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Summary. Microarrays are nowadays used as exploratory tool in many screening
experiments. The objectives of these experiments are several and include the iden-
tification of the genes that change expression in two or more biological conditions,
the discovery of new cellular or molecular functions of genes, or the definition of
a molecular profile that characterizes different biological conditions underlying for
example normal or tumor cells. A very important question arising in the design
of screening experiments with microarrays is the choice of the sample size. In this
chapter, we first review the technology of microarrays and then describe some sim-
ple comparative experiments and some of the statistical techniques that are used for
their analysis. We then discuss the issue of sample size and describe two approaches
to sample size determination. The first approach is based on the concept of repro-
ducibility, while the second approach uses a Bayesian decision theoretic criterion to
trade off information gain and experimental costs. We conclude with a discussion
of some of the open problems in the design and analysis of microarray experiments
that need further research.

1 Introduction

One of the results of the Human Genome project is that the human DNA
comprises between 30,000 and 35,000 genes. Only about 50% of these genes
have known functions and several projects around the world are currently
under way to characterize these newly discovered genes and to understand
their role in cellular processes or in mechanisms leading to disease.

An avenue of research focuses on gene expression: the process by which a
gene transcribes the genetic code stored in the DNA into molecules of mRNA
that are used for producing proteins. The measurement of the expression lev-
els of all the genes in a cell is nowadays made possible by the technology of
microarrays (Lockhart and Winzeler, 2000). The basic intuition underlying
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the technology of microarrays is that the genes responsible for different bio-
logical conditions may have different expression and hence produce molecules
of mRNA in different amount. Microarray technology allows the measurement
of the expression levels of all the genes in a cell, thus producing its molecular
profile. By measuring the molecular profiles of cells in different conditions,
researchers can identify the genes responsible for the different biological con-
ditions as those with different expression level, or differential expression.

One important use of the microarray technology is the generation of scien-
tific hypotheses: many microarray experiments are conducted to discover new
genes that may have a role in particular biological process or may be respon-
sible for disease. Because of their high costs, however, microarray experiments
are often limited in sample size. From the experimental design point of view,
the use of microarray technology as a hypothesis generator tool opens novel
design and methodology issues. Even the design of a simple experiment con-
ducted to discover the molecular profiles of two biological conditions opens
basic issues such us the choice of the minimum sample size required to stake
a reliable claim.

In this chapter, we review the technology of synthetic oligonucleotide mi-
croarrays and describe some of the popular statistical methods that are used to
discover genes with differential expression in simple comparative experiments.
We introduce a novel Bayesian procedure to analyze differential expression
that addresses some of the limitations of current procedures. We proceed by
discussing the issue of sample size and describe two approaches to sample size
determination in screening experiments with microarrays. The first approach
is based on the concept of reproducibility, while the second approach uses a
Bayesian decision theoretic criterion to trade off information gain and exper-
imental costs. We conclude with a discussion of some of the open problems in
the design and analysis of microarray experiments that need further research.

2 Synthetic Oligonucleotide Microarrays

The modern concept of gene expression dates back to the seminal work of Ja-
cob and Monod (1961) and their fundamental discovery that differential gene
expression — when and in what quantities a gene is expressed — determines
different protein abundance that induces different cell functions. During its
expression, a gene transcribes its DNA sequence combining the nucleotides
A, T , C and G into molecules of mRNA (messenger ribonucleic acid) that
are then transported out of the cell nucleus and used as a template for mak-
ing a protein. This two-step representation of the protein-synthesis process
constitutes the central dogma of molecular biology (Crick, 1970).

Because the first step of a gene expression consists of copying its DNA
sequence into mRNA molecules, the amount of mRNA molecules provides a
quantitative measure of the gene expression level. The basic idea behind mi-
croarray technology is to measure the expression level of all genes in a cell by
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measuring the mRNA abundance of each gene. This is achieved by exploit-
ing one property of the DNA sequence and the mRNA molecule produced
during the gene expression: the two molecules bind together at a particular
temperature. This fact is known as hybridization (Lennon and Lehrach, 1991).

There are different technologies for microarrays and we remind to Chap-
ter ?? and the review in Sebastiani et al. (2003a) for a description of cDNA
microarrays. Here, we focus on synthetic oligonucleotide microarrays. Tech-
nically, a synthetic oligonucleotide microarray is a platform gridded in such
a way that each location of the grid corresponds to a gene and contains sev-
eral copies of a short specific DNA segment that is characteristic of the gene
(Duggan et al., 1999). The short specific segments are known as synthetic
oligonucleotides and the copies of synthetic oligonucleotides that are fixed on
the platform are called the probes.

The rationale behind synthetic oligonucleotide microarrays is based on
the concept of probe redundancy: a set of well-chosen probes is sufficient
to uniquely identify a gene. Therefore, synthetic oligonucleotide microarrays
represent each gene by a set of probes unique to the DNA of the gene. On
the GeneChip r© platform, each probe consists of a segment of DNA, and each
gene is represented by a number of probe pairs ranging from 11 in the Human
Genome U133 set, to 16 in the Murine Genome U74v2 set and the Human
Genome U95v2. A probe pair consists of a perfect match probe and a mismatch
probe. Each perfect match probe is chosen on the basis of uniqueness criteria
and proprietary, empirical rules designed to improve the odds that probes will
hybridize to mRNA molecules with high specificity. The mismatch probe is
identical to the corresponding perfect match probe except for the nucleotide
in the central position, which is replaced with its complementary nucleotide,
so A is replaced by T and viceversa, and C is replaced by G and viceversa.
The inversion of the central nucleotide makes the mismatch probe a further
specificity control because, by design, hybridization of the mismatch probe
can be attributed to either non specific hybridization or background signal
caused by the hybridization of cell debris and salts to the probes (Lockhart
et al., 1996). Each cell of an Affymetrix oligonucleotide microarray consists of
millions of samples of a perfect match or mismatch probe, and the probes are
scattered across the microarray in a random order to avoid systematic bias.

To measure the expression level of the genes in a cell, investigators prepare
the target by extracting the mRNA from the cell and making a fluorescence-
tagged copy. This tagged copy is then hybridized to the probes in the mi-
croarray. During the hybridization, if a gene is expressed in the target cells,
its mRNA representation will bind to the probes on the microarray, and its
fluorescence tagging will make the corresponding probe brighter. Studies have
demonstrated that the brightness of a probe is correlated with the amount
of mRNA in the original sample. Therefore, the measure of each probe in-
tensity is taken as a proxy of the mRNA abundance for the corresponding
gene in the sample, and a robust average of the intensities of the probe set
determines a relative expression for the corresponding gene. Full details are in
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the Affymetrix document describing the statistical algorithm that is available
from www.affymetrix.com/support/technical/whitepapers, and a summary is
in Sebastiani et al. (2003a). Figure 1 sketches the three steps of a microarray
experiment.

Fig. 1. A sketch of a microarray experiment. The mRNA in a cell is fluorescently
labelled and hybridized to the microarray. After the hybridization, the intensity of
each probe is captured into an image that is then processed to produce a proxy of the
expression level of each gene in the target. Each microarray measures the molecular
profile of a cell, and several microarray samples are needed to be able to detect the
genes that have differential expression. In this figure, five microarrays were used to
measure the molecular profiles of three healthy cells (Samples 1–3) and two tumor
cells (Samples 4 and 5).

3 Design of Comparative Experiments

A typical microarray experiment produces the expression level of thousands
of genes in two or more biological conditions. We denote the expression levels
measured with microarrays by y = {ykji}, where the index k specifies the
kth gene in the microarray, (k = 1, . . . , p), and the index i denotes the ith
sample measured in condition j. Because of technical and biological variability
that are due to difficulties in the execution of the experiment and variability
between different tissues used to extract the mRNA, more than one sample in
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each biological condition is usually measured. We denote by nj the number of
samples measured in condition j so that i = 1, . . . , nj . Note that samples of the
same biological condition may be pure replications or biological replications.
In the first case, the target hybridized to the microarrays is made of mRNA
extracted from the same cell while, in the second case, the target hybridized
to the microarrays is made of mRNA extracted from different cells.

We term the set of expression levels measured for a gene across different
conditions its expression profile, and we use the term sample molecular profile
(or simply sample) to denote the expression level of the genes measured with
one microarray, in a particular condition. Formally, the expression profile of a
gene k in condition j will be the set of measurements ykj = {ykj1, . . . , ykjnj},
the overall expression profile of the same gene across all conditions will be the
set yk = {ykj}j , and the ith sample profile of condition j will be the set of
measurements yji = {y1ji, . . . , ypji}.

Common experimental objectives are the identification of the genes with
significant differential expression in two or more conditions, and the develop-
ment of models that can classify new samples on the basis of their molecular
profiles. In some experiments, the conditions may be controllable experimen-
tal factors such as doses of a drug or the time point at which to conduct the
experiment. In general observational studies, which amount to a large propor-
tion of microarray studies, the experimenter defines the conditions of interest
(often disease and normal tissues) and measures the molecular profile of sam-
ples that are randomly selected. The study design are typically case-control
(Schildkraut, 1998) with subjects selected according to their disease status:
cases are subjects affected with the particular disease of interest, while controls
are unaffected with the disease. For example, in an experiment conducted to
identify the genes that are differentially expressed between normal lung cells
and tumor lung cells, tissues from unaffected and affected patients are ran-
domly chosen and each tissue provides the mRNA sample that is hybridized
to the microarray.

In observational studies the main design issue is the choice of the sample
size, while sample size determination and treatment choice are the primary
design issues in factorial experiments. Sample size determination depends on
the analytical method used to identify the genes with different expression
and the optimality criterion. These topics will be examined in the next two
sections

4 Analysis of Comparative Experiments

Popular techniques for identifying the genes with different expression in two
biological conditions 1 and 2 are based on the t-statistic:

tk =
ȳk1 − ȳk2

SE(ȳk1 − ȳk2)
,
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where ȳkj is the mean expression level of gene k in condition j, and the stan-
dard error of the sample mean difference, SE(ȳk1− ȳk2), is computed assum-
ing different variances in the two conditions. Because of the large variability
of gene expression data measured with microarrays, authors have suggested
some forms of penalization for the denominator of the t-statistic. For example,
Golub et al. (1999) suggest to compute the standard error SE(ȳk1 − ȳk2) by
the quantity

sS2Nk =
sk1√
n1

+
sk2√
n2
,

where skj is the sample standard deviation of condition j. The ratio |ȳk1 −
ȳk2|/sS2Nk is termed the signal-to-noise ratio. Other forms of penalization
are justified by the fact that the standard error may be very small for genes
with small expression values, thus inflating the value of the t-statistic. Based
on this intuition, Tusher et al. (2000) suggest to adjust the standard error by
a+SE(ȳk1− ȳk2) where the constant a is chosen to minimize the coefficient of
variation of the t-statistic of all the genes. More recently, Efron et al. (2001)
suggest to replace a by the 90th percentile of the standard error of all the
genes.

The choice of the threshold to select the genes with a statistically sig-
nificant change of expression is often distribution free. The main idea is to
compute the value of a statistic from the data in which the sample labels that
represent the conditions are randomly reshuffled. By repeating this process a
large number of times, it is possible to construct the empirical distribution of
a statistic under the null hypothesis of no differential expression. From this
distribution one can select a gene specific threshold to reject the null hypoth-
esis with a particular significance. Authors have also developed algorithms for
multiple comparison adjusted p-values (Dudoit et al., 2001).

Distribution free methods tend to be widely used in practice, but they
often require a large sample size to detect the genes with different expression
and a small false positive rate (Zien et al., 2003). Some authors have suggested
making distribution assumptions on the gene expression data, and the most
popular choice is to assume that gene expression data follow a Lognormal
distribution (Baldi and Long, 2001; Ibrahim et al., 2002). Another stream
of work focuses on the estimation of the fold change of expression, that is,
the ratio of the sample means assuming Gamma distribution for the gene
expression data (Chen et al., 1997; Newton et al., 2001). We investigated the
adequacy of these distributional assumptions on some large data sets available
from http://www-genome.wi.mit.edu/cancer and none of these distributions
appear to be, by themselves, appropriate for all genes.

An example is in Figure 2, which depicts the histogram of one sample
of size 50 of the probe set corresponding to the “HSYUBG1 Homo sapiens
ubiquitin” gene in the U95Av2 Affymetrix microarray. The distribution in
panel (a) has an exponential decay, with a long right tail. The histogram
in panel (b) displays the distribution of the log-transformed data and shows
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(a) (b)

Fig. 2. Distribution of gene expression data from 50 prostatectomy samples mea-
sured with the U95Av2 Affymetrix microarray. (a): histogram of the expression level
of the “HSYUBG1 Homo sapiens ubiquitin gene”. (b): histogram of the same gene
expression level after the log-transformation was used.

the fact that log-transforming the original data removes the left skewness
by introducing a right skewness. This phenomenon is typically observed when
log-transforming data that follow a Gamma distribution, with consequent bias
induced to estimate the mean (McCullagh and Nelder, 1989).

This probe set was selected from a publicly available data set of expression
profiles comprising 50 normal prostatectomy samples and 52 tumor prostate-
ctomy samples (Singh et al., 2002). We tested the distribution assumption on
each of the 12,625 probe sets using the likelihood ratio test described in Jack-
son (1969), with 5% significance. About 50% of gene expression data appeared
to be better described by Lognormal distributions, whereas the remaining 50%
were better described by Gamma distributions. This finding opens a serious
issue because discriminating between Lognormal and Gamma distributions is
notoriously difficult, particularly in small samples (Jackson, 1969). To over-
come this issue, we developed a methodology for differential analysis that uses
model averaging to account for model uncertainty.

5 Bayesian Analysis of Differential Gene Expression

badge (Bayesian analysis of differential gene expression) is a program for
Bayesian analysis of differential gene expression that uses model averaging
to solve the problem of model uncertainty in gene expression data. badge
measures the differential expression by the fold change θk. Formally, if we let
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µkj denote the average expression level for the gene k in condition j, the fold
change is the ratio

θk =
µk1

µk2
, k = 1, . . . , p

where p is the number of genes. No change of expression is represented by
θk = 1, and changes of expression are represented by a fold change θk < 1
and θk > 1.

The method implemented in badge is Bayesian and regards the fold
change θk as a random variable so that the differential expression of each
gene is measured by the posterior probability p(θk > 1|yk). Clearly, values of
p(θk > 1|yk) near 0.5 identify the genes that do not change expression across
the two conditions while values of p(θk > 1|yk) near 1 identify the genes
that have larger expression in condition 1 than in condition 2, and values of
p(θk > 1|yk) near 0 identify the genes that have smaller expression in condi-
tion 1 than in condition 2. The posterior probability of differential expression
of a gene k is independent of the measurements of the other genes, because we
assume that the expression values of different genes are independent, given
the parameter values. This assumption may not be realistic, because genes
are known to interact with each other, but it allows to screen for genes with
differential expression. More advanced methods to take gene-gene dependence
into account are described in Sebastiani et al. (2004).

badge computes the posterior probability of differential expression of each
gene by assuming Gamma and Lognormal distributions, and then averages the
results of each analysis. This technique is known as Bayesian model averaging
and is described in Hoeting et al. (1999). If we let Mlk and Mgk denote
the model assumptions that the expression data of gene k follow either a
Lognormal or a Gamma distribution, the posterior probability p(θk > 1|yk)
can be computed as:

p(θk > 1|yk) = p(θk > 1|Mlk, yk)p(Mlk|yk)+p(θk > 1|Mgk, yk)p(Mgk|yk) (1)

where p(θk > 1|Mlk, yk) and p(θk > 1|Mgk, yk) are the posterior probabilities
of differential expression assuming a Lognormal and a Gamma model. The
weights p(Mlk|yk) and p(Mgk|yk) = 1− p(Mlk|yk) are the posterior probabili-
ties of the two models. Because a Bayesian point estimate of the fold change is
the expected value of the posterior distribution of θk, say E(θk|yk), the point
estimate of the fold-change θk is computed by averaging the point estimates
conditional on the two models

E(θk|yk) = E(θk|Mlk, yk)p(Mlk|yk) + E(θk|Mgk, yk)p(Mgk|yk). (2)

Similarly, an approximate (1−α)% credible interval is computed by averaging
the credible limits computed under the two models. Particularly, if (lkl, ukl)
and (lkg, ukg) are the (1−α)% credible limits conditional on the two models,
an approximate (1− α)% credible interval for θk is (θkl, θku) where
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θkl = lklp(Mlk|yk) + lkgp(Mgk|yk)
θku = uklp(Mlk|yk) + ukgp(Mgk|yk)

Details of the calculations are reported in Appendix A. To select the subset
of genes characterizing the molecular profile of the two experimental condi-
tions, we proceed as follows. The posterior probability of differential expres-
sion p(θk > 1|yk) is the probability that the gene k has larger expression in
condition 1 than in condition 2, given the available data. If we fix a threshold
s to select as differentially expressed the genes with p(θk > 1|yk) < s and
p(θk < 1|yk) < 1 − s, then the expected number of genes selected by chance
would be 2(p × s), where p is the number of genes in the microarray. By
fixing this number to be f , then the threshold s is f/(2p), that can be inter-
preted as the expected error rate in the detection of the genes with differential
expression.

6 Sample Size Determination

A crucial question in the design of comparative experiments is the determi-
nation of the sample size sufficient to analyze the data with some level of
confidence. The traditional approach to sample size determination is power-
based and leads to choose the sample size to achieve a desired power for a
particular alternative hypothesis. Dow (2003) and Zien et al. (2003) have in-
vestigated this approach in simulation studies, and their results show that
the sample size depends on the minimum fold change to be detected, the sta-
tistical method used for the estimation of the fold change and the trade off
between false positive and false negative rates. So, for example, Zien et al.
(2003) identify a minimum of 25 samples per condition to detect genes that
change by more than 2 folds with a false positive rates of 0.1% and a power
of 80% using the standard t-test. However, this approach appears to be too
restrictive for an essentially screening experiment, and it is also strongly de-
pendent on debatable assumptions about the distribution of gene expression
data. Therefore, we introduce two different criteria based on the concept of
reproducibility and information gain.

6.1 Reproducibility

The first approach to sample size determination that we investigate is based
on the concept of reproducibility. The intuition is to identify the minimum
sample size that is needed to reproduce the same results with high probability
in other experiments. To investigate this issue, we need a large database of
microarray experiments from which we can select non-overlapping subsets
that are analyzed with some statistic. The reproducibility is then measured
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by computing the agreement between the statistics in the different subsets.
A measure of agrement is the rescaled correlation (1 + ρi)/2, where ρi is
the average correlation between statistics in samples of size i. Suppose, for
example, the differential expression of a gene k in two biological conditions is
measured by the t-statistics tk(D1i), where D1i is the data set of size i used
in the comparison. As we repeat the analysis in non-overlapping data sets of
the same size i, we derive the set of values t(D1i) = {tk(D1i)}, . . . , t(Dmi) =
{tk(Dmi)}, and we can measure the pairwise agreement by the m(m − 1)/2
correlations

ρrs,i = cor(t(Dri), t(Dsi)).

The average correlation ρi is then computed by averaging the m(m − 1)/2
pairwise correlations.

Fig. 3. Reproducibility of the posterior probability (black line); of the estimate of
the fold change (red line), of the t (dark blue) and of the signal-to-noise ratio (green)
statistics scores compared to the data reproducibility (pale blue), for different sample
sizes. The data reproducibility is measured by the empirical fold change: the ratio
between sample means. The x-axis reports the number of samples per group, and
the y-axis reports the reproducibility measured by (1+ρi)/2, where ρi is the average
correlation between statistics in samples of size i.

As an example, Figure 3 plots the reproducibility of the posterior prob-
ability and the estimate of the fold change (black and red lines) computed



Design and Analysis of Screening Experiments with Microarrays 11

by badge together with the reproducibility of the t-statistic (dark blue) and
of the signal-to-noise ratio statistic (green) implemented in GeneCluster. The
line in pale blue reports the data reproducibility that was measured by the
rescaled correlation between the ratio of sample means. To measure the repro-
ducibility, we selected 32 non-overlapping subsets from the large data set of
102 expression profiles of prostatectomy samples described in Section 4. Specif-
ically, we chose eight different sample sizes (nj = 6, 8, 10, 12, 14, 16, 18, 20) and,
for each of the eight sample sizes nj , we created four data sets by selecting
nj normal samples and nj tumor samples from the original database. This
procedure generated 32 data sets, and then we used badge to compute the
posterior probability of differential expression and the estimate of the fold
change θ̂k in each data set. We also analyzed the data sets with GeneCluster
using the standard t and signal-to-noise ratio statistics.

The plot in Figure 3 shows a substantially larger reproducibility of the fold
change and posterior probability computed by badge compared to the t and
signal-to-noise ratio statistics. Furthermore, the reproducibility of the esti-
mated fold change is virtually undistinguishable from the data reproducibility.
Compared to the estimated fold change, the reproducibility of the posterior
probability is about 5% less than the reproducibility of the data, whereas both
the t and signal-to-noise ratio statistics are on average 10% less reproducible
than the data.

However, we also notice the very low data reproducibility — below 60%
— of experiments with less than 10 samples per group, and the fact that a
reproducibility higher than 70% requires at least 20 samples per group. To
further investigate the effect of sample size on the reproducibility of detecting
differential expression, we examined the reproducibility of the analysis with
1329 genes that were selected by badge with probability smaller than 0.01 or
larger than 0.99 in the whole data set comprising 102 samples. The objective
of this comparison was to investigate whether these genes would be detected
as differentially expressed in experiments with smaller sample sizes. Figure
4, panel (a), summarizes the results and we notice the large reproducibility
of the analysis for small sample sizes: the reproducibility is above 70% even
in experiments with only 6 samples per group, and above 80% when the
number of samples per group is at least 12. Once again, the reproducibility
of the fold analysis conducted by badge is consistently larger than that of
the analysis conducted with the t or signal-to-noise ratio statistics. We also
repeated the analysis using about 1300 genes that were selected by values of
the t-statistic smaller than -2 or larger than 2 in the whole data set. The
results are summarized in the plot in panel (b) of Figure 4, and show that
the selection of the gene by the t-statistic is 5% less reproducible compared
to the selection based on badge. These results suggest the need for at least
12 samples per conditions, to have substantial reproducibility with badge,
whereas the analysis based on the t or signal-to-noise ratio statistics would
require more than 20 samples per conditions.
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(a) (b)

Fig. 4. (a) Reproducibility of the posterior probability (black line); of the estimate of
the fold change (red line), of the t (dark blue) and of the signal-to-noise ratio (green)
statistics for different sample sizes, for the 1329 genes selected as most differentially
expressed by badge on the whole data set. (b) same analysis for the 1329 genes
selected as most differentially expressed by the t-statistic. The x-axis reports the
number of samples per group, and the y-axis reports the reproducibility measured
by (1 + ρi)/2, where ρi is the average correlation between statistics in samples of
size i.

6.2 Average Entropy

Although suggestive, sample size determination based on reproducibility does
not take into account the experimental costs. In this section we introduce a
formal decision theoretic approach that allows us to choose the sample size
by trading off the gain of information provided by the experiment and the
experimental costs.

The decision problem is represented by the decision tree in Figure 5, in
which circles represent chance nodes, squares represent decision nodes, and
leaves (black circles) are value nodes. The first decision node is the selection
of the sample size n used in the experiment, and c represents the cost of
one sample. The experiment will generate random data y that have to be
analyzed by an inference method a, and the difference between the true state
of nature, represented in this case by the fold changes θ = (θ1, . . . , θp), and
the inference will determine a loss L(·) that is a function of the two actions n
and a, the data, and the experimental costs. In this decision problem, there
are two actions to choose: the optimal sample size and the optimal inference.

The solutions are found by “averaging out” and “folding back” (Raiffa
and Schlaifer, 1961), so that, starting from the terminal node, we compute
the expected loss at the chance nodes, given everything on the left of the



Design and Analysis of Screening Experiments with Microarrays 13

Fig. 5. A decision tree describing the choice of sample size. The first decision
node represents the choice of the sample size. After this decision, the experiment is
conducted and generates the data y that are assumed to follow a distribution with
parameter θ. The data are used to make an inference on the parameter θ, and the
second decision node a represents the statistical procedure that is used to make this
inference. The last node represents the loss induced by choosing an experiment with
sample size n and an inference a, when the true parameter value is θ. The loss is
a function of the sample size n and the inference a, the data y, the true parameter
value θ and the experimental cost c.

node, and we determine the best actions by minimizing the expected loss at
the decision nodes. The first decision is the choice of the inference method a
and the optimal decision a∗, or Bayes action, is found by minimizing the
expected loss E{L(n, θ, y, a, c)}, where the expectation is with respect to
the conditional distribution of θ, given n and y. The expected loss evalu-
ated in the Bayes action a∗ is called the Bayes risk and we denote it by
R(n, y, a∗, c) = E{L(e, θ, y, a∗, c)}. This quantity is also a function of the data
y, so that the optimal sample size is chosen by minimizing the expected Bayes
risk E{R(n, y, a∗, c)}, where the expectation is with respect to the marginal
distribution of the data.

A popular choice for the loss function L(·) is the log-score that is defined
as

L(n, θ, y, a, c) = − log a(θ|n, y) + nc (3)

in which a(θ|y, n) is a distribution for the parameter θ, given the data and the
sample size n. This loss function was originally advocated by Good (1952) as a
proper measure of uncertainty conveyed by a probability distribution. Lindley
(1956) proposed the use of this loss function to measure the information gain
provided by an experiment and to determine the optimal sample size of an
experiment (Lindley, 1997). With this choice of loss function, the Bayes action
a∗ is the posterior distribution of θ, given n, y, say p(θ|n, y), and the Bayes
risk is given by:

R(n, y, a∗, c) = −
∫

log p(θ|n, y)p(θ|n, y)dθ + nc

≡ Ent(θ|n, y) + nc.

The quantity Ent(θ|n, y) = −
∫

log p(θ|n, y)p(θ|n, y)dθ is known as the Shan-
non entropy, or entropy, and the negative Shannon entropy represents the
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amount of information about θ contained in the posterior distribution. There-
fore the negative Bayes risk represents the trade off between information and
experimental costs.

To choose the optimal sample size n = (n1 +n2), we need to minimize the
expected Bayes risk

min
nj

E{R(n, y, a∗, c)} = min
nj

{∫
Ent(θ|n, y)p(y|n)dy + nc

}
.

Because we assume that expression data are independent, given the param-
eters, the joint posterior density of the parameter vector θ is p(θ|n, y) =∏

k p(θk|n, yk). This independence implies that the overall entropy Ent(θ|n, y)
is the sum of the entropies

∑
k Ent(θk|n, yk), and the expected Bayes risk is

E{R(n, y, a∗, c)} =
∑

k

∫
Ent(θk|n, yk)p(yk|n)dyk + nc.

In badge we account for model uncertainty by averaging the results of the
posterior inference, conditional on the Gamma and Lognormal distribution
for the gene expression data. To parallel the sample size determination with
the inference process based on model averaging, we therefore introduce the
Average Entropy Enta(.) that we define as

Enta(θk|yk, e)
= p(Mlk|n, yk)Ent(θk|n, yk,Mlk) + p(Mgk|n, yk)Ent(θk|n, yk,Mgk).

This quantity averages the Shannon entropies conditional on the Gamma and
Lognormal models with weights given by their posterior probabilities. In the
Appendix we show that the average entropy is a concave function on the space
of probability distributions, it is monotone under contractive maps and has
some nice decomposition properties. These properties ensure that

Enta(θ|n, y) =
∑

k

Enta(θk|n, yk).

This last simplification allows us to simplify the calculation of the expected
Bayes risk E{R(n, y, a∗, c)} as

E{R(n, y, a∗, c)} =
∑

k

E{Enta(θk|n, yk)}+ nc

=
∑

k

p(Mlk)
∫
p(yk|n,Mlk)Ent(θk|n, yk,Mlk)dyk

+
∑

k

p(Mgk)
∫
p(yk|n,Mgk)Ent(θk|n, yk,Mgk)dyk + nc.
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The last formula describes the expected Bayes risk as an average of Bayes risks
conditional on the Gamma and Lognormal models, with weights given by their
prior probabilities. The importance of this result is an overall objective cri-
terion for sample size determination that averages criteria based on specific
model assumptions, thus providing a solution that is robust to model uncer-
tainty. Because computations in closed form are intractable, we have developed
numerical approximations to the conditional entropies Ent(θk|n, yk,Mlk) and
Ent(θk|n, yk,Mgk). The calculations of the integrated risk is performed via
stochastic simulations and the exact objective function is estimated by curve
fitting as suggested in Müller and Parmigiani (1995). These details will be
published elsewhere, but are available upon request.

(a) (b)

Fig. 6. Estimate of the expected Bayes risk. The surface in panel (a) shows the
estimated Bayes risk (z-axis) as a function of the number of samples n1 (x-axis) and
n2 (y-axis) per condition. Panel (b) shows the contour plot of the surface displayed
in panel (a).

One example is in Figure 6 that plots the stochastic estimation of the Bayes
risk as a function of the sample sizes n1 and n2. In this example, the data were
resampled from the data set of 102 prostatectomy samples described in Section
6.1. From the results on the reproducibility, we estimated that a sample of
size n induces a reproducibility (22.5 log(n) − 4)%, so that we used as loss
function − log(p(θk|n, yk)+ .22∗ log(n)− .04. An interesting fact is the evident
decrease of the estimated Bayes risk when the sample size increases from six
to ten samples per condition, whereas the reduction in risk is less effective for
larger sample sizes. This result agrees with the findings in Section 6.1 about
the reproducibility of the analysis. Furthermore, the effect of changing the
number of samples in the two conditions is not symmetrical. This finding is
more intriguing and would suggest that, at least in microarray experiments
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comparing normal versus tumor samples, it is best to have a larger number of
normal samples than tumor samples. An intuitive explanation of this finding
is that tumor samples are less variable because the individuals are all affected
by the disease.

7 Discussion

Although this chapter has focused on the design of comparative experiments
conducted to identify genes with differential expression, microarrays are used
for broader experimental objectives and challenge statisticians with novel de-
sign questions. In comparative experiments, an important question is whether
it is best to make pure replications of the expression measurements of the
same cell. Arguments have been made to show that a single replication is not
sufficient to achieve reproducible results and authors have suggested to use
at least three pure replications of each measurement (Lee et al., 2000). The
costs of microarray experiments still impose serious sample size limitations,
and the designer of the experiment needs to trade off the number of biological
replications with the number of pure replications. The best solution depends
of course on the objective of the analysis: if the interest is to have an accurate
estimate of the technical variability of the microarray measurements, then an
experiment with a large number of replications and a small number of bio-
logical replications will be preferable to an experiment with one replication of
each biological replications. However, in experiments in which the biological
variability between samples is expected to be large, such as in clinical studies
involving human subjects, investing resources in biological replications rather
than pure replications is intuitively the best strategy. This dilemma in the
design of the experiments and the lack for an “out-of-the-box” answer shows
the needs for researching this area further.

Sample size and treatment choice are the design questions for general mul-
tifactor experiments. Authors have proposed the use of standard factorial ex-
periments in completely randomized designs, block designs or Latin squares,
see (?; Churchill, 2003). However, the unusual distribution of gene expression
data questions the relevance of standard orthogonal factorial experiments in
this context. Another important problem that has not received large attention
in the design community is the development of design criteria for experiments
that are not limited to the estimation of particular parameters. For exam-
ple, data from comparative experiments are often used to define classification
models able to predict a clinical feature by using the molecular profile of cells
in a tissue. This objective is particularly important for cancer classification
(Golub et al., 1999), when subtypes of cancer are difficult to discriminate.
The typical approach is to select the genes with differential expression and
use them to build a classification model. Several models have been proposed
in the literature and an overview is in Sebastiani et al. (2003a). Validation of
the classification accuracy is carried out by using a training set to build the
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model and a test set to assess its classification accuracy. In this context, an
important design question is the sample size needed to determine a classifica-
tion model that is sufficiently accurate, and an interesting approach based on
learning curves is described in Mukherjee et al. (2003).

More complex are design issues for microarray experiments conducted to
identify gene functions or their network of interaction. The assumption that
genes with similar functions have similar expression patterns underlies the
popular approach of clustering gene expression profiles and sample molecular
profiles to identify subgroups of genes with similar expression patterns in a
subset of the samples (Eisen et al., 1998). Design issues are the sample size
determination, and also the selection of the time points at which to make
the measurements in temporal experiments. When the experimental goal is to
model the network of gene interactions, we move into the area of experimen-
tal design for causal inference. Popular knowledge representation formalisms
such as Bayesian networks (Cowell et al., 1999) and dynamic Bayesian net-
works seem to be the ideal tool for capturing the dependency structure among
genes (Friedman et al., 2000; Segal et al., 2001; Yoo et al., 2002; Sebastiani
et al., 2004). Proper experiments to learn Bayesian networks from data are
unknown and, besides preliminary work in Pearl (1999), Spirtes et al. (1999),
experimental design to enable causal inference with Bayesian networks is an
unexplored research area.
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A Details of Computations

In this section, we describe briefly the details of some numerical approxima-
tions used to compute the posterior distribution of the fold change θk, for
k = 1, . . . , p. We assume that, given the model parameters, the expression
data ykji are independent between genes and samples.

Computation details: Lognormal distribution

Suppose the expression data ykji are generated from a variable Ykj that follows
a Lognormal distribution with parameters ηki and σ2

kj defining the mean µkj =

eηkj+σ2
kj/2 = and the variance µ2

kj(e
σ2

kj − 1). Particularly, Xkj = log(Ykj) is
normally distributed with mean ηkj and variance σ2

kj . Because
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p(θk > 1|Mlk, yk) = p(log(µk1)− log(µk2) > 0|Mlk, yk)
= p(ηk1 − ηk2 + (σ2

k1 − σ2
k2)/2 > 0|Mlk, yk)

any inferences about θk can be done equivalently on the parameters ηkj , σ
2
kj

of the log-transformed variables. The posterior probability p(θk > 1|Mlk, yk)
can be computed as

p(θk > 1|Mlk, yk) =
∫
p(ηk1 − ηk2 > (σ2

k2 − σ2
k1)/2|σ2

k1, σ
2
k2,Mlk, yk)

× f(σ2
k1, σ

2
k2|Mlk, yk)dσ2

k1dσ
2
k2 (4)

where f(σ2
k1, σ

2
k2|Mlk, yk) denotes the posterior density of the parameters

σ2
k1, σ

2
k2. We assume a standard uniform prior on ηkj and log(σ2

kj) and
prior independence of (ηk1, σ

2
k1) from (ηk2, σ

2
k2). Then, it is well known that,

given the data, the parameters σ2
k2, σ

2
k1 are independent and distributed as

s2kj/σ
2
kj ∼ χ2

ni−1, i = 1, 2, where χ2
n denotes a χ2 distribution on n degrees

of freedom, and s2kj =
∑

j(xkji − x̄kj)2/(ni − 1) is the sample variance of
the log-transformed data xkji = log(ykji) in condition i. Similarly, ηkj |σ2

kj is
normally distributed with mean x̄kj and variance σ2

kj/ni, and the marginal
distribution of ηkj is ηkj ∼ (s2i /ni)1/2tni−1 + x̄kj , where tn is a Student’s t
distribution on n degrees of freedom, (Box and Tiao, 1973).

To compute the integral in (4), we notice that, for fixed σ2
k2, σ

2
k1, the

quantity p(ηk1 − ηk2 > (σ2
k2 − σ2

k1)/2) is the cumulative distribution function
of a standard normal distribution evaluated in −{(σ2

k2 − σ2
k1)/2 − (x̄k1 −

x̄k2)}/
√
σ2

k1/n1 + σ2
k2/n2, and then this quantity should be averaged with

respect to the joint posterior distribution of σ2
k2, σ

2
k1. Because there does not

seem to be a closed form solution, we use a two-step numerical approximation.
First we approximate the integral in (4) by the first order approximation

p(ηk1 − ηk2 > (s2k2 − s2k1)/2|Mlk, yk),

and then we use the numerical approximation to the Behrens-Fisher distribu-
tion described by Box and Tiao (1973), to approximate the posterior proba-
bility by

p(θk > 1|Mlk, yk) ≈ p

(
tb > − x̄k1 − x̄k2 + s2k1/2− s2k2/2

a(s2k1/n1 + s2k2/n2)1/2

)
.

The scaling factor a and the adjusted degrees of freedom b are given in Box and
Tiao (1973). For large n1, n2 the scaling factor a approaches 1 and the degrees
of freedom b approach n1+n2−2 so that the posterior distribution of ηk1−ηk2

is approximately the non central Student’s t (s2k1/n1 + s2k2/n2)1/2tn1+n2−2 +
x̄k1 − x̄k2. The approximation is applicable for n1, n2 greater than 5, and
comparisons we have conducted against inference based on MCMC methods
have shown that this approximation works well for samples of size 6 or more.

An approximate estimate of the fold change θk is
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θ̂k = ex̄k1−x̄k2+s2
k1/2−s2

k2/2

and approximate credible limits are given by

lkl = e(x̄k1−x̄k2+s2
k1/2−s2

k2/2)−t1−α/2,ba(s2
k1/n1+s2

k2/n2)
1/2

ukl = e(x̄k1−x̄k2+s2
k1/2−s2

k2/2)+t1−α/2,ba(s2
k1/n1+s2

k2/n2)
1/2

where t1−α/2,b is the 1−α/2 quantile of a Student’s t distribution on b degrees
of freedom.

Computation details: Gamma distribution

Suppose now that the gene expression data follow a Gamma distribution with
parameters αkj , βkj that specify the mean and the variance of the distribution
as µkj = αkj/βkj and V (Ykj |αkj , βkj) = µ2

kj/αkj . We wish to compute the
posterior distribution of θk = µk1/µk2, or equivalently

θk =
αk1

αk2

βk2

βk1
.

If αkj is known, say αkj = α̂kj , using a uniform prior for βkj determines the
posterior distribution for βkj |yk ∼ Gamma(niα̂kj + 1, niȳkj). The value α̂kj

can be for example the maximum likelihood estimate of αkj , which is the
solution of the equation:

f(αkj) = log(αkj)− ψ(αkj)− log(ȳkj) +
∑

j

log(ykji)/ni = 0

where ψ(α) = d log(Γ (α))/dα is the digamma function. Then it is easily
shown that 2niȳkjβkj ∼ χ2

2(niα̂kj+1) (Casella and Berger, 1990). Furthermore,
βk1|yk and βk2|yk are independent and, because the ratio of two independent
random variables that are distributed as χ2 distribution is proportional to an
F distribution (Box and Tiao, 1973), the distribution of the ratio βk2/βk1 is
easily found to be

βk2

βk1
∼ n1ȳk1

n2ȳk2

n2α̂k2 + 1
n1α̂k1 + 1

F2(n2α̂k2+1),2(n1α̂k1+1)

and an approximation to the probability p(θk > 1|Mgk, yk) is

p(θk > 1|Mgk, yk) = p

(
F2(n2α̂k2+1),2(n1α̂k1+1) >

ȳk2

ȳk1

α̂k2

α̂k1

α̂k1 + 1/n1

α̂k2 + 1/n2

)
The point estimate for θk is given by θ̂k = ȳk1/ȳk2, and (1 − α)% credible
limits are
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lkg =
ȳk1

ȳk2

α̂k1

α̂k2

α̂k2 + 1/n2

α̂k1 + 1/n1
fα/2,2(n2α̂k2+1),2(n1α̂k1+1)

ukg =
ȳk1

ȳk2

α̂k1

α̂k2

α̂k2 + 1/n2

α̂k1 + 1/n1
f1−α/2,2(n2α̂k2+1),2(n1α̂k1+1).

The assessment of the error of the approximation depends on the posterior
variance of αkj of which we do not have a closed form expression. Empiri-
cal comparisons we conducted on gene expression data sets suggest that the
results based on our numerical approximation are virtually indistinguishable
from those obtained by Markov Chain Monte Carlo methods when n1, n2 > 10.
Details are described in the report Sebastiani et al. (2003b).

Computation details: mixing weights

To compute the mixing weights in equations (1) and (2), we assume that
changes in the average expression levels between the two experimental con-
ditions can at most affect the parameter values but not the distribution
membership. Therefore, the mixing weights are the posterior probabilities
p(Mlk|yk) and p(Mgk|yk), computed by disregarding the distinction between
the two conditions j = 1, 2. We use the approximation to the posterior odds
Bk = p(Mlk|yk)/p(Mgk|yk) given by the Bayesian information criterion to
make the choice independent of the prior probabilities (Kass and Raftery,
1995). In this way, the posterior probability p(Mlk|yk) is Bk/(1 + Bk) and
p(Mgk|yk) = 1/(1+Bk). The Bayesian information criterion is essentially the
likelihood ratio:

Bk =
p(Mlk|yk)
p(Mgk|yk)

=
fl(yk|η̂k, σ̂

2
k)

fg(yk|α̂k, β̂k)
(5)

where fl(yk|η̂k, σ̂
2
k) and fg(yk|α̂k, β̂k) are the likelihood functions for the Log-

normal and Gamma models evaluated in the maximum likelihood estimates
η̂k, σ̂

2
k, α̂k, β̂k of the parameters. See Sebastiani et al. (2003b) for further de-

tails.

B Properties of the Average Entropy

In this appendix, we prove some general properties of the average entropy in
the context of gene expression analysis. We denote by θ the change of expres-
sion of a generic gene in two conditions, and we suppose that the expression
values follow either a Gamma distribution, Mg, or a Lognormal distribution,
Ml. In this case, the average entropy becomes:

Enta(θ) = w1Ent(θ|Ml) + (1− w1)Ent(θ|Mg)

where, for simplicity of notation, w1 denotes the probability of the model Ml,
and 1−w1 is the probability of the model Mg. The quantities Ent(θ|Ml) and
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Ent(θ|Mg) denote, respectively, the Shannon entropy of θ computed under the
assumption that the gene expression data follow a Lognormal and a Gamma
distribution.

Theorem 1 (Concavity). The average entropy Enta(θ) is a concave func-
tion of the set of probability distributions for θ.

Proof. The result follows by the fact that Shannon Entropy is concave in the
space of probability distribution (DeGroot, 1970), and the average entropy is
a convex combination of Shannon entropies.

Theorem 2 (Monotonicity). Let η = g(θ) be a smooth transformation of
θ, such that g−1 exists, and let J be the Jacobian of the transformation g−1.
Then {

Enta(η) > Enta(θ), if |J | < 1;
Enta(η) < Enta(θ), if |J | > 1.

Proof. The result follows by the monotony of Shannon Entropy (Sebastiani
and Wynn, 2000).

Theorem 3 (Decomposability). The average entropy of the random vector
θ = {θ1, θ2} can be decomposed as

Enta(θ1, θ2) = Enta(θ1) + Eθ1{Enta(θ2|θ1)}.

Proof. Let Ml1 and Ml2 denote Lognormal distributions for the expression
values of two genes, and let w1 and w2 be the posterior probability assigned
to the models Ml1 and Ml2. When we decompose the average entropy of θ1
and θ2 we need to consider the space of model combinations

M = {(M1l,M2l), (M1l,M2g), (M1g,M2l), (M1g,M2g).

If we assume that the model specifications are unrelated, and that expression
values of different genes are independent given the parameter values, then the
probability distribution over the model space M is w1w2, w1(1 − w2), (1 −
w1)w2, (1− w1)(1− w2). Then we have

Enta(θ1, θ2|M) = w1w2Ent(θ1, θ2|M1l,M2l)
+ w1(1− w2)Ent(θ1, θ2|M1l,M2g)
+ (1− w1)w2Ent(θ1, θ2|M1g,M2l)
+ (1− w1)(1− w2)Ent(θ1, θ2|M1g,M2g)

By the property of Shannon entropy Ent(θ1, θ2) = Ent(θ1)+Eθ1{Ent(θ2|θ1)},
where Eθ(·) denotes expectation with respect to the distribution of θ, there
follows that
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w1w2Ent(θ1, θ2|M1l,M2l)
= w1w2Ent(θ1|M1l) + w1w2Eθ1|M1l

{Ent(θ2|θ1,M2l)}

and similarly

w1(1− w2)Ent(θ1, θ2|M1l,M2g)
= w1(1− w2)Ent(θ1|M1l) + w1(1− w2)Eθ1|M1l

{Ent(θ2|θ1,M2g)};

(1− w1)w2Ent(θ1, θ2|M1g,M2l)
= (1− w1)w2Ent(θ1|M1g) + (1− w1)w2Eθ1|M1g

{Ent(θ2|θ1,M2l)};

(1− w1)(1− w2)Ent(θ1, θ2|M1g,M2g)
= (1− w1)(1− w2)Ent(θ1|M1g) + (1− w1)(1− w2)Eθ1|M1g

{Ent(θ2|θ1,M2g)}.

Now group the terms

w1w2Ent(θ1|M1l) + w1(1− w2)Ent(θ1|M1l) = w1Ent(θ1|M1l)

and

(1−w1)w2Ent(θ1|M1g)+(1−w1)(1−w2)Ent(θ1|M1g) = (1−w1)Ent(θ1|M1g)

to derive

w1Ent(θ1|M1l) + (1− w1)Ent(θ1|M1g) = Enta(θ1).

Similarly, we can group the terms

w1Eθ1|M1l
{w2Ent(θ2|θ1,M2l)+(1−w2)Ent(θ2|θ1,M2g)} = w1Eθ1|M1l

{Enta(θ2|θ1)}

and

(1−w1)Eθ1|M1g
{w2Ent(θ2|θ1,M2l)+(1−w2)Ent(θ2|θ1,M2g)} = (1−w1)Eθ1|M1g

{Enta(θ2|θ1)},

to derive

w1Eθ1|M1l
{Enta(θ2|θ1)}+(1−w1)Eθ1|M1g

{Enta(θ2|θ1)} = Eθ1{Enta(θ2|θ1)}

that concludes the proof.

Theorem 4 (Additivity). If θ1, θ2 are independent , then

Enta(θ1, θ2) = Enta(θ1) + Enta(θ2).

Proof. The result follows from the previous theorem.
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