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Abstract:
Faced with the very real threat of bioterrorism, the critical need for early detection of
an outbreak has shortened the time frame for major enhancements to our public health
infrastructure. The early detection of covert biological attacks requires real time data
streams revealing of the health of the population, as well as novel methods to detect
abnormalities.
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3.1 Biological warfare agents

Our national security, threatened by asymmetrical warfare against military and civilian
targets, has become increasingly dependent on quick acquisition, processing, integra-
tion and interpretation of massive amounts of data. In the mid 1990s, the White House
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and DOD identified bioterrorism directed against civilian populations as a substantial
risk [Centers for Disease Control, 2000], and then stepped up efforts to prevent mass
civilian casualties after the anthrax attacks in fall 2001 [Jerniganet al., 2001]. Early de-
tection of bioterrorism requires both real time data and real time interpretation. Toward
this goal, the biomedical, public health, defense, law enforcement, and and intelligence
communities all endeavor to develop new means of communication and novel sources
of data. Public health surveillance is defined as “the ongoing, systematic collection,
analysis, interpretation, and dissemination of data regarding a health-related event for
use in public health action to reduce morbidity and mortality and to improve health”
[Centers for Disease Control and Prevention, 2001].

In response to this need, a new information infrastructure to support active, real
time surveillance is emerging, see [Kohane, 2002, Koplan, 2001, Loberet al., 2002,
O’Toole, 2001, Teichet al., 2002, Yasnoffet al., 2001]. In fact, real time surveillance
systems are now in place in several cities including Boston [Reis, Pagano, & Mandl, 2003],
Washington DC [Lombardoet al., 2003], Pittsburgh [Tsuiet al., 2003], and New York
[Greenkoet al., 2003]. These new systems, along with direct environmental monitor-
ing [Miller, 2003] are expected to form the basis of a national surveillance network.

While developing technologies will support not only bioterrorism surveillance but
also the tracking and understanding of natural outbreaks, it is the lethality and rapidity
of effect of biological warfare agents that most strongly compel the need for a real
time infrastructure. The Centers for Disease Control and Prevention (CDC) classifies
biological warfare agents in terms of how easily they could be disseminated to large
numbers of people with the potential for causing mass casualties. The most threatening
agents are classified as Category A and include anthrax (bacillus anthracis), botulism,
plague, smallpox, tularemia, and the viral hemorrhagic fevers.

The biological features of Category A agents and the clinical effects on their vic-
tims require that urgent efforts be focused on developing of methods for early detection
and monitoring. The case of an anthrax attack is illustrative. Anthrax is a spore form-
ing bacterium. Spores are dormant cells that can reactivate under the right conditions.
From the time that a person is first exposed to anthrax, the incubation period is one
to six days until symptoms appear. The first signs and symptoms resemble those of
influenza and include fever, malaise and fatigue. Within two to three days, patients be-
come severely ill and develop respiratory distress, overwhelming blood infection, and
in about half of the cases, meningitis, or infection of the fluid and tissues surrounding
the brain and spinal cord. If antibiotic treatment is not initiated prior to the onset of
the acute, severe phase of the illness, survival is unlikely. However, antibiotic prophy-
laxis at the time of exposure or treatment during the early phase of the disease is very
effective [U.S. Army Medical Research Institute of Infectious Diseases, 2001].

3.2 Detection

It is reasonable to assume that a biological attack on a civilian population will be car-
ried out covertly. Hence, the first indication of an attack may be large numbers or
smaller clusters of people developing an influenza-like illness between one and six
days after the attack. Ideally, if this surge in people with influenza-like illness were
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detected at the early possible moment, a large scale public health response would be
mobilized to initiate treatment of all those exposed. Epidemiological models presented
in a Defense Department Jasons report project that fatalities resulting from a covert
anthrax attack on the New York City subway system would be reduced by a factor
of seven if an active surveillance system were in place. Such a system would reduce
mortality by seven orders of magnitude for a communicable, highly contagious dis-
ease such as smallpox. An infrastructure to support fundamental change in the health
care system must therefore include real time information about regional disease pat-
terns, health care processes, and health related behaviors. Current health information
systems fall far short of this capability [Fernandez, 1999], despite readily available in-
formation technology to process patient data. The Federal focus on preparedness for
bioterrorism [Centers for Disease Control, 2000], which was sharpened after the 2001
anthrax mailings [Jerniganet al., 2001], has thrown into greater relief the problems we
face when providing health care and protecting the public health in the absence of real
time information [Henderson, 1999].

The state of the art for detecting abnormalities in surveillance data is primitive.
Analyses are typically manual, and even when the data are available, the methods often
involve simply comparing a count to an expected value and alarming when the count is
too high.

3.3 Approaches to surveillance

The goal of biosurveillance is to identify biological weapons before they are used or
as soon as possible after release. The major targets for monitoring include the envi-
ronment, animals, agriculture, the citizenry, or patient populations. Once an attack
has occurred, surveillance of the environment provides the earliest possible warning
of a biological release into, for example, the ventilation system of an office build-
ing. Detection systems such as those employing laser-induced fluorescence and im-
munologically based bioelectric sensors have been shown to be highly sensitive to
biological releases [Primmerman, 2000]. Animals and agriculture are prime targets
for bioterrorism. The extensive outbreak of foot and mouth disease in Great Britain
[Ferguson, Donnelly, & Anderson, 2001] illustrates the devastating economic and so-
cial impact that such an attack could have. The citizenry may be observed, polled,
or examined. Telemarketing and the emerging field of consumer informatics enable
surveillance of the ever growing population of Internet users [Mandlet al., 2000].

Behaviors of the citizenry, when their health is affected, may leave imprints on
certain data sets. The principal underlying premise of these systems is that the first
signs of a covert biological warfare attack will be clusters of victims who change
their behavior because they begin to feel ill. When people become sick, they may
make purchases such as facial tissue, orange juice, and over-the-counter cold remedies.
[Goldenberget al., 2002], and rates of absenteeism. They may stay home from school
or work. The next phase of detectable activity is likely to be encounters with the health
care system. Patients may phone in to nurses or physicians. They may visit primary
care settings [Lazaruset al., 2002], and emergency departments [Loberet al., 2002].
They may be hospitalized. Some may die. All of this activity may precede the first
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confirmed diagnosis of a biological warfare victim.

3.4 Syndromic surveillance

One recent approach to the problem of how to recognize an attack as soon as possi-
ble has been the development of syndromic surveillance systems. Syndromic surveil-
lance relies on data that are available before the diagnosis of the individual patient
and would precede recognition that there has been an attack. One approach to syn-
dromic surveillance of emergency department populations has been drop-in surveil-
lance as practiced by the CDC. Drop-in surveillance was implemented by the CDC
at the World Trade Organization Ministerial (Seattle, Washington) in 1999, and at the
Super Bowl (Tampa, Florida) and World Trade Center Attacks (New York, NY) in
2001 [Centers for Disease Control, 2002b]. Drop-in surveillance is accomplished by
staffing the emergency departments around an area thought to be at high risk of an
attack. Health care providers use a paper form to indicate whether each patient fits a
particular syndrome of concern. At the World Trade Center, the syndromes tracked
were anxiety, asthma, botulism-like, death, gastrointestinal, inhalation, neurological,
rash, respiratory, sepsis, and trauma. There are limitations to drop-in surveillance as
it has recently been practiced. The very nature of the method assumes that the time
and location of an attack can be predicted. Furthermore, reliance on manual processes
produces incomplete and at times inaccurate data. Designing automated systems and
interpreting their output, however, poses substantial methodological challenges.

3.5 Outbreak Detection

3.5.1 Normal Periodicity

One approach to identify clusters of patients infected by biological warfare agents is to
set up a detection system that distinguishes abnormal from normal patterns. The goal
such a detection system is to signal an alarm whenever the observed pattern departures
from the expected normal pattern.

The most straight forward approach builds a control chart, such as CuSUM de-
scribed for example in [Basseville & Nikiforov, 1993], in which cumulative differences
between observed and expected data in a time window are compared to a threshold. In
traditional CuSUM, the expected value is a theoretical mean describing, for example,
the average number of hospital visits, and it is constant over time. A suspicious increase
in the observed data over the theoretical mean is potentially indicative of an emerging
outbreak and, to allow for sampling variability, the threshold of the maximum differ-
ence between observed and expected values is typically some multiple of the standard
error of the sample mean. Because many health care datasets show regular period-
icities (annual, seasonal, monthly, daily) the theoretical mean needs to change over
time [Lewiset al., 2002, Reis, Pagano, & Mandl, 2003]. Figure 3.1, which shows the
number of daily emergency department visits at Children’s Hospital Boston between
June 1992 and February 2002, demonstrates such periodicity. The CuSUM method
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Figure 3.1: Number of daily visits at the emergency department of Children’s Hospital,
Boston, over the last 10 years.

was corrected for seasonal and daily variations and is implemented in the CDC’s Early
Aberration Reporting Systems (EARS).

3.5.2 Temporal Modeling

Model-based detection approaches attempt to detect outbreaks by comparing the obser-
vationyt with the predictionŝyt generated by a model describing the normal pattern.
More advanced multi-day temporal filters [Reis, Pagano, & Mandl, 2003] compare a
weighted prediction of multiple days at once to a threshold. This, in effect lessens the
effects of the large variability of hospital visit rates and improve both the timeliness
and sensitivity of detection.

Crucial choices in model-building are how to characterize the normal patterns and
at what threshold to signal an alarm. Threshold values may be a multipleκ of the stan-
dard errorst of the prediction. Generallyκ is set between 2 and 3.5 to ensure that the
false alarm rate is below 5%. An alarm is signaled whenever the observationyt is out-
side the interval̂y±κst. Adjustment to take into account multiple comparisons can be
based on Bonferroni’s correction, or randomization procedures as those implemented
in the RODS system [Tsuiet al., 2002, Wagneret al., 2001].

To establish normal patterns of temporal relationships among patients, it is helpful
to have a few years of historical data at the surveillance sites that include regular recur-
rence of cyclic diseases, such as influenza. These historical data naturally contain local
variations as well as trends in local population density and shifting referral patterns.
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Figure 3.2: Left: Weekly number of deaths for pneumonia and influenza in New Eng-
land between January 1996 and April 2002. Right: Weekly proportion of deaths for
pneumonia and influenza in New England between January 1996 and April 2002, after
normalization with the number of deaths for all causes. Source: CDC, Morbidity and
Mortality Weekly Report (http://wonder.cdc.gov/mmwr/mmwrmort.asp).

Data normalization can help to reduce the effect of some of these factors.
Figure 3.2 a) shows the weekly number of death for pneumonia and influenza in

New England between January 1996 and April 2002 [Centers for Disease Control, 2002a].
The data are published by the CDC as part of its national influenza surveillance effort.
Figure 3.2 b) shows the weekly proportion of deaths for pneumonia and influenza af-
ter normalization with the number of deaths for all causes. The apparent increasing
trend may be part of a secular trend with cyclic episodes of severe influenza epidemics
[Simensonet al., 2000]. Modeling normal patterns of disease or visit rates may rely
on regression type models [[Serfling, 1963], classical autoregressive moving average
models (ARIMA) [Box & Jenkins, 1976] or a combination of both methods. Ser-
fling’s method monitors the normal pattern of susceptibility to death for pneumonia
and influenza when there is not epidemic, and the objective is to determine an epi-
demic threshold. The method uses the cyclic regression equation

yt = µ0 + θt + α sin(2πt/52) + β cos(2πt/52) + εt (3.1)

to model the weekly numberyt of people susceptible to death from pneumonia and in-
fluenza when there is no epidemic. The model consists of the linear componentθt de-
scribing the secular trend and the sine-wave componentα sin(2πt/52)+β cos(2πt/52)
describing the periodic recurrence of influenza epidemics. Assuming that the weekly
numbers of deaths are normally distributed and uncorrelated, the standard least squares
method is used to estimate the model parameters from non-epidemic data, and to com-
pute the predicted valueŝyt. This model can be easily expanded to monitor hospital
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visit data for influenza [Simensonet al., 2000, Tsuiet al., 2002], to describe different
secular trends by changing the linear component, and it can be adapted to include ex-
ogenous variables such as weather or pollution indicators and to model daily or monthly
data, by changing the sine-wave component.

Serfling’s method is the standard approach to detect epidemic thresholds for in-
fluenza and, in principle, it could be adapted to detect epidemic thresholds for other
cyclic diseases. Its use requires a clear definition of the disease, the selection of data
to identify a normal pattern of susceptible individuals, and the assumption that the nor-
mal pattern is periodical. However, to be able to detect an outbreak determined by a
bioterrorism attack, recurrent incidence of cyclic diseases should be part of the “normal
pattern of diseases” that underlies, for example, the dynamics of hospital visits rates.
Furthermore, the assumption that the data are independent may be violated by hospital
visits rates that may be dependent upon the past. Traditional time series models, such as
ARIMA, seem to be more adequate to describe historical visits rates and can account
for temporal dependency, trends corresponding to secular changes in the populations,
and seasonal effects due, for example, to annual recurrence of influenza epidemics. An
ARIMA(p, d, q) model describes a non-stationary time series in which the series of
differencesxt = yt − yt−d is stationary and is described by anARMA(p, q) model.
The ARMA(p, q) model consists of two components: an autoregressive component
of orderp, and a moving average component of orderq. The autoregressive compo-
nent of orderp describes explicitly the dependency ofxt on a linear combination of
the pastp points, whereas the moving average component uses an average of the past
q uncorrelated errors to “shock” the process mean. Both the autoregressive and mov-
ing average orders can be chosen to get the best fitting from historical data, although
large orders may compensate for recent trends and miss timely departures from nor-
mal patterns. Goodness of fit criteria such as the Akaike or the Schwarz information
criteria [Shumway & Stoffer, 2000] can be used to select the best orders p, q by trad-
ing off goodness of fit and model complexity, thus limiting the risk of over fitting.
ARIMA models can be extended to account for seasonality, by either decomposing
the time series into a trend, a seasonal component and the residual, and by fitting an
ARMA(p, q) model to the residual component, or by fitting all components simul-
taneously [Box & Jenkins, 1976].ARIMA models to fit time series of patients with
respiratory syndromes are described in [Reis & Mandl, 2003].

ARIMA models are standardly used to fit time series data that do not exhibit a
clear pattern, although many historical data at surveillance sites show clear periodic-
ities. The regression type model in Equation 3.1 describes periodicities of the mean
by the sine wave component, but it does not take into account temporal correlation. A
combination of the two models would give the advantage of an explicit description of
important components such as periodicity and secular trends and, at the same time, it
could account for the serial correlation.

More sophisticated approaches to model the normal pattern use hidden Markov
models [LeStrat & Carrat, 1999, Rabiner, 1989, Rath, Carreras, & Sebastiani, 2003] by
using a hidden state that describes the presence or absence of epidemic of a particular
disease, and a model of the data conditional on the epidemic status. Closely related
to hidden Markov models are change point algorithms to detect changes in a baseline
model describing the normal pattern [Basseville & Nikiforov, 1993]. A potential use
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of change-point algorithms is to automatically identify the historical data most relevant
for modeling the normal pattern. When massive data at the surveillance sites are avail-
able, it is important to decide whether all data should be used to formulate a model
for the normal pattern. Often, changes in the data collection or in population demo-
graphics determine a change of the dynamics underlying the normal pattern and not all
the historical data should be used to have the best prediction. For example, modeling
data from influenza mortality surveillance has shown that more accurate forecasts are
based on five years historical data, and the CDC syndromic surveillance practice is to
use at least five years historical data [Farringtonet al., 1996, Hutwagneret al., 1997,
Stern & Lightfoot, 1999]. The choice of the amount of historical data is an open issue
and the availability of such data will vary.

3.5.3 Spatial and Temporal Clustering Methods

Several traditional methods are available for cluster analysis in time, once a suspect
location is identified. Methods as the scan test in [Naus, 1965] or the method in
[Ederer, Myers, & Mantel, 1964] testing for temporal clustering using a cell-occupancy
approach. In the scan test, the maximum number of cases observed in an interval
of fixed length is found by scanning all intervals of the same length in a time pe-
riod. The method in [Ederer, Myers, & Mantel, 1964] compares the distribution of
cases into k disjoint subintervals with the distribution one would expect under the
null hypothesis of no clustering. The difference between the two approaches is that
the scan test uses overlapping intervals, compared to the disjoint intervals used in
[Ederer, Myers, & Mantel, 1964].

Methods for spatial clustering can be grouped according to whether they use in-
formation about individuals or aggregate data. Our work has focused on detection of
perturbations in the distribution of mutual distances among all individual cases in a
geographical region to identify clusters. We find substantially increased power using
this measure of geographical clustering compared with using relying on counts alone
[Olsonet al., 2002].

The nearest-neighbor method examines the distribution of interpoint distances of
infected individuals. The method of Ohno [Ohno, Aoki, & Aoki, 1978] is a simple test
for spatial clustering that uses rates for geographic areas rather than data for individual
cases. The test assesses whether the rates in adjacent areas are more similar than would
be expected under the null hypothesis of no clustering. More advanced Bayesian mod-
els for detection of spatial clusters of disease - known as Bayesian disease mappings
- are described in [Elliottet al., 2000], and the extension of hidden Markov models to
detect small clusters in space is in [Green & Richardson, 2002]. A potential limita-
tion of Bayesian methods to disease mapping is their computational burden. This may
make them unfeasible for monitoring rapidly shifting distributions of patients within
an ill-defined window of hours to days. Furthermore, one of the fundamental steps
in spatial analysis based on aggregate data is the definition of geographical areas to
aggregate point data into groups. Geographical information systems are used to form
spatial groups by aggregating small area units into larger, contiguous areas that can be
given a particular classification. A common problem with spatial clustering procedures
is that the scale of the area units chosen for the aggregation can have dramatic effects



AUTHOR 199

on the results of the classification. This effect is known as the Modifiable Area Unit
Problem (MAUP) and a solution to this problem was proposed in [Hobbs, 1996]. Most
of the methods described for spatial clustering work retrospectively, whereas on line
surveillance system need to process observations sequentially. Statistical methods for
on-line surveillance are described in [Rogerson, 1997]

Detection of clusters in space and time is a much harder problem, and fewer meth-
ods are available. Knox method [Knox, 1964] is a standard epidemiology approach
to monitor the temporal-spatial spread of a disease by examining the distribution of
geographical and temporal distances of affected individuals. The method works by
classifying the pairs of cases as close in space and time, close in space only, close
in time only, or close in neither space nor time. The limitation is the choice of time
and space parameters to classify pairs as close or not, and it is overcome by temporal-
spatial scan statistics [Kulldorf, 2001] that identify ”suspect clusters” by using a win-
dow that moves in time and space. In each window, the number of reported cases
for a particular disease is compared to the number expected under the hypothesis that
there is no cluster, and the window with largest evidence of cluster is identified. The
K-nearest neighbor test of [Jacquez, 1996] uses a randomized test to assess the statis-
tical significance of a potential space-time interaction process. Because most data at
surveillance sites are count data, such as number of chief complaints for respiratory
problems [Lazaruset al., 2002], one can use generalized linear models to compute the
expected number of cases of a particular syndrome in a particular time and location.
The expected number is compared with the observed number and an unusually large
incidence of a particular syndrome is used to detect a cluster of illness.

3.6 Challenges

The process of syndromic surveillance can be broken down into five stages. First,
there is the Data Acquisition Stage, in which data are acquired from their sources.
Next, in the Syndromic Grouping Stage, data are processed, according to a scheme that
allows each the assignment of each patient to a syndromic group (such as influenza-
like illness, or gastrointestinal illness). Next is the Modeling Stage, in which historical
data, ideally reaching back from one to several years, are analyzed to establish a model
of the normal temporal pattern. Fourth, in the Detection Stage, the expected values
(for example, daily frequencies of patients presenting in each syndromic group) are
compared against observed values collected in the field in order to determine abnormal
activity is occurring. Finally, in the Alarms Stage, thresholds are set for evaluation
of whether or not the unusual patterns warrant notification. Each stage has its own
particular set of challenges.

3.6.1 Data Acquisition Stage

A problem that plagues health care information technology generally, and bioterrorism
surveillance specifically, is a lack of universal standards for storage and communi-
cation of medical information [Kohaneet al., 1996]. Much medical data, even when
stored electronically, exists as free text and requires natural language processing. (The
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RODS Laboratory at the University of Pittsburgh has made a Bayesian language classi-
fier available for this purpose at http://www.health.pitt.edu/rods/sw/default.htm). Even
when the chief complaints are encoded, the classification schema have often been de-
veloped locally. Sharing information across systems requires a standardized method
for describing data and their organization. Models for data exchange are being de-
veloped for health care [Beeler, 1998], emergency medicine [Pollock & Lowery, 2001,
Barthellet al., 2002], and public health. The Public Health Information Network (PHIN)1

is a standards-based approach to connect public health and clinical medicine. As its
implementation proceeds, PHIN will help standardize and facilitate the transfer of in-
formation needed for public health from clinical information systems.

Another issue is the timeliness of the data. To support real time detection, data
must be available immediately. This requirement eliminates many otherwise useful
data sources and sometimes precludes entire institutions from participation. The qual-
ity of the data used in automated systems varies. Establishing new manual data entry
processes to collect data (effectively, relying on human intelligence) is difficult and
costly. Therefore, the most successful surveillance systems to date rely on information
already collected for other purposes. There are also important issues with the qual-
ity of geographical location data. Geographical information system (GIS) software
can translate an address into precise latitude and longitude coordinates. In general, in
the health care system, the only address reliably collected is the home address. Ide-
ally, a surveillance system should have access to data about where each individual
works, goes to school, and has been recently. If an attack were to occur at a baseball
game, for example, the home address may not be the most salient geographical fea-
ture of the patients, but rather a cluster of patients who had attended the game might
be identified. The home address may be entered inaccurately, making geocoding a
challenging task. In hospital information systems, new patient addresses may perma-
nently overwrite older ones, making the historical geographical patient distributions
difficult to reconstruct. Also, the accuracy of geocoding results is far from perfect
[Kriegeret al., 2001, Olson & Mandl, 2002].

3.6.2 Syndromic Grouping Stage

Since the data are automatically collected and were not originally designed to group
patients into syndromes, they, may not be ideally suited to the purpose of surveillance.
The mapping of each case onto a syndrome is imprecise. The degree of imprecision
is, however, measurable against a gold standard such as a physician chart review of the
case [Espino & Wagner, 2001, Beitel & Mandl, 2002].

3.6.3 Modeling Stage

A common problem when establishing a new surveillance system, is that data may only
be available going forward, making the modeling of normality impossible before a few
years have elapsed. If these data are available, then the long term and local periodic-
ities must be known or discovered in order to model the baseline. Such modeling is

1http://www.cdc.gov/phin/index.htm
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often based on an assumption that the data do not contain the signal of interest. While
one can reasonably assume that a historical data set of, say, daily emergency depart-
ment syndromic data, does not contain signal from a biological attack, it may well
contain signal from non-periodically recurring events such as a food-borne outbreak of
gastrointestinal disease.

3.6.4 Detection Stage

The detection performance of a syndromic surveillance system can be evaluated by
measuring its ability to detect signal (disease outbreak) against a background of noise
(normal variation in baseline disease rates in the region). To benchmark performance,
training and validation data containing signal and noise are required. A major problem
is the lack of training data. Fortunately, few people have been infected with biological
warfare agents although there are notable exceptions such as the people of Sverdlovsk
[Meselsonet al., 1994] exposed in 1979 during an accidental release of anthrax from
a weapons plant, and those involved in the Florida, New York and Washington DC
mail attacks in 2001. However, with few actual cases, syndromic surveillance systems
cannot “learn” to detect bioterrorism with real world data. Nor can systems be bench-
marked by their ability to detect actual attacks. These systems must be trained with
nonbioterror related events or simulated events instead. Training and validation data
sets can be samples of authentic regional data, synthetic data, or a combination of both
(semisynthetic data).

Detecting abnormal clusters of syndromic cases in space/time poses substantial
challenges. Consideration of the temporal-spatial distribution of syndrome cases may
facilitate the detection of a bioterrorism attack, when cases are distributed over space
and/or time in a different manner from the normal pattern. In classical cluster detection
for public health and epidemiology, a specific cluster is often being investigated, and
the goal is to identify a point source, such as a toxic waste dump causing an excess
number of cases of leukemia [Waller, 2000]. In automated bioterrorism detection, the
location of the cluster is not known in advance and the temporal window in which cases
are grouped is constantly forward moving and may be only a few days wide.

Attacks may produce signals in the data that have different shapes. For example,
in a syndromic surveillance system that tracked the daily emergency department rates
illustrated in Figure 3.1, an attack might be characterized by a short high spike, a sus-
tained low and flat signal, or an exponentially increasing high amplitude signal. Dif-
ferent methods, and different applications of methods, such as using varying temporal
filters, may strongly influence detection capabilities [Reis, Pagano, & Mandl, 2003].
Therefore, a host of distinct methods may ultimately need to be simultaneously ap-
plied to the same data streams to enable the detection of all possible forms of attack.

3.6.5 Alarm Stage

Establishing appropriate thresholds is a nontrivial task. Obviously, a detection system
with poor sensitivity, one that fails to detect most attacks, is not acceptable. However,
in determining alarm thresholds, one must trade off sensitivity against specificity, en-
suring that most alarms are real. Consequently, the more attacks one aims to detect, the
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more false alarms one must accept. The costs of false alarms are difficult to quantify
but if a graded response is developed, news of a false alarm need not filter out to the
public. In the case of bioterrorism, the cost of a missed signal might be astronom-
ical. Decision analytic approaches are needed to estimate the human and economic
implications across a range of alarm thresholds.

Using more than one signal stream may help to reduce false alarms. For exam-
ple, if visits for influenza syndrome increase, but so do actual cases of influenza, there
may not be a cause for alarm. If the two signal streams diverge, however, there may
be more cause for concern. Ideally, a regional or national command center would
act based upon an interpretation of multiple streams of data, whether they come from
completely different sources (e.g. hospital visits, school absenteeism, sales of over-
the-counter medication) or from different models of a single data source. Substantial
work is needed to develop methods for such signal integration. Integration must be ac-
complished for: signals from same data using multiple methods, signals from separate
but potentially correlated data streams, signals from overlapping geographical regions,
and signals from remote geographical regions.

3.7 Conclusions

The precise role and efficacy of biosurveillance in public health has yet to be deter-
mined. Syndromic surveillance systems as they existed to date in the New York City
and Washington DC areas failed to detect the anthrax attacks of 2001. While these at-
tacks affected only a small number of people, they nonetheless are a cause for humility
for anyone attempting to predict with certainty when, where, and how bioweapons will
be used. Astute clinicians will always play a role in the accurate diagnosis and treat-
ment of patients as well as in the identification of public health emergencies. However,
biosurveillance is another modality that clearly has the ability to detect certain kinds
of events. The work to be done over the coming months and years is to build our data
integration infrastructure, develop and refine our methods, and estimate to the best of
our ability, the promise and limits of our technology.
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