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Abstract. In this final part of our study [Fagherazzi et al., this issue; Rinaldo et al., this
issue] we propose a simple model for predicting the local peak ebb and flood discharges
throughout a tidal network and use this model to investigate scaling relationships between
channel morphology and discharge in the Venice Lagoon. The model assumes that the
peak flows are driven by spring (astronomical) tidal fluctuations (rather than precipitation-
induced runoff or seiche, sea surge, or storm-induced tidal currents) and exploits the
procedure presented by Fagherazzi et al. [this issue] for delineating a time-invariant
drainage area to any channel cross section. The discharge is estimated using the
Fagherazzi et al. model to predict water surface topography, and hence flow directions
throughout the channel network and across unchanneled regions, and the assumption of
flow continuity. Water surface elevation adjustment, not assumed to be instantaneous
throughout the network, is defined by a suitable solution of the flow equations where
significant morphological information is used and is reduced to depending on just one
parameter, the Chézy resistance coefficient. For the Venice Lagoon, peak discharges are
well predicted by our model. We also document well-defined power law relationships
between channel width and peak discharge, watershed area, and flow, whereas curved,
nonscaling relationships were found for channel cross-sectional area as a function of peak
discharge. Hence our model supports the use of a power law dependency of peak
discharge with drainage area in the Venice Lagoon and provides a simple means to
explore aspects of morphodynamic adjustments in tidal systems.

1. Introduction

In fluvial basins the key character of openness to mass/
energy injection, central to their evolutionary dynamics, is usu-
ally enforced by assuming that total contributing area, say A , is
proportional to landscape-forming discharges, say Q , that is, Q
} Ab, with b # 1 [e.g., Leopold et al., 1984]. Substitution of
drainage area for formative discharge in landscape evolution
theories simplifies models without eliminating complex behav-
ior that may be central to network evolution. In particular, this
substitution permits effectively parameter-free models to be
developed that can explore the tendency for networks to self-
organize [Rodriguez-Iturbe and Rinaldo, 1997].

In tidal networks a simple assumption of proportionality of
watershed area and landscape-forming discharges cannot gen-
erally be made [Leopold et al., 1984, 1993; Myrick and Leopold,
1963; Friedrichs, 1995]. Nonetheless, we have observed that
important features of the tidal channel system, that is, the
drainage density, network length, channel width, and channel

initiation, vary with watershed area (albeit not as simple power
functions) [Fagherazzi et al., this issue; Rinaldo et al., this issue].
This occurs despite the fact that flood flows are not simply
dependent on marsh drainage area. In order to improve our
understanding of these relationships, we need to develop a
means of estimating an effective discharge throughout the
channel network.

The basic relationship employed in the past for coupling
hydrodynamic and morphodynamic processes is an empirical
linkage of cross-sectional area of tidal channels (or tidal in-
lets), say V, with “spring” (i.e., maximum astronomical) tidal
prism or “spring” peak discharge, say Q , that is,

V } Qa, (1)

where a is a scaling coefficient typically assumed to lie in the
rather wide range 0.85–1.20 [e.g., Langbein, 1963; Myrick and
Leopold, 1963; Harleman, 1966; Jarrett, 1976; Nichols et al.,
1991]. However, the validity of (1) for sheltered channels
(those not exposed to littoral transport or open sea) has re-
cently been questioned [Friedrichs, 1995]. Complex and site-
specific feedbacks between tidal channel morphology and tidal
flow properties occur both in inlet and sheltered channel sec-
tions [e.g., Bruun, 1978; O’Brien, 1969; Jarrett, 1976; Friedrichs,
1995]. In addition, man-made interventions are key geomor-
phic agents in many lagoons; for example, artificial deepening
of tidal channels, essential to navigability in many tidal envi-
ronments exploited for port activity, may cause accelerated
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deposition, as well as reductions of the tidal prisms by infilling
or dyking marshes and/or lagoons. These modifications intro-
duce time-dependent scales of influence on flow and erosion
processes. Short-term, rapid, hydrodynamic adjustments of the
order of days [Byrne et al., 1981] may occur. Longer-term
adjustments due to subsidence and eustasy which affect the
tidal prism propagation [e.g., Gardner and Bohn, 1980] may
also be important. It seems also reasonable that morphody-
namic relationships for channelized tidal embayments associ-
ated with the interior of tidal marshes or lagoons (or with the
landward reaches of river estuaries opened to tidal fluctua-
tions) work somewhat differently from inlets on open coasts.
This stems, among other factors, from the relative lack of
direct, intense wave attack and littoral drift in sheltered sites.
Moreover, spatial gradients in tidal amplitude and phase are
surely less pronounced than in the inlet zone.

In order to explore the applicability of (1) for sheltered tidal
channels and to examine other morphologic relationships that
could depend on discharge rather than just watershed area, we
propose a hydrodynamic model that predicts the discharge
throughout the network. This model allows us to examine the
effects of differential flooding and draining of shallow unchan-
neled zones on peak discharges by exploiting the detailed to-
pographic and morphological description of the tidal network.
We first present the procedure for computing the discharge
and then compare the scale of various morphological features
with our computed peak discharges. We illustrate in detail the
procedure for the computation of the landscape-forming flow
rates and address the observational evidence of the morpho-
logical features (cross-section areas and widths and tidal basin
watershed) with the maximum flow rates computed for each
section. We also relate maximum flow rates to tidal prisms to
check on their consistency. This leads us to some morpholog-
ical remarks that close the paper.

2. Peak Spring Flow Rates at Arbitrary Cross
Sections of a Tidal Embayment

Here we propose a simplified model for predicting the peak
flow rates throughout the channel network of a tidal system
which exploits our method [Rinaldo et al., this issue] for delin-
eating the time-invariant watershed boundaries of individual
subbasins. The model results can then be used to investigate
possible relationships between channel morphology and dis-
charge as has been done for entire tidal basins [e.g., Marchi,
1990].

Let x be the intrinsic, streamline coordinate defined by a
tidal channel, assumed positive landward; let x be the arbitrary
site within the tidal basin, that is, channelized or unchannel-
ized; let t be the time coordinate; and let V(t) be the instan-
taneous tidal volume stored within any arbitrary watershed
which drains area A . Therefore, if h(x, t) is the free-surface
elevation at time t (Figure 1) and z(x) is the time-invariant
bottom elevation, the instantaneous tidal volume is computed
by

V~t! 5 E
A

@h~x , t! 2 z~x!# dx . (2)

It is important to notice that A varies in time owing to the
values of h(x, t). In fact, whenever h(x, t) , z(x) the bottom
emerges, h 2 z is set to zero, and the unit of area centered at

x is removed from the watershed. This procedure yields what
we term topographic nonlinearity.

In the above conditions, if U is the cross-section average of
the flow velocity at an arbitrary outlet i (i.e., any location where
all flows must pass through a cross section), where the mor-
phological variables are the cross-section area V, width w , and
depth y 5 h 2 z# (in the last term the bar indicates a mean-
ingful, cross-section-averaged, bottom elevation), then

VU 5
dV
dt (3)

(where discharge is obviously defined by Q 5 VU ; wyU),
which is valid once the watershed is assumed time invariant.
Equations (2) and (3) allow for the determination of Umax in
flood and ebb and the values of Qmax whether or not maximum
discharge coincides with times of maximum velocity (generally
they do not [Dronkers, 1964; Harleman, 1966; LeBlond, 1978;
Pethick, 1980; Lanzoni and Seminara, 1998a]). For estuarine
tidal channels, Myrick and Leopold [1963] showed that the
discharge occurring at the time of maximum velocity at a sec-
tion is the pertinent leading flow rate. Field data [Pethick,
1980; Healey et al., 1981] show that in salt marsh creeks max-
imum velocities on the flood occur only after water spills onto
the marsh surface, just before high water, while maximum
ebbing velocities occur once the water has left the marsh sur-
face and is flowing through the channel. Moreover, flood and
ebb peak velocities increase with the amplitude of the over-
marsh tide. Spring and storm tides therefore are likely to play
the major role in shaping the channel geometry, the action of
spring tides being more effective because of their regular fort-
nightly frequency.

The solution to the general problem (3) depends on the
determination of tidal elevations h(x, t) for arbitrary sets of
bottom geometries, z (possibly higher than h at times), and
boundary conditions [e.g., Dronkers, 1964]. Marchi [1990] sim-
plified the task by assuming that tidal variations dV can be
computed by dV 5 nAdh2, where A is the time-invariant
watershed occupied regardless of elevation; h2 is a reference
tidal elevation computed by suitably accounting for energy
dissipation and tidal lag, which are assumed constant for an
entire embayment (i.e., the so-called “static” model). The re-
duction coefficient n accounts for the instantaneous elevation
differences arising within the tidal basin with respect to the

Figure 1. Notation used in the theory presented here: h is
the height of water above the reference level, D0 is the water
depth with respect to the mean sea level (msl), h is water
elevation above msl, and z is the bottom elevation with respect
to the reference level.
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reference value h2 and thus allows us to define the true tidal
prism only in an approximate manner. The approach is sound,
as long as the validity of the so-called static assumption (i.e.,
where the fluctuations of tidal elevations are spatially uniform
implying very short travel time of the tidal wave with respect to
its period) is valid and provided no change in contributing area
A occurs even when parts of the tidal basin become fully
drained.

Consistent with our assumption underlying the method for
watershed delineation [Rinaldo et al., this issue], we assume
that flow directions are fixed (first) by the channel directions
determined automatically in objective manner from digital ter-
rain maps (DTMs) [Fagherazzi et al., this issue] within the
channelized portion of the tidal basin and (second) by the
gradients of the Poissonian potential surface [Rinaldo et al.,
this issue] for tidal expansion areas external to the channelized
portion. While the first assumption seems quite reasonable in
general, because the channel is in any case a fundamental
attractor for the hydrodynamic flow directions, the second
assumption, though critically simplifying the analytical treat-
ment of the problem, is certainly less valid in general. Our
assumptions in the watershed model of (third) small instanta-
neous spatial gradients of elevations (basically implying short
embayments), (fourth) flat unchannelized areas and, (fifth)
time invariance in watershed boundaries might result in some-
what poor estimation of flow direction in shallow areas. In
well-developed network structures like those investigated in
this paper [see, e.g., Fagherazzi et al., this issue, Figures 1–4],
however, the variation in pathways across unchannelized areas
is probably small, and watershed divide location may remain
relatively fixed.

We also assume that landscape-forming events are due to
spring peak discharges which are driven by astronomical con-
ditions [Boon, 1975; Friedrichs, 1995]. These peak discharges,
then, can be estimated by imposing as a boundary condition
the appropriate astronomical tidal conditions. We can then use
the approach similar to that of Dronkers [1972] to estimate
tidal waves from the simple superposition of sinusoidal waves
each characterized by a given amplitude and frequency.

The basic tidal constituents in the upper Adriatic Sea are
eight (M2, S2, N2, K2, K1, O1, P1, and S1) [Comune di
Venezia, 1998]. Thus the basic boundary condition at sea,
hs(t), is given by

hs~t! 5 h0 1 O
i51

M

ai~v i! cos v it , (4)

where h0 indicates mean sea level (msl), ai(v i) is the ampli-
tude of the i component, and v i 5 2p/Ti, where Ti is the
relevant astronomical period. Therefore, on setting h0 5 0 m
above msl, one gets hs(t) 5 hs(t) 5 ¥ i51

M ai(v i) cos v it ,
where M 5 8 and the various values of v i and ai(v i) are
computed via published harmonic constants (for the Venice
Lagoon, see Comune di Venezia [1998] and Table 1).

To solve (3), we first compute the tidal propagation up the
channel network, where the deeper flows and the constrained
flow directions (forced to follow the channel banks) permit a
simple calculation. To do this, we neglect spatial gradients of
fluid density (due, e.g., to salinity) and overall density currents
assuming that they are negligible at times of landscape-forming
flows.

Consistent with the approximate framework leading to wa-
tershed delineation, we will manipulate the flow equations to
obtain closed-form solutions. If h 5 z 1 D0 1 h is water
surface elevation (here z(x) 5 z( x) is the bottom elevation,
D0(x) 5 D0( x) is the depth with respect to a datum, that is,
mean sea level, and h(x, t) 5 h( x , t) is the height of the tidal
wave with respect to the mean water level, see Figure 1), the
instantaneous discharge Q is defined as

Q 5 VU 5 ~D0 1 h!wU , (5)

and, having set Coriolis’ coefficient to zero [Dronkers, 1964],
momentum and mass balance equations (neglecting wind ef-
fects which should not be meaningful in the average on astro-
nomical flows) can be written as

Q
t 2

Q
D0 1 h

h
t 2

Q
w

w
t

1
Q
V F Q

 x 2
Q

D0 1 h S dD0

dx 1
h

 xD 2
Q
w

w
 xG

5 2gVS dz
dx 1

dD0

dx 1
h

 xD 2
g

#2V2~D0 1 h!
uQ uQ (6)

Q
 x 1 B

h
t 5 0 (7)

where # is the Chézy coefficient, g is the acceleration of
gravity, w is the channel width, and B is the width of channels
plus adjacent storage regions, if any (all other symbols have
been defined in the context of (3)).

The width B clearly depends on our watershed delineation
procedure and can be computed, for each site, as follows. We
compute watershed area A to a site characterized by a channel
with width w; we move forward or backward by a small dis-
tance Dx (where w remains substantially unchanged) and mea-
sure the new watershed area A 1 DA and the channelized
area A9 ; wDx occupied between the two stations. We then
compute B 5 DAw/A9 (Figure 2). This procedure allows for
an adjustment of B at times when part of the tidal embayments
is not underwater.

The continuity equation (7) uses the entire storage width
(B) and accounts for changes in discharge per unit length due
to over-bank flows by assuming that flow depth h is constant
along B and changes instantaneously across the width. This
assumption contributes to predict the experimentally observed
reduction in tidal celerity through the main channels induced

Table 1. Best Estimate of Tidal Harmonic Constants Used for the Prediction of Astronomical Tides in the Venice Lagoon

M2 S2 N2 K2 K1 O1 P1 S1

Amplitude A, m 0.254 0.143 0.042 0.032 0.155 0.04 0.057 0.015
Phase f, deg 120 324 343 117 82 256 97 262
Angular speed, deg/hr 28.9841 30.0 28.4397 30.0821 15.0411 13.9430 14.9589 15.0

Source is Comune di Venezia [1998].
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by the expansion in adjacent storages [Istituto di Idraulica
dell’Universitá di Padova, 1979].

In order to obtain a solution to the above equations, we
make several important assumptions: (first) Spatial and tem-
poral gradients of channel width w are negligible in the mo-
mentum equation; (second) flow velocities are smaller than a
mean celerity of propagation of the tidal wave, that is, U ,,
=g(D0 1 h) ; and (third) in the main channels, tidal excur-
sions are relatively small, that is, h ,, D0. These assumptions
are only valid for the larger tidal channels and for the lower
tidal flats in mesotidal lagoons. In the smallest channels and
along salt marshes these assumptions are seldom acceptable,
and (8) will only yield a gross estimate of the local tidal flows.

To understand the impact of the proposed assumptions, a
few observational figures from the Venice Lagoon case study
may be significant. There the maximum value of h at the mouth
for spring tides is h ; 0.30 m which, in the experimental site
where topography is accurately measured, is dissipated down
to a few centimeters, typically 0.05–0.10 m. The depth D0 of
the channels ranges from D0 ; 5 m to less than 0.5 m, whereas
tidal flats have, on average, depths from 0.5 to 1 m. The ratio
h/D0 thus ranges from less than 0.05 to 0.2 but may approach
higher values for shallow salt marshes, and our assumptions
are reasonable in most of the tidal embayment.

A further assumption we will employ is that energy losses
can be linearized in the manner proposed by Lorentz
[Dronkers, 1964; Zimmermann, 1982; Jay, 1991; Friedrichs and
Aubrey, 1994] such that we can define a damping constant L as
L ; gQm/#2V0D0, where Qm is the maximum value of Q , #
is Chézy’s coefficient, and V0 is the cross-section area at datum
elevation. Linearization of the frictional term is rigorously jus-

tified only in weakly dissipative tidal channels and is formally
invalid in the case of strongly dissipative channels [Lanzoni and
Seminara, 1998a]. Nevertheless, in strongly dissipative, weakly
convergent, and relatively short channels as those typically
observed in lagoons, a linearized approximation of frictional
resistence still leads to acceptable results [Friedrichs and Mad-
sen, 1992]. The relatively small distance the tidal wave travels,
in fact, causes the distortion of the tidal wave enhanced by
nonlinearities to be small.

Finally, following Dronkers [1964], we define for convenience
two dimensionless parameters, si 5 [21/2 1 1/2(1 1 L2/vi

2)1/2]1/2

and b i 5 [1/2 1 1/2(1 1 L2/v i
2)1/ 2]1/ 2, and assume the fol-

lowing boundary conditions: At x 5 0, at the forcing tidal inlet,
h(0, t) 5 hs(t); the other boundary condition, required by the
second-order differential equation, varies depending on the
problem at hand, and it could lead to resonant conditions. The
general solution of (6) and (7) with the above stipulations is
[Dronkers, 1964]

h~ x , t! 5 O
i51

M F h1i~v i!evisix/c0 cos v iS t 1
b i

c0
xD

1 h2i~v i!e2visix/c0 cos vS t 2
b i

c0
xD G (8)

c0 5 Îg
V0

w Îw
B , (9)

where the propagation velocity is represented by c0/b i. The
boundary conditions determine h1i and h2i and must satisfy
the requirement that M remains the same as that of the forcing
modes because of the implied linearization, and h1i(v i) 1
h2i(v i) 5 ai(v i). Clearly, many more harmonics are gener-
ated by topographic nonlinearities. The other boundary con-
dition (i.e., at x 5 ` or imposing a reflecting barrier at some
finite distance xL) poses serious theoretical and practical prob-
lems [Dronkers, 1964]. In fact, a simple harmonic wave gener-
ated at x 5 0 in a channel of infinite length would call for
h1i(v i) 5 0 thus considerably simplifying the analytical ma-
nipulations, while a finite length, say at x 5 L , requires the
condition Q(L , t) 5 0, which in some cases might induce
resonance. Owing to the dissipative character of tidal networks
and the fact that we are interested in a relatively accurate
estimate of the decay and phase shift of tidal propagation, we
will employ the infinite length approximation. Thus our esti-
mate of the harmonic wave propagator within deeper channels
is

h~ x , t! , O
i51

M

ai~v i!e2visix/c0 cos v iS t 2
b i

c0
xD . (10)

The tidal propagation within the shallow storage zones adja-
cent to the channel requires a different model. Our time-
invariant choice of watershed delineation defines average flow
directions (i.e., time-averaged gradients of free surface eleva-
tions), and thus the flow equations can be reduced to intrinsic
coordinates defined by the gradients of the free surface given
by the Poissonian model described by Rinaldo et al. [this issue].
Therefore having chosen an arbitrary site x within the unchan-
nelized basin, we can partition the total distance from x to the
outlet x 5 0 into two paths. The first, of length L1(x), is
measured along the unchanneled basin from the site x to the

Figure 2. Geometrical relationships between changing stor-
age on the plain and tidal wave propagation. Value w is the
channel width, DA is the change of area along the channel
distance Dx , A9 is the area of the channel bed along Dx , and
the travel distance to the outlet is composed of overland flow
across the plain L1 and the travel distance along the channel
L0. The effective cross-sectional width of the plain B is DA/
Dx , which is equivalent to wDA/A9 . The celerity c is thus
corrected accordingly to account for the extent of adjacent
storage zones. Notice that the watershed areas A , A9 in two
sections, and the width of the channel (all known from our
geomorphic procedure) yield the collaborating width B .
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channel site with x 5 L0 obtained at the intersection of the
channel with the unique Poissonian streamline through x (thus
defining a time-invariant outlet/inlet from and to the shallow
storage zones). The second, of length L0, is measured along
stream from x 5 L0 to the outlet ( x 5 0). Under our
assumptions the basic mathematical form of the simple har-
monic propagator is unchanged provided one accounts for the
reduced tidal celerity, say c1 ; =gD0( x) , which results from
the smaller average flow depth D0( x) attained outside the
channel network. The expression used to determine the de-
layed and damped oscillations at every site within a tidal basin
then reads

h~x , t! , O
i51

M

ai~v i! expF2v iSE
L0

L01L1~x! s1i

c1
dl 1 E

0

L0 s0i

c0
dlD G

z cos v iS t 2 E
L0

L01L1~x! b1i

c1
dl 2 E

0

L0 b0i

c0
dlD . (11)

Notice that whenever h , z , one sets D 5 0 and, accordingly,
reduces the area used to compute the tidal storage volume in
(2). This allows the computation of nonlinear topographic ef-
fects related to uncovering of storage zones characterized by
shallow depths. The linear character of (11) does not allow
generation of overtides or compound tides but, nevertheless,
yields the asymmetries observed for bank-full tides. Topo-
graphic nonlinearities have been observed to critically affect
stage-flow relationships in marsh creeks [e.g., Pethick, 1980;
Healey et al., 1981]. We observe that asymmetries in ebb/flood
discharges arise only whenever storage zones adjacent to the

tidal network are placed at the critical elevation range affected
by the oscillation of the water surface such that changes in the
active watershed are pronounced.

3. Application of the Hydrodynamic Model
to the Venice Lagoon

Figure 3 shows the test area chosen within the lagoon of
Venice for application of the model. Here, for the sake of
simplicity, we selected two cross sections draining tidal basins
that differed in size, channel density, proximity to the tidal
inlet, and vegetation. In the large basin (site A) we expect
mostly linear response, whereas nonlinearities arising from
complete drainage of the marsh plain (i.e., topographic non-
linearities) should be significant in the small basin (site B).
Figure 4a illustrates the astronomical tide at the outer bound-
ary of the lagoon of Venice, obtained by superposing the basic
frequencies of Table 1. Figures 4b and 4c show plots of the
forcing tide in the time window chosen for sections A and B,
respectively; that is, they compare hs(t) and h( x , t) via (11)
for the two chosen sections A and B of Figure 3, windowed at
the spring peaks producing the largest flow rates.

Notice that the only parameter required by the simulation of
the tidal elevations via (11) is Chézy’s coefficient, here as-
sumed, for the sake of simplicity, to be spatially constant and
equal to a standard value # 5 40 m1/2/s both in channeled and
unchanneled paths. Although it would be a simple task to
assign a separate Chézy coefficient to the rougher shallow
areas, we wanted to avoid any attempt here to fine tune this
model, particularly since we are applying it to ungauged tidal

Figure 3. Location of the two tidal subbasins in the Venice Lagoon (Italy) where we apply our proposed
procedure for predicting the spring peak discharges (which are driven by astronomical conditions). Basin A
is larger, lies closer to the inlet, and has few channels, all favoring tidal conditions that prevent the emergence
of the tidal flats at low tides. Section B lies in an area where tidal propagation uncovers large fractions of the
watershed, enhancing nonlinear storage effects.
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basins in which details about the relative velocities in the chan-
nel and on the adjacent plain are not well documented.

In Figures 4d and 4e, volumes V(t) and discharges Q(t) are
plotted against time for the two cross sections, A and B, re-
spectively (Figure 3), by solving (2) and (3) owing to point-by-
point knowledge of h(x, t) and z(x) and suitable numerical
quadrature.

Topographic nonlinear effects are evident when comparing
the stage-discharge plots in Figures 4f and 4g. The smaller,
more landward, and more channelized basin B experiences
significant periods of complete marsh plain drainage, giving

rise to the complex stage-discharge relationship in Figure 4g.
This predicted behavior results from the influence of the
threshold depth (i.e., when h , z and h 2 z 5 0). Qualita-
tively, the asymmetries induced in the stage-discharge relation-
ship shown in Figure 4g conform with observational evidence
[e.g., Myrick and Leopold, 1963; Bayliss-Smith et al., 1978; Hea-
ley et al., 1981; French and Stoddard, 1992]. In particular, for
basins with marshlands that fully drain during a tidal cycle, the
model predicts that the maximum flood discharge occurs just
when the tide exceeds bank-full elevation and inundates the
marsh surface. On the contrary, the maximum ebb discharge

Figure 4. (a) Astronomical tides measured at the mouth of the Venice Lagoon, as produced by eight basic
frequencies and the proper amplitudes. (b) A window of the astronomical tides within the lagoon. The solid
line represents the tide at sea inlet, while the dotted line is the corresponding tide at section A of Figure 3,
computed by equation (11) with a constant value of # 5 40 m1/2/s. (c) The same as in Figure 4b for section
B of Figure 3. (d) Volume (solid line) and flow rates (dotted line) computed at section A. (e) The same as in
Figure 4d for section B. (f) Stage-discharge relationship for section A during the tidal cycle of Figure 4b. (g)
The same as in Figure 4f for section B.
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occurs below bank-full elevation (a result similar to that re-
ported by Healey et al. [1981] in their field study).

In order to further test the model, we have compared pre-
dicted and observed discharge at various sites in the Venice
Lagoon. The Istituto di Idraulica dell’Universitá di Padova
[1979] reported field measurements of discharge at several
sites in the lagoon during a period of well-documented tidal
forcing. The measured flow rates were forced by regular tides
(thus not necessarily the ones producing the critical landscape-
forming discharges). Only discharges within the channel were
measured. To apply our model, we used the observed tidal
cycle and assumed the Chézy coefficient # 5 40 =m/s
throughout the system. Figure 5 shows the measured peak flow
rates (both in flood and ebb) plotted against the predicted
peak discharge for each site and the 1:1 line for perfect agree-
ment. There may be a tendency to overpredict the discharge at
low values and underpredict at the highest discharge. Despite
the simplicity of the model, which only has one parameter (the
Chézy coefficient), it predicts most of the values within 30%.
This result justifies exploring how channel morphology varies
with calculated peak discharges in the Venice Lagoon.

4. Morphologic Relationships to Peak Discharge
In order to explore the possible morphologic dependency on

peak flows in the Venice Lagoon, we calculated the spring
peak discharge using well established tidal data (Table 1).
Figure 6 shows the relationship between V and the peak dis-
charge Qmax for hundreds of sites along the tidal channel
network of the northern lagoon of Venice. For channels with
cross-sectional areas greater than about 50 m2, a clear power
law relationship emerges with an exponent close to 1.0; hence
our model calculation agrees with (1) and the field observa-
tions reported by others elsewhere. The deviation at small
cross-sectional areas occurs where there are progressively

larger uncertainties in the analysis because of the small size of
the channels. This is reflected in the progressive increase in the
scatter of the data with smaller cross-sectional area (Figure 6).
We interpret this apparent break in the power law relationship
as being an artifact, then, of the poor morphologic resolution
of small channels in our model. The corresponding, supposedly
improved relationship including a measure of the hydraulic
radius (here approximated by the mean depth of the cross
sections R ; D# 0, where the bar denotes cross-section aver-
age), that is, VR1/6 versus Qmax [Friedrichs, 1995], has also
been studied. The deviation from the power law relationship
still persists for small channels, and the overall pattern is very
similar to that shown in Figure 6, and thus it has not been
shown.

The approximate 1:1 relationship between cross-sectional
area and stream power implies that the peak velocity is spa-
tially constant. Figure 7 shows that while the calculated veloc-
ities for the larger channels are roughly constant, there is
considerable variance for a given cross section. The boundary
shear stress responsible for erosion and deposition is roughly
proportional to the square of the velocity; hence this central
tendency toward a spatially constant peak velocity may reflect
an important morphologic adjustment toward a similar erosion
potential. It may also then suggest that, as Rinaldo et al. [1995]
have argued for fluvial systems, there is an important role of a
threshold boundary shear stress in the network development.

Figure 8 shows that the relationship between peak discharge
and channel width is a well-defined power law, with an expo-
nent of 1.38, nearly identical to the power law relationship
between drainage area and channel width reported by Rinaldo
et al. [this issue]. Unlike fluvial systems the range in peak
discharge increases to nearly 4 orders of magnitude for the
smallest channel. Neglecting this variance and inverting the
relationship of the means gives an exponent of w on discharge
of 0.72. This value differs considerably from that reported for
the small tidal basins documented by Myrick and Leopold

Figure 5. Measured discharge [Istituto di Idraulica
dell’Universitá di Padova, 1979] versus computed discharge
from the theory presented here for various sites in the Venice
Lagoon.

Figure 6. Cross-section area of tidal channels versus peak
flow induced by astronomical tides. The dots represent the
data from individual channel cross sections; the circles portray
the ensemble mean (binned logarithmically [e.g., Rodriguez-
Iturbe and Rinaldo, 1997, chapter 2]) of at least 50 cross sec-
tions. The solid line is the 1:1 slope. No major difference is
noticeable if the cross-section area–peak flow relationship is
corrected by the suggested 1/6 dependence on hydraulic radius
[Friedrichs, 1995].
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[1963] (see also Leopold et al. [1984, 1993] in which the expo-
nent is about 0.1. These empirical field studies relied on cor-
relations with bank-full discharge, that is, the stage at which
water begins to flow over the adjacent marshlands. Bank-full
discharges and the maximum ebb or flood flow rates do not
necessarily coincide in our scheme (see Figures 4f and 4g) and
probably do not in nature.

The observation of the lack of a break in the relationship of
peak flows and channel width (Figure 8) yields further inter-
esting speculations. In fact, as shown in Figure 9, the corre-
sponding relationship of cross-section area V with watershed
area A , computed according to the procedure outlined by
Rinaldo et al. [this issue], clearly shows a break analogous to
that of Figure 6. We thus find that the factor showing a diverse
behavior is undoubtedly the scaling of the mean depths h
(across the cross section) with peak flows.

Two commonly used approximations in tidal networks are
that the formative discharge varies with drainage area (al-

though this is generally unlikely to be correct because of non-
linear effects) and that tidal prism surrogates peak discharge.
Figure 10a shows that our model calculations for the northern
Venice Lagoon predict that peak discharge is simply propor-
tional to the upslope drainage area (shown in reverse for con-
venience in Figure 10a). Considerable scatter exists in the data,
but, nonetheless, this simple result emerges. We do not know
how general this might be, and on the basis of theoretical
grounds we think it is not likely to be so. Figures 10b and 10c
show the expected relationship between tidal prism (calculated
either as the watershed area times the height of the tide at the
outlet of the basin (Figure 10b) or from integration of (11) in
time and space) and peak discharge. This supports the use of
tidal prism as a measure of peak discharge.

5. Morphological Implications
The importance of asymmetric tidal cycles (i.e., the growth

of compound constituents and harmonics in the tidal wave as it
propagates through estuaries or lagoons) in the transport, ac-
cumulation, and/or erosion of sediment in shallow estuaries
and coastal lagoons is well established [Postma, 1967; Groen,
1967; Dronkers, 1986; Dyer, 1973, 1986, 1995]. Moreover, the
direction and intensity of the various sediment transport pro-
cesses are related to size, shape, density, composition, and, to
some degree, biological processing of sediment particles.

Coarser cohesionless fractions are usually transported as
bed load in high-velocity channeled flow and often lead to the
formation of estuarine dunes and bars [Dalrymple and Rhodes,
1995]. As observed by Dronkers [1986], bed load transport is
mainly affected by the highest velocity and moves in the direc-
tion of the maximum current. In a tidal cycle with unequal
duration and magnitude of ebb and flood the presence of a
threshold for sediment movement and the strongly nonlinear
character of the relationship between sediment transport rates
and current velocity may cause significant asymmetry in sedi-
ment mobilization. In particular, a net landward sediment
transport is induced in flood-dominated systems; conversely, in
ebb-dominated systems a seaward directed transport is at-
tained. The total load of suspended sediment, and its distribu-
tion within the water column over time, is also influenced by
differences in flow acceleration during the two slack water

Figure 9. A plot of cross-section area V (m2) versus water-
shed area A for the entire range of the Venice Lagoon. The
symbols for single realizations and ensemble averages are as in
the caption of Figure 6.

Figure 7. Maximum velocity generated by spring tides plot-
ted versus the area of the cross section of the tidal channel
where it is computed. Velocities are computed by dividing
discharge (computed via equation (3)) by the actual cross-
section area thereby fully accounting for propagation effects
embedded in the evaluation of the instantaneous storage V .

Figure 8. Plot of peak flow versus channel width, showing
both individual points and ensemble averages (as described in
the caption for Figure 6).
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intervals. If the asymmetry between peak tidal velocities influ-
ences the amounts of eroded and resuspended sediments, the
unequal duration of slack periods crucially affects sediment
deposition. These effects, coupled with the phase lags between
suspended sediment concentration and water velocity induced
by the settling and erosion properties of mud, govern the
continual and sometimes very rapid exchange between the
suspension phase and the bed [Kjerfve and Magill, 1989; Nichols
and Boon, 1994; Dyer, 1995].

In many estuaries the interplay of erosion and deposition
may originate a broad zone of abnormally high suspended
sediment concentration known as turbidity maximum. Al-
though usually attributed to trapping of particles by the resid-
ual flow at the landward limit of salt penetration, the turbidity
maximum may also have a tidal origin. The longer slack before
ebb and the higher peak velocity during the flood typical of a
flood-dominated system, in fact, favors the predominance of
flood erosion and generates a net upstream transport. In the
upper tidal reaches of the estuary, however, the tidal wave and
currents progressively damp out, the flood dominance disap-
pears, and net sediment transport is directed seaward by the
flowing, river-like waters. A tidal sediment trapping zone (at
times termed a “tidal node”) is thus created at the upstream
limit of tides, even in the absence of residual density circula-
tion. Tidal nodes, however, are generally located farther up-
stream than the head of salt wedge intrusion [Allen et al., 1980].
Owing to the complex interplay of tidal transport and density
circulation and to the periodical variations in mixing induced
by the fortnightly spring-neap cycle or by the seasonal changes
in freshwater discharge, the location of the tidal turbidity max-
imum is a transient feature, moving up and down an estuary or,
presumably, a tidal network.

Within the lagoon interior the form of tidal asymmetry (and
hence the net direction of sediment transport) depends on
classifiable aspects of the general intertidal morphology.
Friedrichs and Aubrey [1988] found that in well-mixed estuaries,
nonlinear tidal distortion depends on (1) the frictional distor-
tion in tidal channels (defined by the ratio a0/D0 of the tidal
amplitude and the mean channel depth) and (2) the intertidal
storage in tidal flats and salt marshes (defined by the ratio
As/Ac of intertidal storage area occupied by tidal flats and
marshes As and channel area covered by water at mean low
tide Ac). Nonlinear friction results in greater frictional damp-
ing in shallow water, slowing the propagation around low tide.
Thus the time delay between low water at the inlet and low
water in the inner estuary is greater than the time delays
between high waters, and flood dominates (this can be formally
defined in terms of elevation and velocity phases [Le Blond,
1978; Boon and Byrne, 1981; Speer and Aubrey, 1985; Friedrichs
and Aubrey, 1988, 1994; Parker, 1991; Lanzoni and Seminara,
1998a]). This behavior is enhanced by large values of the ratio
a0/D0. Low velocities in intertidal marshes and flats also cause
high tides to propagate slower than low tides. At low tide, in
fact, marshes and flats are empty while channels are still rela-
tively deep, allowing a faster exchange. Therefore the tidal
wave is characterized by a relatively shorter ebb, longer flood,
and highest velocity currents during the ebb (i.e., ebb domi-
nance). Ebb dominance is thus favored by large As/Ac ratios.

The critical area of tidal flats needed to produce the transi-
tion from flood to ebb dominance has been discussed by
Friedrichs and Aubrey [1988] and Speer et al. [1991]. Flood-
dominant estuaries are typically shallow (a0/D0 . 0.3) with
small to moderate areas of tidal flats. Ebb-dominated estuaries

generally tend to be deeper (a0/D0 , 0.2) with frequently
extensive regions of flats and marshes. Boon and Byrne [1981]
suggested that flood-dominant tidal asymmetry can change to
ebb-dominant asymmetry along with sedimentary infilling of a
tidal basin. They argued that in a flood-dominant system with-
out tidal flats, the landward directed sediment transport in-
duced by tidal asymmetries may infill an initially deep basin,
increase the area of flats, and eventually produce the transition
to ebb dominance. Friedrichs and Aubrey [1988], however, no-
ticed that an evolution from flood dominance to ebb domi-
nance due to tidal asymmetry is possible only in weakly flood-
dominated basins and would require sedimentary infilling
which did not increase a0/D0, that is, formation of tidal flats
and marshes at the edge of the tidal basin while maintaining

Figure 10. (a) Variation in watershed area. (b) Approximate
tidal prism (watershed area A multiplied by tidal amplitude h
at the watershed mouth). (c) Modeled tidal prism against peak
discharge.
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consistently deep channels. Whether or not this evolutionary
pattern may actually occur is not clear.

In systems in which basin infilling is not advanced or where
systematic dredging sustains D0, there appears a tendency for
flood dominance to occur particularly in landward shallower
reaches of the creek network, while ebb-dominance may occur
in the deepest parts of channel network [Wright et al., 1973].
Near inlet entrances, channel configuration and a0/D0 may
discriminate flood or ebb dominance [Dyer, 1995] with flood
tendency being enhanced by transport of wind-induced waves
[Boon and Byrne, 1981]. So far, however, the question whether
or not a transition between flood and ebb dominance may
actually occur within coastal lagoons is not clearly understood
nor documented.

Our data suggest that the possible signature of ebb/flood
transition, as possibly marked by the break in Figure 6, may
correspond to enhanced shoaling of the bed profile induced by
the net landward transport of sediments produced by flood
dominance. This fact would imply a break in the (cross-section
average) longitudinal profiles of tidal channels of smaller, in-
ner creeks. We notice that similar occurrences are observed in
estuaries [e.g., Collins et al., 1986; Speer et al., 1991]. Moreover,
a theoretical basis for the break in longitudinal profiles has
been found from the study of shoaling phenomena at the
critical point where the net sediment transport changes direc-
tion, that is, sea bound downstream and land bound upstream
[Lanzoni and Seminara, 1998b]. This point could also mark the
tidal turbidity maximum, although our results can merely sug-
gest the validity of the above explanation.

6. Conclusions
We have proposed a procedure for determination of the

maximum flow rates occurring at any arbitrary cross section in
a tidal channel network. This procedure employs some ad hoc
simplifications of the governing flow equations, which allows it
to exploit our model [Rinaldo et al., this issue] for delineating
marsh plain flow directions and local watershed areas. It is
driven by a simple harmonic oscillator at the inlet which mod-
els observed tidal forcing, and it accounts for the effect of
complete marsh surface drainage during the tidal cycle. This
later effect creates what we have called topographic nonlinear-
ity and produces a complex stage-discharge relationship where
it is important. There is only one free parameter in the model,
and that is the Chézy coefficient, which we have chosen to treat
as spatially constant (i.e., the roughness difference between the
marsh plain and the channel are not explicitly considered).

Despite its simplicity the model successfully predicts peak
ebb and flood discharge for our northern Venice Lagoon study
area. It gives well-defined power law relationships for larger
channels between cross-sectional area, drainage area, tidal
prism, channel width, and peak discharge. Variance, however,
about the relationships is considerable, much larger than that
reported for corresponding fluvial systems; nevertheless, the
linkage of tidal hydrodynamics with the morphology of the
tidal networks that we observe in nature holds in a surprisingly
robust manner.
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Venezia ed a salvaguardia dei suoi caratteri ambientali, (Studi e
Richerche), 95 pp., Padua, Italy, 1979.

Jarrett, J. T., Tidal prism-inlet areas relationships, GITI Rep. 3, 136
pp., Coastal Eng. Res. Cent., U.S. Army Corps of Eng., Fort Belvoir,
Va., 1976.

Jay, D. A., Green’s law revisited: Tidal long-wave propagation in chan-
nels with strong topography, J. Geophys. Res., 96, 20,585–20,598, 1991.

Kjerfve, B., and K. E. Magill, Geographic and hydrodynamic charac-
teristics of shallow coastal lagoon, Mar. Geol., 88, 187–199, 1989.

Langbein, W. B., The hydraulic geometry of a shallow estuary, Int.
Assoc. Sci. Hydrol., 8, 84–94, 1963.

Lanzoni, S., and G. Seminara, On tide propagation in convergent
estuaries, J. Geophys. Res., 103, 30,793–30,812, 1998a.

Lanzoni, S., and G. Seminara, Sull’equilibrio morfodinamico degli
estuari, in Proceedings of XXV Congresso di Idraulica e Costruzioni
Idrauliche, vol. 1, pp. 333–344, Coop. Univ. Editrice Catanese di
Magistero, Catania, Italy, 1998b.

LeBlond, P. H., On tidal propagation in shallow rivers, J. Geophys.
Res., 83, 4717–4721, 1978.

Leopold, L. B., L. Collins, and M. Inbar, Channel and flow relation-
ships in tidal salt marsh wetlands, Tech. Rep. G830-06, 78 pp., Calif.
Water Resour. Cent., U.S. Geol. Surv., Univ. of Calif., Davis, 1984.

Leopold, L. B., J. N. Collins, and L. M. Collins, Hydrology of some
tidal channels in estuarine marshlands near San Francisco, Catena,
20, 469–493, 1993.
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