces a unit increase in soil thickness without a change in land
surface elevation; then �(s , t) becomes a simple forcing func-
tion, and �(s , t) is the response according to (A2).

This coupled response has the form of damped waveforms
that propagate upslope, where the land surface waveform leads
the soil-bedrock interface waveform (Figure 11). The trough of
�
(s , t) is a site of relatively high soil production, so �
(s , t)
is lowered as this trough passes over. The depression in �
(s ,
t) then persists as the production rate declines with thickening
soil behind the trough. Then, the rate of lowering W of the
mean state exceeds the rate of lowering of the soil-bedrock
interface such that �
(s , t) eventually becomes positive until
the next trough of �
(s , t) passes over. Thus it is important to
recognize that in plots involving �
(s , t) and �
(s , t), a state
where �
(s , t)  0 does not represent an increase in elevation
of this interface in an absolute reference frame (a “reversal” of
bedrock-to-soil conversion); rather, this marks a state where
the mean rate of lowering W momentarily exceeds the rate of
lowering of �(s , t).

For given soil-mantle properties the gain G increases, and
the phase � decreases, with the ratio of the period T to the
mean soil particle residence time TR. With large T/TR, the
land surface elevation changes sufficiently slowly that the rate
of soil production hovers close to the mean rate W , thereby
maintaining a nearly uniform soil thickness (G 3 1 and � 3
0). With small T/TR, soil production lags, manifest as an in-
creasing phase and decreasing amplitude of the response in
�
(s , t). In effect, �(s , t) is insensitive to short-term variations
in downcutting rate and responds nearly synchronously with
the land surface with long-term variations.

A measure of the distance �w of waveform propagation is
�w � 1/k , which, for typical soil conditions and rates of land
surface lowering, is well approximated by �w � �DV/�. Thus
even for large values of DV, O[0.01 m2 yr�1], �w is only a few

Figure 11. Plot of hillslope land surface � (solid lines) re-
sponding to sinusoidal variation (T � 15,000 years) in down-
cutting rate at lower boundary, relative to steadily lowering
basic state Z (dashed lines), with corresponding fluctuations in
soil-bedrock interface �
 and land surface �
 about basic states
� and Z � � � H (insets). The parametric values are H �
0.5 m, c� � 0.7, ch � 0.6, � � 0.5 m, DV � 0.02 m2 yr�1,
and W � 0.0005 m yr�1.
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tens of meters over a period T � 100,000 years. This suggests
that the upper part of a long hillslope may be relatively insen-
sitive to short-term variations in downcutting rate at the lower
boundary. Specifically, the ratio

�w

X � � DVT
2�X2  � T

TD
(43)

indicates that the uppermost part of a hillslope “feels” the
lower boundary only when the period T approaches (or ex-
ceeds) the “diffusive” timescale TD.

The magnitude of the soil flux to the stream per unit contour
distance Q(0, t) � hqs(0, t) � DV��/�s �s�0, or

Q�0, t� � c�WX � DVA�k�cos��t� � sin��t�	 . (44)

The first term on the right side of (44) is the steady basic state
contribution; the second term on the right is a fluctuation
about the basic state flux. The maximum soil flux thus occurs
T/8 before �
 reaches its minimum (negative) value or T/8
after the maximum rate of downcutting.

The response to similar, periodic lower-boundary conditions
involving a flux that is proportional to the product of soil
thickness and land surface gradient, as in (3), requires a nu-
merical solution. Toward this end, initial numerical experi-
ments suggest that the nonlinearity introduced by (3) leads to
behavior wherein the magnitude and timing of sediment deliv-
ery to a stream does not map as a simple response to down-
cutting rate. Rather, delivery responds in a complex, sensitive
manner to the initial state of the soil and hillslope morphology
and to the period and amplitude of downcutting. With suffi-
cient soil thickness H for specified � and D , delivery is nearly
in phase with the downcutting rate, similar to the linear for-
mulation above. Near the boundary the soil thins as the land
surface steepens with accelerated downcutting. The effect of
steepening dominates over decreasing soil thickness, so the net
effect is increasing transport. With smaller H for the same �
and D the effect of soil thinning dominates over steepening, so
transport is nearly out of phase with the downcutting rate,
counter to the linear case. In addition, the amplitude of the
delivery rate is much smaller than for the linear case. In addi-
tion, internal adjustments between slope, soil thickness, and soil
production rate produce complex transport rate signals away
from the boundary, and this response is much more strongly
attenuated with upslope distance than is the linear response.

There is also the likelihood that certain parametric values
vary over the periods considered here, for example, the diffu-
sion-like coefficient DV [e.g., Fernandes and Dietrich, 1997] and
the length scale of soil production � [e.g., Heimsath et al., 1999,
p. 167]. Whereas we have for simplicity set these as constants
in the preceding analysis, effects of varying DV (or D) and �
deserve further examination. Here again, initial numerical ex-
periments suggest that time variations in these parametric
quantities may significantly complicate hillslope response to
downcutting as measured, say, by the delivery rate Q(0, t).
However, to fully clarify these effects will require a better
understanding of how these parametric quantities are related
to each other and possibly covary with downcutting rate.

4.2. Spatial Variations in Soil Production Rate
The basic state considered in the preceding stability analysis

involves a uniform soil mantle of thickness H covering a convex
(parabolic) bedrock surface �( x , t). This basic state provides
an unambiguous reference point for the linear stability analysis

and has the additional appeal that it represents the condition
of uniform land surface lowering originally envisioned by Gilbert
[1877, 1909]. It is, nonetheless, important to emphasize that other
basic states involving steady, uniform lowering are possible. Con-
sider, for example, the possibility that the rate of soil production,
for given soil thickness, increases with downslope distance. On
heuristic grounds one can envision that increasing soil water cir-
culation and residence time in a downslope direction lead to a
concomitant increase in chemical weathering that is reflected in
the soil production length scale. For example, assuming a locally
monotonic relation with soil thickness h,

��

�t � �W0 e�h/��
0
��xn�, (45)

where �0 is the soil production length scale at the divide ( x �
0), � [L1�n] is a rate of increase in this length scale with
downslope distance x , and n is an exponent.

Considering the basic state quantities �( x , t), H( x), and
�( x , t) � �( x , t) � H( x), the rate of soil production at the
divide is ��0/�t � �W0exp(�H0/�0). With uniform lower-
ing rate W this implies that �W��W0exp(�H0/�0) �
�W0exp[�H/(�0 � �xn)] or

H� x� � H0� 1 �
�

�0
xn� . (46)

In turn,

��

� x � �
c�W
DH0

x
1 � ��/�0� xn . (47)

Taking the derivative of (47) with respect to x and setting the
result to zero then leads to

x1 � � �0

��n � 1��
1/n

. (48)

This indicates that, for �  0 and n  1, the profile �( x)
generally possesses an inflection at x � x1  0. That is, �( x)
describes a convex-concave land surface, assuming that x1 � X
(Figure 12). (Also note that specific cases of n � 1, for
example, the series n � 1/ 2, 1/4, 1/6, � � � , provide permis-

Figure 12. Plot of land surface and soil-bedrock interface of
convex-concave hillslope undergoing steady, uniform lowering
for the case where soil production length scale � increases
downslope according to � � �0 � �	

�. The parametric
values are W � 0.0002 m yr�1, D � 0.01 m yr�1, H0 � 0.4
m, �0 � 0.5 m, � � 0.001 m1�n, and n � 2.
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sible solutions of (48).) This is in contrast to conventional
thinking that a steady, uniform erosional state involving a dif-
fusive-like process leads to a convex hillslope form.

5. Discussion and Conclusions
The model described in section 2 fully couples the behavior

of land surface geometry, soil transport, soil thickness, and soil
production for the case of soil-mantled hillslopes undergoing
diffusive creep. This provides the important possibility of nu-
merically simulating the coevolution of the land surface and
soil thickness of a complex landscape, including real land-
scapes for which land surface elevation and soil data are avail-
able at sufficient resolution [e.g., Heimsath et al., 1999]. Equally
important, the formal framework of the stability analysis pre-
sented herein provides a concise, complementary way of char-
acterizing key aspects of this coupled behavior, notably conse-
quences of the soil production relation (Figures 1 and 3), that
may bear more generally on interpreting diffusive landscapes.

The fully coupled behavior of land surface geometry, soil
transport, soil thickness, and soil production strongly hinges on
the form of the relation between the soil production rate and
soil thickness. The detailed form of the relation (7) between
the soil production rate and soil thickness is heuristic, with
clear field justification present only for the monotonically de-
creasing part of it. With this caveat the stability analysis sug-
gests that the response to a perturbation in soil thickness is
fundamentally consistent with the qualitative analysis provided
by Carson and Kirkby [1972, p. 104–106], that perturbations are
damped for extant (initial) soil conditions to the right of the
maximum in Figure 1 and are unstably amplified for conditions
to the left of the maximum. This behavior involves two parts.
The first is associated with the land surface, wherein pertur-
bations are unconditionally damped because of the diffusive
smoothing of soil creep. The second part involves a response to
disturbances in soil thickness or the soil-bedrock interface via
the dependence of soil production rate on soil thickness and
may be stable or unstable. These two parts generally are cou-
pled via nonisovolumetric conversion of bedrock to soil (c�/
ch � 1) but become decoupled with isovolumetric conversion
(c�/ch � 1). The analysis also suggests that this behavior is
insensitive to the transport relation involved, whether the volu-
metric flux hq is proportional to the land surface gradient, as
in (2), or to the product of the soil thickness and land surface
gradient, as in (3) (compare Figures 5 and 9). This point is
important because it means that the nonlinearity introduced by
(3) does not fundamentally change the hillslope response to
small disturbances from that associated with a purely linear
transport relation.

It is important to note that our stability analysis formally
pertains to small perturbations in the elevation of the land
surface or soil-bedrock interface about a basic state that in-
volves steady, uniform lowering; it does not characterize finite
amplitude behavior. This is likely of less significance for con-
ditions involving a stable behavior (where both roots of �̂ in
either (22) or (29) are negative) than for conditions where
disturbances in soil thickness are amplified. In this latter case
a complete description of how the soil mantle responds to
disturbances requires solving the basic (nonlinearized) equa-
tions. The analysis, moreover, assumes that the active transport
thickness coincides with the soil thickness, as measured from
the land surface to the soil-bedrock interface. This is certainly
reasonable for net erosive hillslopes where the position of the

soil-bedrock interface is largely set by biomechanical activity
which simultaneously contributes to diffusive soil transport as
characterized by (2) or (3). It may be less justified for deeply
weathered soil regolith conditions if the zone of active trans-
port is well above the lowermost soil boundary as defined
pedologically.

Whereas the stability analysis reveals important details re-
garding the general response of a soil-mantled hillslope to
disturbances in soil thickness, the significance of this behavior
becomes clearer in the context of a hillslope that is affected by
conditions at its boundaries, notably its lower boundary where
stream downcutting rates vary, and influence hillslope behavior
on geomorphic timescales. Specifically, a periodic (sinusoidal)
variation in downcutting leads to a coupled response between
the land surface and soil-bedrock interface that has the form of
damped waveforms propagating upslope (Figure 11). The land
surface waveform leads the soil-bedrock waveform, where the
gain and phase between them are strongly influenced by the
period T of downcutting. Of particular significance is that the
distance of waveform propagation increases approximately as
the square root of the product of the period T and the diffu-
sion-like coefficient DV. This generally means that the behav-
ior of the upper part of the hillslope is insensitive to short-term
variations in downcutting rate and “feels” the effect of the
lower boundary only when the period T approaches the diffu-
sive (relaxation) timescale of the hillslope (TD � X2/DV),
that is, with DV � O[10�2 m2 yr�1], when T � 106 years for
X � O[102 m] or when T � 104 years for X � O[10 m].
These points are entirely consistent with conclusions of Fer-
nandes and Dietrich [1997] derived from numerical experi-
ments involving responses to step changes in downcutting rate,
that response times increase with hillslope length X and de-
crease with the diffusion-like coefficient DV and that relative
upslope propagation of the effects of the imposed boundary
condition diminishes with this response time (7 � 104 years
and 1 � 106 years for X � 25 m and X � 100 m, respectively).

By comparison, the modeling work of Dietrich et al. [1995]
and Heimsath et al. [1999] suggests that locally the soil thick-
ness on the upper parts of creep-dominated hillslopes can
approach a steady state condition over a period of less than
10,000 years. Thus, if a hillslope approaches (or reaches) a
stable morphology with respect to diffusive erosion, soil thick-
ness, and soil production and if the prevailing relation between
the soil production rate and soil thickness is such that the
response of the soil mantle to disturbances is a stable one, then
in the absence of long-term variations in stream downcutting
the upper part of such a hillslope may exhibit an approximately
steady behavior as envisioned by Gilbert [1877, 1909], while the
lower part responds transiently to the lower boundary condi-
tions. One might therefore expect to find relatively uniform
topographic curvature and soil thickness near the upper parts
of hillslopes, with increasing variability in curvature and thick-
ness downslope reflecting unsteady conditions associated with
a complex history of stream downcutting [e.g., Heimsath et al.,
1999]. Conversely, in the presence of long-term variations in
stream downcutting, and depending on the initial state, hill-
slope morphology and soil thickness variations are more likely
to reflect unsteady conditions over the entirety of the hillslope
[Fernandes and Dietrich, 1997]. The possibility also exists that,
if the prevailing relation between the soil production rate and
soil thickness is such that the soil mantle responds unstably to
disturbances, the response of a hillslope to variations in down-
cutting rate might force the soil mantle across a critical soil
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thickness state (Figure 4), leading to an unstable behavior (and
possibly complex distribution of soil thickness), although field-
based evidence for the existence of this type of soil production
relation remains to be demonstrated.

Several caveats deserve comment. Our analysis of effects of
variations in the downcutting rate at the lower boundary ne-
glects the possibility of time variations in the values of para-
metric quantities, notably the diffusion-like coefficient DV and
the length scale of soil production �, which are likely to change
over geomorphically significant periods [Fernandes and Di-
etrich, 1997; Heimsath et al., 1999]. To fully clarify the effects of
such variations will require understanding how these paramet-
ric quantities covary with downcutting rate which, in turn, will
require further understanding of how, for example, climatic
variations influence both. The analysis also treats the hillslope
away from the lower boundary as an infinite half-space with
boundary conditions �
(� , t) � 0 and �
(� , t) � 0. These
conditions are strictly applicable only when the ratio of the
upslope distance of waveform propagation to the hillslope
length �w/X �� 1, which means that the periodic solutions
given by (38) and (39) do not necessarily satisfy a zero-flux
condition at the hillslope divide when �w/X 3 1. In addition,
the analysis neglects transient “start-up” effects in the periodic
solutions given by (38) and (39). Although these omissions do
not detract from the essential conclusions of the analysis, they,
nonetheless, highlight that other possible boundary conditions
may be relevant in a full description of hillslope response
[Armstrong, 1987]. For example, the boundary condition (36)
specifies the land surface position at the stream, such that the
soil flux at this position, given by (44), is an outcome. One may
alternatively specify this boundary condition in terms of the
soil flux as determined by the behavior of the stream, its pro-
pensity to remove sediment from the base of the hillslope, such
that the land surface and soil-bedrock interface respond to this
behavior.

Convex-concave hillslope forms may arise from combina-
tions of a variety of initial states, transport processes, and
boundary conditions, involving both steady and unsteady be-
havior. Because soil production is a fundamental part of this
behavior, possible effects of spatial variations in soil produc-
tion rate should be added to this set of factors affecting hill-
slope forms. To illustrate this point, we present the heuristic
example where the production rate, for given soil thickness,
increases with downslope position for hydrogeochemical rea-
sons. For transport that is proportional to the product of soil
thickness and land surface gradient, as in (3), this variation in
production rate leads to a convex-concave form with increasing
soil thickness downslope under the simplest possible condi-
tions of steady, uniform lowering (Figure 12), a situation that
is not normally attributed to purely diffusive transport. (The
existence of such a state could be readily tested; a first require-
ment would be to demonstrate uniform soil production with
position and soil thickness (A. Heimsath, personal communi-
cation, 1999) based on, say, cosmogenic isotope measure-
ments.) This reinforces the idea that a convex-concave form is
not necessarily diagnostic of a particular transport process or
state of hillslope evolution (nor does it necessarily imply
steady, uniform lowering with varying production rate). It also
suggests that the idea that transport is proportional to the
product of soil thickness and land surface gradient [Ahnert,
1967; Furbish and Dietrich, 1999, 2000; Braun et al., 2000]
deserves further examination, as the existence of such a trans-

port relation could lead to more complex hillslope forms than
might otherwise be expected for diffusive transport.

Appendix A
For the one-dimensional case with s � X � x and � � 0 we

rewrite (12) and (13) as

DV

ch

�2�


�s2 �
��


�t � � c�

ch
� 1� ��


�t � 0 (A1)

W
�

�
 �
W
�

�
 �
��


�t � 0 (A2)

respectively, then assume solutions of the form

�
�s , t� � A�ei�ks��t�e�ks (A3)

�
�s , t� � A�ei�ks��t�e�ks, (A4)

where A� is a real amplitude and A� is complex.
Substituting (A3), (A4), and the first derivative of (A4) with

respect to time t into (A2) leads to

A�

A�

� � 1 � i
��

W � �1

. (A5)

The gain G is obtained as the modulus of the right side of (A5),
which is given by (42) in the text. The phase � is obtained as
the angle of the right side of (A5), or � � �tan�1(���/W) �
tan�1(��/W), which is the second part of (41) in the text.

Substituting the second derivative of (A3) with respect to
position s and the first derivatives of (A3) and (A4) with
respect to time t into (A1) leads to

�
2DV

ch
k2 � � � � c�

ch
� 1�G� � 0. (A6)

Solving for the wave number k then gives the first part of (41)
in the text.
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