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This article describes a new approach to Bayesian selection of decomposabl e models with incomplete data. This approach requires the
characterization of new ignorability conditions for the missing-data mechanism and the developmen t of new computational methods.
Both issues are considered, and solutions are proposed. Theory and methods are assessed in controlled experiments and in the analysis
of one real-life incomplete dataset.

KEY WORDS: Bayes factor; Conditional independence ; Decomposable model; Ignorability; Missing data; Model selection.

1. INTRODUCTION

A popular approach to Bayesian model selection uses data
to update the prior distribution on the set of models into the
posterior distribution, and chooses the model with maximum
posterior probability (Bernardo and Smith 1994). The key
quantity to the “prior to posterior” updating is the marginal
likelihood of each model, that is, the likelihood function in
which the model parameters are averaged out. When the mod-
els are decomposable, the adoption of hyper-Markov distribu-
tions on the model parameters and of decomposable model
prior probabilities reduces the overall model selection pro-
cess to the search for components with maximum posterior
probability. In particular, computation of the marginal likeli-
hood of each component can be done independently. When
data are only partially observed, the problem is whether the
same model selection process can be applied by ignoring the
missing-data mechanism. We give a solution in this situation:

1. We suppose that the model we look for can be decom-
posed in two components, mxs

and my—xc
, where mxs

is
a dependency model for the variable set ¸s and my—xc

models the dependence of Y on the variables ¸c in ¸s.
The model 4mxs

1my—xc
5 encodes the conditional indepen-

dence of Y and ¸s, given ¸c.
2. We suppose that Y is partially observed and the proba-

bility that a value of Y is missing is a function of the
variables ¸d in ¸s .

This missing-data mechanism produces data that are miss-
ing at random MAR and, in particular, missing completely at
random MCAR when ¸d is empty (Rubin 1976). It is also
a special case of the coarsening model introduced by Heit-
jan and Rubin (1991). In the received theory of missing data,
this mechanism is ignorable for Bayesian inference a under
the assumption of prior independence of the model parame-
ters and of the missing-data mechanism (Heitjan 1994; Heitjan
and Basu 1996; Little and Rubin 1987).

Our � rst goal is to � nd weak, suf� cient conditions to ensure
that this missing-data mechanism is ignorable when selecting
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a decomposable model 4mxs
1 my—xc

5. We show that the prior
independence of mxs

and of the model describing the missing-
data mechanism is suf� cient to ensure that the selection of
mxs

and my—xc
can be done via two independent processes, and

that the selection of mxs
can always ignore the missing-data

mechanism. Furthermore, when the probability of deleting the
Y values is a function of ¸d , we show that the selection of
my—xc

cannot ignore the missing-data mechanism. Only when
¸d is empty is the missing-data mechanism ignorable. The fact
that mechanisms producing MAR data may not be ignorable
for model selection is not new; Little and Rubin (1987, p. 16)
and Rubin (1996) warned against improper modeling when
data are MAR rather than MCAR. However, we believe that
the formal treatment of the problem that we provide here is
new.

The nonignorability of the missing-data mechanism con-
sidered in this article is conceptually different from that of
mechanisms in which the missingness probability is a func-
tion of the unobserved data. In our framework, the probabil-
ity of deleting the Y values is a function of the variables ¸d,
which are fully observed. In fact, we can show that the incom-
plete sample contains the information needed to proceed with
proper model selection. To characterize this conceptual dif-
ference, we de� ne a missing-data mechanism to be partially
ignorable when the probability of removing the Y values is
a function of the variables ¸d ¸s . An ignorable missing-
data mechanism is a special case of this, in which the set ¸d

is empty. Distinguishing between an ignorable and a partially
ignorable missing-data mechanism is the � rst step to ensuring
proper selection of my—xc

, and we provide a Bayesian solution
to this problem. Our approach builds on suggestions of Little
and Rubin (1987) and Baker and Laird (1988), although we
only try to discriminate between ignorable and partially ignor-
able missing-data mechanisms.

When the missing-data mechanism is ignorable, selection of
the model component my—xc

can disregard the missing values.
When, on the other hand, the missing-data mechanism is only
partially ignorable, exact inference appears to be intractable,
and we need approximate methods. A well-established approx-
imate solution to inference with incomplete data is imputation
(Rubin 1987, 1996; Schafer 1997), which replaces the miss-
ing data with values generated by an imputation model. We
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show that our framework leads to a natural choice of the impu-
tation model, which, for example, disagrees with Bayesianly
proper multiple imputation (Schafer 1997). The scheme that
we suggest, which we term ignorable imputation, accounts
for the missing-data mechanism and produces, asymptotically,
a proper imputation model as de� ned by Rubin (1987). We
also propose a deterministic method to approximate the exact
marginal likelihood that we call model folding. Preliminary
experiments show that model folding reaches high accuracy
at a low computational cost, because the complexity of the
model search is not affected by the presence of incomplete
cases. Both ignorable imputation and model folding recon-
struct a completion of the incomplete data by taking into
account the variables ¸d responsible for the missing data.
This property is in agreement with the suggestion put for-
ward by Rubin (1976), Little and Rubin (1987), and Heitjan
and Rubin (1991) that the variables responsible for the miss-
ing data should be kept in the model. However, our approach
allows us to also evaluate the likelihoods of models, which do
not depend explicitly on these variables.

The structure of the article is as follows. Section 2 pro-
vides the necessary background on Bayesian selection of
decomposable models with complete data. Section 3 describes
ignorability conditions and characterizes ignorable and par-
tially ignorable missing-data mechanisms. Section 4 describes
a Bayesian method for discriminating between ignorable and
partially ignorable missing-data mechanisms. Section 5 puts
together the results of Sections 3 and 4 to describe proper
imputation schemes and model folding. Section 6 gives exper-
imental evaluations, and Section 7 discusses an example.

2. MODEL SELECTION WITH COMPLETE DATA

Let 4xs1 y5 be data generated from variables ¸s D
4X11 : : : 1 Xs5 and Y via some unknown dependency model m.
We suppose that m belongs to the set ­ of decomposable
models (Lauritzen 1996) describing different types of stochas-
tic dependence between the variables ¸s , and independence of
Y from ¸s, given ¸c . In this way m has the two components,
mxs

and my—xc
describing the association among the variables

¸s and the dependence of Y on ¸c , for different c. In par-
ticular, when we condition on ¸s , my—xc

becomes a regression
model for the response variable Y .

By de� ning ­xs
and ­y—xs

to be the set of models mxs
and

my—xc
, ­ is the Cartesian product of the two sets ­xs

and
­y—xs

, say ­ D ­xs
† ­y—xs

.

Example 1. Suppose that ¸s is the bivariate variable
4X11X25. There are only two possible models describing the
stochastic dependence between X1 and X2: either X1 and X2

are independent or not. The set ­xs
comprises these two mod-

els. The set ­y—xs
comprises four models: my—™ speci� es the

independence of Y and X1 and X2; my—x1
and my—x2

specify
the dependence of Y on X1 and the dependence of Y on X2;
and my—x11x2

speci� es the dependence of Y on both X1 and X2.
Clearly, any dependency model for the variables X11X2, and
Y is characterized by a pair mx and my—xc

.

Given the modularity of the models in ­ , we adopt
decomposable prior probabilities (Heckerman, Geiger, and

Chickering 1995) on the model space, so that

p4m5 D p4mxs
5p4my—xc

5 (1)

for any m in ­ . Associated with each model m is a vector
of parameters ˆ with prior density p4ˆ—m5. We suppose that
ˆ consists of the two components ˆxs

and ˆy—xc
, parameteriz-

ing mxs
and my—xc

, and that, given ˆxs
1 ˆy—xc

, the joint density
(probability) of ¸s and Y is

p4xs1 y—ˆ5 D p4xs—ˆxs
5p4y—xc1 ˆy—xc

50 (2)

We also assume that ˆxs
and ˆy—xc

are independent, given m,
so that p4ˆ—m5 factorizes as

p4ˆ—m5 D p4ˆxs
—mxs

5p4ˆy—xc
—my—xc

50 (3)

Given data 4xs1 y5, we wish to select the maximum posterior
probability model m from the set ­ . By Bayes’s theorem, the
posterior probability p4m—xs1 y5 is

p4m—xs1 y5 D
p4m5p4xs1 y—m5

p4xs1 y5
¢ (4)

The marginal likelihood p4xs1 y—m5 is computed by aver-
aging out ˆ from the augmented likelihood p4xs1 y1 ˆ—m5 D
p4xs1 y—ˆ5p4ˆ—m5, and it solves the integral

R
ˆ
p4xs1 y—ˆ5�

p4ˆ—m5dˆ D
R

ˆ
p4xs —ˆxs

5p4y—xc1 ˆy—xc
5p4ˆ—m5dˆ. By the

assumption of parameter independence in (3), it is easy to
show that the marginal likelihood becomes

p4xs1 y—m5 D p4xs —mxs
5p4y—xc1my—xc

50 (5)

The quantity p4xs —mxs
5 is a function of ¸s , whereas

p4y—xc1 my—xc
5 is a function of only Y and ¸c . If we now use

this factorization of the marginal likelihood and the factoriza-
tion of the prior probability of a model m in (1), then we can
write the posterior probability in (4) as

p4m—xs1 y5 D
6p4mxs

5p4xs —mxs
57 � 6p4my—xc

5p4y—xc1my—xc
57

p4xs1 y5
¢

(6)

This factorization has an important consequence for the
model selection process. Because this process searches for the
model m with maximum posterior probability p4m—xs1 y5, and
p4xs1 y5 is constant, the solution can be found by searching
for the models mxs

and my—xc
with maximum p4mxs

5p4xs —mxs
5

and p4my—xc
5p4y—xc1my—xc

5 in the two model spaces ­xs
and

­y—xs
. In particular, the variables in ¸s not in ¸c , say ¸sn¸c,

are irrelevant to computing the marginal likelihood of my—xc
.

This result is based on the following assumptions:

¡ Assumption 1: The prior probability of each model
4mxs

1my—xc
5 is decomposable.

¡ Assumption 2: Associated with each model m D
4mxs

1my—xc
5 is a vector of parameters ˆ D 4ˆxs

1 ˆy—xc
5, with

prior density p4ˆ—m5 D p4ˆxs
—m5p4ˆy—xs

—m5.
¡ Assumption 3: Conditional on ˆy—xc

and on ¸c, Y is inde-
pendent of ¸sn¸c .

¡ Assumption 4: The dataset 4xs1 y5 is complete in the sense
that there are not unknown entries.
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In the next section we disregard assumption 4 about the
absence of unknown entries in the data and identify conditions
to ensure that, given the same assumptions 1–3, model selec-
tion can proceed by implementing two independent searches
in the two model spaces ­xs

and ­y—xs
, and the variables

¸sn¸c continue to be irrelevant for evaluating the marginal
likelihood of my—xc

. We conclude this section with an example
that we use in the remainder of the article.

Example 2. Suppose that ¸s and Y are categorical vari-
ables, and consider the selection of the maximum posterior
probability model my—xc

. We assume that, conditional on my—xc
,

the distribution of Y is a product of qc multinomial distri-
butions, where qc is the number of states xck of ¸c, and
k D 11 : : : 1 qc. We let ˆc

kj denote p4Y D yj —xck1 ˆy—xc
5, for j D

11 : : : 1 g and for parameters ˆy—xc
² 4ˆc

k5, and ˆc
k D 4ˆc

kj5. We
further suppose that for � xed k, the prior distribution of ˆc

k is
a Dirichlet D4�c

k11 : : : 1 �c
kg5, and ˆc

k ? ˆc
h, for k 6D h. The joint

distribution of ˆy—xc
is then a product of independent Dirichlet

and was termed a hyper-Dirichlet by Dawid and Lauritzen
(1993). Because we are considering different models, we
assume that as c varies, the hyperparameters �c

k11 : : : 1 �c
kg

determine the same distribution for the parameters associated
with the marginal distribution of Y . Thus we impose the con-
straint that

P
k �c

kj D P
k �c 0

kj for any j and c 6D c0, which is
satis� ed when �c

kj D �=4qc � g5, where � D P
kj � s

kj is the
overall prior precision. Because Dirichlet distributions with
�c

kj D �=4qc � g5 are known as symmetric Dirichlet (Good
1968), we de� ne a hyper-Dirichlet with �c

kj D �=4qc � g5 as
a symmetric hyper-Dirichlet, and as a symmetric hyperbeta
when g D 2.

When the sample is complete, parameter independence and
the use of hyper-Dirichlet distributions let us � nd explicitly
p4y—xs1my—xc

5 as

p4y—xc1 my—xc
5 D

Y

k

â �c
k¢

â �c
k¢ C nc

k¢

Y
j

â �c
kj C nc

kj

â �c
kj

1 (7)

where â4¢5 is the gamma function, nc
kj is the sample fre-

quency of cases with categories 4xck1 yj5 under model my—xc
,

nc
k¢ D P

j nc
kj , and �c

k¢ D P
j �c

kj . Details of the calculations have
been given by Kass and Raftery (1995), Raftery (1995), and
Heckerman et al. (1995).

3. IGNORABLE MISSING-DATA MECHANISMS

In this section we suppose that some entries of Y are
unknown so that the dataset 4xs1 yo5 is incomplete. We denote
by yo the observed values of Y and suppose that the incom-
plete sample is generated according to this scheme. First, a
complete sample 4xs1 y5 of size n is generated by an unknown
model m in the set ­ . We then suppose that there exists a
binary variable R, taking on one of two values 1 and 0, with
probability –4xd5 and 1ƒ–4xd5, for any value xd of ¸d ¸s.
We de� ne –r —xd

D 4–4xd55. The variable R is used to remove
entries of y as follows. Given –r —xd

and the sample xs, a sam-
ple of n values r is generated from the probability distribution
p4R—xd1 –r —xd

5. By de� nition, the r values are generated inde-
pendently of y, given xd and –r —xd

. Given the r values, the
data y are subjected to a deletion process, which removes the

entries of Y corresponding to ri D 1, for each sample case i.
Now we label the subset of y values that survived the deletion
process and the subset of y values removed from the sample
by yo and ym . We refer to R and –r —xd

as the missing-data
mechanism and ym as nonresponse.

Given data 4xs1 yo1 r5, we wish to select a model m D
4mxs

1my—xc
5 from the set ­ D ­xs

† ­y—xs
, and each model

my—xc
in the set ­y—xs

describes the overall dependence of
yo and ym on ¸s . We continue to hold assumptions 1–3
of Section 2 and wish to � nd conditions on the missing-
data mechanism such that model selection can proceed as in
Section 2; that is, by means of two independent searches in
the model spaces ­xs

and ­y—xs
and by disregarding ¸sn¸c

when computing the marginal likelihood of my—xc
. Formally,

this is equivalent to � nding conditions such that the posterior
probability

p4m—xs1 yo1 r1–r —xd
5

D
p4mxs

1my—xc
—–r —xd

5p4xs —mxs
1my—xc

1–r —xd
5p4yo1 r —xs1mxs

1my—xc
1–r —xd

5

p4xs1 yo1 r —–r —xd
5

simpli� es to

p4m—xs1 yo1 r1 –r—xd
5

D
6p4mxs

5p4xs—mxs
57� 6p4my—xc

5p4yo —xc1 my—xc
57

p4xs1 yo5
1 (8)

and thus is independent of r and –r —xd
. This factorization being

true, the search for the maximum posterior probability model
m is the same search described in Section 2, independently
of r and –r —xd

. By adopting Rubin’s de� nition (Rubin 1976)
we can say that in this case, the missing-data mechanism is
ignorable for inference about m.

We � rst note that, conditional on mxs
, the sample xs is

independent of my—xc
and –r —xd

and, given xs, the sample
yo1 r is independent of mxs

. Hence the marginal likelihood
p4xs —mxs

1my—xc
1 –r —xd

5 is p4xs —mxs
5, whereas p4yo1 r—xs1 mxs

1
my—xc

1 –r —xd
5 is p4yo1 r —xs1my—xc

1 –r —xd
5. If we assume that, a

priori, p4mxs
1 my—xc

—–r—xd
5 D p4mxs

5 p4my—xc
5, then

p4m—xs1 yo1 r1 –r—xd
5

/ 6p4mxs
5p4xs—mxs

57p4my—xc
5p4yo1 r—xs1 my—xc

1–r —xd
51

so that the search for the maximum posterior probability
model mxs

in ­xs
can proceed independently of the search

in ­y—xs
. The next theorem gives suf� cient conditions on the

distribution of R—xd1–r —xd
such that (8) holds.

Theorem 1. Under assumptions 1, 2, and 3, a missing-data
mechanism is ignorable for inference about m D 4mxs

1my—xc
5

if the probability p4r—xs1 yo1 ym1–r —xd
1my—xc

5 simpli� es to
p4r—xd1–r —xd

5 and p4m—–r —xd
5 D p4mxs

5p4my—xc
5, for any m in

the model space ­ .

Proof. Let m D 4mxs
1my—xc

5 be a model in ­ . We have
shown that p4m—xs1 yo1 r1 –r—xd

5 / p4mxs
5p4xs —mxs

5p4my—xc
5�

p4yo1 r —xs1my—xc
, –r—xd

5, when p4m—–r —xd
5 D p4mxs

5p4my—xc
5.

The quantity p4yo1 r —xs , my—xc
1–r —xd

5 is computed asR
ym

p4yo , ym1 r —xs1my—xc
1 –r —xd

5dym, where ym denotes the
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missing y values. Now write p4yo1 ym1 r —xs1my—xc
1–r —xd

5
as the product of the two factors p4yo1 ym—xs1my—xc

1–r —xd
5

and p4r—xs1 yo1 ym, my—xc
1 –r—xd

5 and note that
p4yo1 ym—xs1my—xc

, –r —xd
5 D p4yo1 ym—xc1my—xc

5 by de� nition.
By p4r—xs1 yo1 ym1–r —xd

1my—xc
5 D p4r—xd1–r —xd

5, we have
p4yo1 r —xs1my—xc

, –r —xd
5 D p4r—xd1–r —xd

5p4yo—xc1my—xc
5, so that

the factorization in (8) is true, thus ensuring ignorability of
the missing-data mechanism.

A byproduct of Theorem 1 is that, for inference on a
model m with incomplete data 4xs1 yo5 under an ignor-
able missing-data mechanism, the values ym are also ignor-
able. This result follows by observing that the integralR

ym
p4yo1 ym —xc1 my—xc

5dym can be computed as p4yo—xc1my—xc
5

�
R

ym
p4ym—yo1 xc1 my—xc

5dym , and
R

ym
p4ym—yo1 xc1 my—xc

5dym is
equal to 1. We state this result formally in the next corollary.

Corollary 1. The missing data ym resulting from an ignor-
able missing-data mechanism are ignorable for inference about
a model m.

Theorem 1 gives a suf� cient condition to have an ignorable
missing-data mechanism for our model selection problem. We
prove that there exists only one class of ignorable missing-
data mechanisms.

Fix one model my—xc
in ­y—xs

and consider the prob-
ability p4r—xs1 yo1 ym1–r —xd

1 my—xc
5. The model my—xc

identi-
� es the variables in ¸s on which Y depends, so that
4xs1my—xc

5 D xc. By de� nition, R is independent of Y , given
¸d and –r —xd

. Hence when ¸c contains ¸d , we have that
p4r—xs1 yo1 ym1–r —xd

1my—xc
5 D p4r—xd1 yo1 ym1–r —xd

5, which, by
de� nition, simpli� es to p4r—xd1–r—xd

5. This fact follows by the
property that if R is independent of Y given ¸d and if ¸c con-
tains ¸d, then R is independent of Y given ¸c (Dawid 1979,
1980).

On the other hand, when ¸c does not fully contain ¸d,
the independence of R and Y given ¸d does not imply inde-
pendence of R and Y given ¸c. Indeed, we can rewrite
p4r—xs1 yo1 ym1my—xc

1–r —xd
5 as p4r—xc1 xd1 yo1 ym1 my—xc

1–r —xd
5,

which does not simplify into p4r—xd1 –r —xd
5, so that the

marginal likelihood p4yo1 r —xs1my—xc
1–r —xd

5 does not factor-
ize as in Equation (8). To characterize ignorable missing-data
mechanisms, we need to � nd conditions on ¸d under which Y
and R are independent given ¸c, for any ¸c ¸s . This sim-
pli� cation occurs only when ¸d D ™ (Dawid 1979, 1980). We
state this result in the next theorem.

Theorem 2. Under the same assumption as in Theorem 1,
a missing-data mechanism described by the probability distri-
bution p4R—xd1 –r —xd

5 is ignorable if and only if ¸d D ™.

Theorem 2 excludes the ignorability of any missing-
data mechanism described by a probability distribution
p4R—xd1 –r —xd

5. However, this lack of ignorability is concep-
tually different from the nonignorability of an informative
missing-data mechanism in which the missingness probabil-
ity is a function of the missing values. We can describe these
informative missing-data mechanisms by the probability dis-
tribution p4R—xd1 y1–r —xd

5. Furthermore, as discussed earlier, a
mechanism described by the probability p4R—xd1–r—xd

5 has the
property that the marginal likelihood p4yo1 r —xs1my—xc

1–r —xd
5

can be computed as p4r—xd1 –r —xd
5p4yo —xc1my—xc

5 whenever xd

is a subset of xc . Hence, at least for all models my—xc
specifying

the dependence of Y on ¸c ¸d, the missing-data mechanism
can be ignored in the computation of the marginal likelihood
p4yo —xc1 my—xc

5. These observations lead us to give the follow-
ing de� nition.

De� nition 1. We de� ne a missing-data mechanism
described by the probability distribution p4R—xd1–r —xd

5 as
partially ignorable.

The results of Theorem 1 and 2 have some interesting con-
sequences on the received view of missing-data mechanisms
as recently described by, for example, Schafer (1997). Because
a partially ignorable missing-data mechanism is characterized
by a probability distribution p4R—xd1 –r —xd

5, and hence entries
of the variable Y are removed independently of the missing
values but dependently on the observed values, there follows
that data removed with this mechanism are MAR. Our results
show that these missing-data mechanisms, although paired
with technical conditions on the model space, are not ignor-
able for model selection. Furthermore, a missing-data mecha-
nism described by a probability distribution p4R—–r —xd

5, so that
R is marginally independent of all of the variables in the set
¸s , produces MCAR data. Theorem 2 shows that this is the
only ignorable missing-data mechanism. This fact is not new;
for example, Little and Rubin (1987, p. 16) and, more recently,
Rubin (1996) have warned against improper treatment of an
incomplete sample when data are MAR rather than MCAR.
Our results provide a formal foundation for this intuition.

The results of this section open two issues. The distinction
between ignorable and partially ignorable missing-data mech-
anisms has consequences on the implementation of model
selection. For example, as shown in Corollary 1, an ignorable
missing-data mechanism lets model selection be carried out by
simply disregarding the missing values. The � rst issue is then
to see whether the data 4xs1 yo1 r5 can be used to discriminate
between the two mechanisms. The second issue is how to pro-
ceed with model selection when the missing-data mechanism
is only partially ignorable. For example, some authors (Heitjan
and Rubin 1991; Little and Rubin 1987; Rubin 1976) suggest
that the variables responsible for the missing data should be
kept in the model, thus limiting the model search to a subset of
models. We consider these problems in the next two sections.

4. DISCRIMINATING BETWEEN IGNORABILITY
AND PARTIAL IGNORABILITY

In this section we show that the sample 4xs1 r5 can be
used to select one missing-data mechanism, that is, a depen-
dency model of R on ¸s, which we call mr —xd

. The approach
that we describe puts suggestions of Little and Rubin (1987)
and Baker and Laird (1988) for � tting log-linear models to
assess whether a missing-data mechanism is nonignorable into
a Bayesian framework. Here we focus on a subclass of log-
linear models and try to assess whether the mechanism is
ignorable or partially ignorable with no attempt to detect
whether there is a dependency between R and Y .

The data 4xs1 r5 are a complete sample for R and ¸s .
Therefore, if we focus on decomposable models 4mxs

1 mr —xd
5

and suppose that mxs
and mr —xd

are a priori independent,
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Table 1. The Obese Dataset

Obese

Age Gender Yes No NA % NA

Young M 82 463 470 46
F 81 435 418 45

Old M 247 900 324 22
F 272 861 303 21

NOTE: Young children are age under 9 years; old children, above 9 years.

then we can apply the model selection method described in
Section 2 to choose in particular a dependency model of
R on ¸s. The solution is the model mr —xd

with maximum
p4mr —xd

5p4r—xd1mr —xd
5. Computation of p4r—xd1 mr —xd

5 can be
done in closed form when the variables ¸s are all categori-
cal, whereas when the variables ¸s are both continuous and
categorical, approximations are needed.

Suppose � rst that the variables ¸s are all categorical. Con-
ditional on mr —xd

specifying the dependence of R on ¸d , the
distribution of R is modeled as a product of binomial distri-
butions, with parameters –j D –4xdj 5, xdj being one of the qd

states of ¸d. We assign independent beta distributions with
hyperparameters ‚d

j1 and ‚d
j2 to each parameter –j , so that

the overall prior distribution is hyperbeta. Using the result of
Example 2, the marginal likelihood is

p4r—xd1mr —xd
5

D
qdY

jD1

â ‚d
j1 C ‚d

j2

â ‚d
j1 C ‚d

j2 C nd
j C md

j

â ‚d
j1 C md

j1 â ‚d
j2 C nd

j

â ‚d
j1 â ‚d

j2

1

where nd
j denotes the frequency of cases 4R D 01 xdj 5 and md

j

denotes the frequency of cases 4R D 11 xdj 5. The next example
applies this procedure to a real dataset.

Example 3. We analyze the missing-data mechanism gen-
erating the incomplete dataset in Table 1. The data, reported by
Park and Brown (1994), consist of the results of a 1977 survey
of schoolchildren in which respondents were asked whether
they were obese or not. Our goal is to see whether either a
child’s age or gender is related to the probability of nonre-
sponse. This dataset was analyzed by Park and Brown (1994)
under the assumption of nonignorable nonresponse, because a
refusal to answer should depend on the child’s obesity. Here
we assume that the probability of nonresponse is independent
of the child’s obesity, given age and gender, because children
are “naive” and do not answer if they truly do not know the
answer.

We let R denote the missingness variable and use the data
on age, gender, and R to discriminate between the four models
generating ignorable or partially ignorable missing-data mech-
anisms. We denote age by X1 and gender by X2. The three
models in which R depends on X1 alone (mr—x1

), on X2 alone
(mr —x2

), or on both X1 and X2 (mr —x11x2
) describe partially ignor-

able missing-data mechanisms, whereas the model in which R
is independent of both X1 and X2 (mr —™) produces an ignor-
able missing-data mechanism. We suppose that the four mod-
els are a priori equally likely and, conditional on each model
mr —xd

, we assign symmetric hyperbeta prior distributions to

Table 2. Marginal Likelihood, in Log-Scale, for the Four Models
Producing Partially Ignorable or Ignorable Missing-Data Mechanisms

for the Data in Table 1

Log-marginal likelihood
Model
mr —xd

‚ D 0001 ‚ D 10000 ‚ D 40000

mr —x11 x2
ƒ29040563 ƒ28770638 ƒ28730594 Age and gender

mr —x2
ƒ30350763 ƒ30220565 ƒ30200867 Gender

mr —x1
ƒ28810274ü ƒ28680099ü ƒ28660471ü Age

mr —™ ƒ30240872 ƒ30180491 ƒ30170863 None

NOTE: Stars identify the maximum value of the marginal likelihood in each column.

the parameters –j . The hyperparameters ‚ji are chosen as
‚ji D ‚=42 � qj5, where ‚ is overall prior precision.

Table 2 gives the marginal likelihood of the four models
for three different choices of ‚. The models are ranked in the
same way, and there is little doubt that R depends on age.
Therefore, the missing-data mechanism can be ignored in the
calculation of the marginal likelihood of mr —x1

and mr —x11x2
, but

cannot be ignored during the calculation of the marginal like-
lihood of mr —x2

and mr—™. Note that the probability of nonre-
sponse is larger in young children than in old children; this
� nding supports the hypothesis that nonresponse is due to a
genuine “ignorance” rather than a willingness to hide the truth.

The simplicity of the computations in the previous exam-
ples is lost when some of the variables in ¸s are continuous.
In this case we can still de� ne the vector of parameters –r —xd

as –r —xd
D 4–xd

5, –xd
D p4R D 1—xd1–5. However, now –xd

is
some function of ¸d, such as the logit function, and involves
further parameters ê. This parameterization does not usually
lead to a closed-form solution for the marginal likelihood,
and we need either stochastic or deterministic approximations.
With large datasets, one can use the Bayesian information
criterion (BIC) (Schwarz 1978), which makes an asymptotic
approximation of the marginal likelihood p4r—xd1 mr —xd

5. Fur-
ther discussion has been given by Kass and Raftery (1995),
Raftery (1995), and Wasserman (1999).

5. MODEL SELECTION WITH INCOMPLETE DATA

In this section we provide two solutions to the selection of
my—xc

when the missing-data mechanism is partially ignorable.
We begin with a discussion of the computational problems due
to partial ignorability.

5.1 Exact Modeling

In Section 3 we de� ned a missing-data mechanism to be
partially ignorable when the probability distribution of the
missingness variable R is some function of ¸s . Suppose that
the approach described in Section 4 selects the subset ¸d on
which R depends. We assume that, a priori, mxs

, my—xc
, and

–r —xd
are independent, so that the search for the maximum pos-

terior probability model mxs
can be carried out independently

of the missing-data mechanism. The issue remains the selec-
tion of a dependency model my—xc

. We distinguish between the
two situations discussed in Section 3:

(a) For any ¸c such that ¸c \ ¸d D ¸d , the missing-data
mechanism is ignorable because the posterior probability
p4my—xc

—xs1 yo1 r1–r —xd
5 simpli� es into p4my—xc

—xc1 yo5.
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(b) For any ¸c such that ¸c \ ¸d 6D ¸d , the quantity
p4yo1 r —xs1 my—xc

1–r —xd
5 is the solution of

R
ym

p4yo1 ym1

r —xs1my—xc
1 –r —xd

5dym. Conditional on my—xc
, we have

xs ² xc, so that
R

ym
p4yo1 ym1 r —xs1my—xc

1–r —xd
5dym DR

ym
p4yo1 ym—xc5p4r—xc1 yo1 ym1–r —xd

5dym and, in the last
integral, the probability p4r—xc1 yo1 ym1–r —xd

5 does not
simplify. However, we note that

p4r—xc1 yo1 ym1 –r —xd
5 D

Z

¸d ¸c

p4r—xd1 yo1 ym1–r —xd
5

� p4xd —xc1 yo1 ym1–r —xd
5dxd xc

D
Z

¸d ¸c

p4r—xd1 –r —xd
5

� p4xd —xc1 yo1 ym5dxd xc1

so that whenever we “expand” the set ¸c to contain ¸d,
the dependency of R on yo and ym disappears. There-
fore, to integrate out the missing values, we need to
expand model my—xc

to contain the variables ¸dn¸c.

Exact modeling requires the computation of the observed
likelihood p4yo1 r —xs1my—xc

1 –r —xd
5, by solving the foregoing

two integrals. Because there does not seem to be a general
closed-form solution, exact integration can be approximated
by a stochastic estimation. Alternatively, one may use impu-
tation to � ll in the missingdata. The next section focuses on
imputation.

5.2 Multiple Imputation

Imputation is a popular method for handling incom-
plete datasets (Rubin 1987). Gelman, Carlin, Stern, and
Rubin (1995), Schafer (1997), and Tanner (1996) have given
in-depth descriptions of several imputation schemes in a
Bayesian framework. Rubin (1987, 1996) discussed pros and
cons of imputation for frequentist and Bayesian inferences.
Multiple imputation replaces missing values with quantities
generated by an appropriate imputation model. By repeating
the process several times, posterior inference can be carried
out by averaging the results obtained from the imputed sam-
ples. There are several multiple imputation schemes that differ
in the choice of the conditional distribution used in the impu-
tation step. For example, Schafer (1997) de� ned Bayesianly
proper multiple imputation as a procedure in which missing
data are imputed from the predictive distribution of Y condi-
tional on xc, with density p4y—xc1 yo1my—xc

5. Bayesianly proper
multiple imputation is repeated for every model my—xc

evalu-
ated during the search process and produces a posterior proba-
bility of my—xc

conditional on xc , yo , and the imputed data yimp.
When the missing-data mechanism is only partially ignorable
and ¸c \ ¸d 6D ¸d , Y is not independent of R conditional on
¸c, and imputing data from the p4y—xc1 yo1my—xc

5, introduces
bias. This fact was also noted by Rubin (1996). As was shown
at the beginning of this section, the dependence of Y on R
disappears when we condition on ¸d. Indeed, we have

p4y—xc1 yo1my—xc
1 r5

D
Z

¸d ¸c

p4y—xd1 yo1 r5p4xd—xc1 yo5dxd nxc1

so that imputing missing data from a mixture of distributions
appears to be the proper scheme. A simple alternative is to
impute data from p4y—xd1 yo1 my—xd

5 conditional on my—xd
. The

advantage of this approach is that imputation needs to be done
only once, and the imputed samples can be used for inference
as if they were complete samples. We call this approach, in
which missing data are simulated conditional on my—xd

, ignor-
able imputation. The imputed sample is used to evaluate the
posterior probabilities of all models. By repeating this pro-
cedure v times, the posterior probability of each model then
becomes the average of the posterior probabilities computed
from the v imputed samples.

Ignorable imputation has two important features. By
requiring imputation from only one model, it results in com-
putational savings when compared to schemes in which the
imputation model changes with my—xc

. Furthermore, all poste-
rior probabilities are conditional on the same imputed data,
thus providing consistent evaluations of the Bayes factor to
assess the strength of evidence of one model my—xc

versus
other models. When ¸s and Y are categorical variables, ignor-
able imputation can be easily implemented following the data
augmentation scheme proposed by Tanner and Wong (1987).
We use the notation of Example 2 and let no and nm denote
the number of observed data, yo , and the number of missing
entries, ym. Initially, the no fully observed data yo are used to
update the prior density of ˆy—xd

into the posterior density, and
this is then used to compute p4y—xdk1 yo1my—xd

5, where xdk is
the � rst state of ¸d in which the entry of Y is missing. If the
prior density of ˆy—xd

is a hyper-Dirichlet, with hyperparam-
eters �d

kj , then the predictive probability of Y D j in xdk is

p4Y D j—xdk1 yo1 my—xd
5 D

�d
kj C nd

kj C 1

�d
k¢ C nd

k¢ C 1
1

so that a value for Y is generated from this probability distri-
bution and the outcome is used to update the predictive distri-
bution for the next step. Alternatively, one may simulate the
nm incomplete entries of Y simultaneously, conditional on the
observed data yo . When the size of the observed data is large,
it is appealing to replace the imputation step by a determinis-
tic step in which one substitutes missing values with expected
ones. This is the intuition of model folding, which is presented
in the next section. When ¸s and Y are a mixture of categori-
cal and continuous variables, the posterior density of ˆy—xd

may
not be computed in closed form, and implementation of ignor-
able imputation requires more sophisticated methods. Several
methods have been described by Tanner (1996, Chap. 5).

Note that imputing missing data from the minimal model
for which the missing-data mechanism is ignorable guaran-
tees the asymptotic propriety of ignorable imputation. Rubin
(1987) de� ned a multiple imputation model to be proper when
it produces unbiased estimates of quantities of interest. In
our context, ignorable imputation produces an unbiased esti-
mate of the exact marginal likelihood. The same propriety is
enjoyed by any schemes requiring imputation from the satu-
rated model or at least a model my—xc

with ¸c ¸d. Also,
Rubin (1996) suggested including all variables in a multiple
imputation model to make it proper for any inference.
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5.3 Model Folding

Ignorable imputation replaces missing values by imputed
ones to estimate the marginal likelihood. When ¸s and Y are
categorical variables, we propose a deterministic approxima-
tion of the exact marginal likelihood, which is computed as
follows. We use the notation of Example 2 and let ˆy—xc

denote
the parameters of my—xc

. The prior distribution of ˆy—xc
is a

hyper-Dirichlet, with hyperparameters �c
kj . We let mc

k denote
the frequency of missing data for each state xck of ¸c, and let
nc

kj denote the frequency of cases in the sample with Y D j.
It follows that nc

k¢ D P
j nc

kj is the total number of cases fully
observed for each state xck. The approximation is

Y

k

â �c
k¢

â �c
k¢ C nc

k¢ C mc
k

Y
j

â �c
kj C nc

kj C O”c
kjm

c
k

â �c
kj

1 (9)

where O”c
kj is an estimate of ”c

kj D p4Y D j—xck1 yo1R D
11 my—xc

1–r —xd
5, which is the probability of Y D j among non-

respondents in xck, and hence we condition on R D 1. The
intuition behind this approximation is to use an estimate of
the probability distribution of Y among nonrespondents to dis-
tribute the missing data across categories of Y . In this way
we complete the incomplete sample by replacing missing val-
ues with expected values, so that we can apply the results
described in Section 2 to compute the marginal likelihood
using the expected completion of the data. The crucial step
remains estimation of ”c

kj , and we describe this next.
Suppose � rst that the distribution of R is a function of

¸s , and denote p4R D 1—xsk1–r —xs
5 by –s

k. As in Section 4,
we assign a hyperbeta prior distribution to –r —xs

, with hyper-
parameters ‚s

ki. The missing-data mechanism is ignorable for
the saturated model my—xs

, and missing data can be disregarded
to compute the marginal likelihood of my—xs

. Consider now
a model my—xc

specifying the dependence of Y on the subset
¸c . The ignorability of the missing-data mechanism for my—xs

gives a simple way to estimate ”c
kj D p4Y D j—xck1 yo1 R D

11 my—xc
1–r —xs

5. By letting ¸s D ¸c [¸ Nc, it is easy to show that

”c
kj /

X
x Nck

p4Y D j—xsk1 yo1 R D 11 –r —xs
5

� p4R D 1—xsk1 yo1–r —xs
5p4x Nck—xck50

The quantity p4x Nck—xck5 can be estimated from the complete
data xs, conditional on the dependency model mxs

selected
for the variable ¸s . Because Y is independent of R, given all
the observed values and –r—xs

, p4Y D j—xsk1 yo1 R D 11–r —xs
5

is the posterior probability p4Y D j—xsk1 yo1 my—xs
5 under the

saturated model and is independent of –r —xs
. Hence to estimate

p4Y D j—xsk1 yo1my—xs
5, we disregard the missing values and

use the posterior mean of ˆs
kj ,

Ôs
kj D

� s
kj C ns

kj

�s
k¢ C ns

k¢
¢

In particular, Ôs
kj is the generalized maximum likelihood esti-

mate, as shown by Sebastiani and Ramoni (2000). Similarly,

by de� nition, p4R D 1—xsk1 yo1–r —xs
5 D p4R D 1—xsk1–r —xs

5 D
–s

k, and we estimate it by the posterior mean of –s
k,

O–s
k D

‚s
k1 C ms

k

‚s
k1 C ‚s

k2 C ns
k¢ C ms

k

¢

Both Ôs
kj and O–s

k are used to estimate O”c
kj / P

x Nc
Ôs
kj

O–s
k�

p4x Nck—xck5. By plugging O”c
kj into (9), we get an approximation

of the marginal likelihood for my—xc
. The approximate marginal

likelihood of my—xc
depends on the “augmented” sample, in

which missing data are distributed across categories of Y using
the estimates O”c

kj . A byproduct of this method is a way to esti-
mate ˆc

kj once a model my—xc
is selected, using the expected

completion of the data. This estimate,

Ôc
kj D

�c
kj C nc

kj C O”c
kjm

c
k

�c
k¢ C nc

k¢ C mc
k

1

accounts for the missing-data mechanism via O”c
kj . This is in

agreement with the fact that the missing-data mechanism is
not ignorable for inference on my—xc

. In particular, Ôc
kj is the

estimate computed with the bound and collapse method of
Sebastiani and Ramoni (2000) for informative nonresponse.

The exact marginal likelihood of the saturated model is only
a function of the incomplete sample. To make consistent com-
parisons, we compute the marginal likelihood of my—xs

on the
expected completion of the data by using O”s

kj D Ôs
kj to distribute

the missing data across categories of Y . This approximation is

p4yo—xs1ms5 /
Y
k

â � s
k¢

â � s
k¢ C ns

k¢ C ms
k

Y
j

â �s
kj C ns

kj C Ôs
kjm

s
k

â �s
kj

¢

The estimates of ˆs
kj computed on the expected completion

of the data are exactly Ôs
kj , but the posterior precision of ˆs

kj

is larger than the exact one. This can yield overcon� dence,
although the underlying idea of the method that we propose
follows the suggestion of Little and Rubin (1987) to use mul-
tiple imputation even when the missing data are ignorable.

Suppose now that the distribution of the missingness vari-
able R depends on ¸d ¸s . Thus for every model my—xc

with ¸c \ ¸d D ¸d , the missing-data mechanism is ignor-
able, but the mechanism is not ignorable for computation of
the marginal likelihood of any other model my—xc

with ¸c \
¸d 6D ¸d. As before, we compute ”c

kj D p4Y D j—xck1 yo1R D
11 my—xc

1–r —xd
5 as

”c
kj /

X

xdk nxck

p4Y D j—xdk1 yo1R D 11–r —xd
5

� p4R D 1—xdk1 yo1–r —xd
5p4xdk—xck51

where p4Y D j—xdk1 yo1R D 11 –r —xd
5 D p4Y D j—xdk1 yo1my—xd

5

for the ignorability of the missing-data mechanism for
model my—xd

, so that we estimate the probability p4Y D
j—xdk1 yo1my—xd

5 by

Ôd
kj D

�d
kj C nd

kj

�d
k¢ C nd

k¢
¢
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Furthermore, by de� nition, p4R D 1—xdk1 yo1 –r —xd
5 D p4R D

1—xdk1–r —xd
5, and we estimate it by the posterior mean

O–d
k of –d

k . It follows that the estimate of ”c
kj is O”c

kj /P
xd nxc

Ôd
kj

O–d
k p4xdk—xck5. Note that O”c

kj ² Ôc
kj whenever ¸c ¸d,

so we can use O”c
kj to compute the expected completion of the

data for any model my—xc
.

Once a model my—xc
is selected, the complete sample com-

puted by model folding can also be used to carry out pos-
terior inference, by using the counts �c

kj C nc
kj C O”c

kjm
c
k as

updated hyperparameters of the parameter posterior distribu-
tion. This posterior approximate inference was described by
Sebastiani and Ramoni (2000), and experimental evaluations
show that credible intervals computed using this approxi-
mation are extremely accurate compared to those computed
using, for example, Gibbs sampling (Spiegelhalter, Thomas,
and Best 1996).

Although the method is based on a crude approximation,
it appears to perform reasonably well compared to ignorable
imputation without requiring the same computation effort. In
the next section we provide simulation results to support this
claim. We conclude here by noting that the approximation
provided by model folding is conditional on the model mxs

selected for the variables ¸s and on the model mr —xd
selected

for the missing-data mechanism. In simulation studies that we
carried out, the model mxs

chosen for ¸s appeared to have
very little effect. In the next section we investigate the effect of
the model chosen for the missing-data mechanism. To approx-
imate the marginal likelihood of my—xc

, model folding requires
estimating the probability distribution of the nonrespondents
using the estimates of the parameters of my—xd

and of mr —xd
.

Compared to the complete-data case, the complexity of the
model search is increased only with this extra estimation step.

6. REPEATED-SAMPLING PROPERTIES

In this section we evaluate the accuracy of model folding
and ignorable imputation in three controlled experiments. The
� rst experiment shows that model folding and ignorable impu-
tation perform almost identically, while ignoring the missing-
data mechanism can severely bias the modeling process. The
second experiment shows the robustness of both methods
when either the missing-data mechanism is supposed to be
partially ignorable and the deletion process is informative or
the missing-data mechanism is partially ignorable but an inac-
curate model for the missing-data mechanism is selected. The
last experiment gives some insight in one potential problem
of imputation, namely that imputation could bias the model
selection toward the imputation model, and shows that ignor-
able imputation does not appear to suffer this problem.

6.1 Accuracy

Data y1x1, and x2 in Table 3 are a random sample generated
from the model with both X1 and X2 associated with Y and
p4Y D 1—X1 D 11X2 D 15 D 05, p4Y D 1—X1 D 11X2 D 25 D 02,
p4Y D 1—X1 D 21X2 D 15 D 07, and p4Y D 1—X1 D 21X2 D
25 D 03. As shown in Example 1, the model space ­y—xs

consists of my—™, my—x1
, my—x2

, and my—x2 1x3
. Assuming sym-

metric hyper-Dirichlet distributions on each model param-
eter, with � D 8, the marginal likelihood of each model

Table 3. Sample Generated From Model my —x1 , x2
Specifying Dependence of Y on X1,X2

X11X2

Y (1,1) (1,2) (2,1) (2,2)

1 52 17 66 36
2 48 83 34 64

can be computed using (7), and the values in log scale are
logp4y—my—™5 D ƒ27501086, log p4y—x11my—x1

5 D ƒ25504863,
logp4y—x21 my—x2

5 D ƒ27106517, and log p4y—x11 x21my—x11x2
5 D

ƒ25209841. Therefore, my—x1 1x2
is selected, conditional on the

observed data, if all models are a priori equally likely.
The complete sample in Table 3 was then subjected to a

random deletion of Y entries with the following process. We
de� ned a binary variable R with probabilities p4R D 1—X1 D
11X2 D 15 D 02, p4R D 1—X1 D 11X2 D 25 D 03, p4R D 1—X1 D
21 X2 D 15 D 01, and p4R D 1—X1 D 21 X2 D 25 D 06. For each
sample case, we generated a value of R conditional on the
values of X1 and X2, and we removed the entry of Y if
R D 1. Given the dependence of R on both X1 and X2, the
missing-data mechanism is ignorable for my—x11x2

, but it is
not for the other models. We repeated this deletion process
100 times, and in each incomplete sample we computed the
marginal likelihood of my—™, my—x1

, my—x2
, and my—x1 1 x2

using
model folding with �kj D 8=42qc5, ignorable imputation, and
Bayesianly proper imputation with 10 imputed values for
each missing entry, and data deletion, in which missing data
were disregarded. Data deletion would be the correct approach
for an ignorable missing-data mechanism. In all cases, we
assumed that R was a function of both X1 and X2 and chose
‚kj D 0125. Ignorable imputation was implemented by simu-
lating the missing data at once from the predictive distribution
of Y , conditional on the observed data and both X1 and X2.
Values of the marginal likelihood computed with ignorable
and Bayesianly proper imputation are averages of the marginal
likelihood computed from each imputed sample.

Figure 1 reports the marginal likelihood, in log-scale, of
my—™1 my—x1

, my—x2
, and my—x1 1 x2

. Assuming uniform probabili-
ties on the model space, in the 100 incomplete samples model
folding selected the correct model my—x11 x2

in 85 samples and
selected my—x1

in 15 samples. Ignorable imputation selected
my—x1 1 x2

in 87 samples and my—x1
in 13 samples. Thus the error

rates of the two methods are equivalent. Bayesianly proper
imputation selected the correct model in only 26 samples.
With data deletion, my—x1 1 x2

was selected in 58 samples and
my—x1

in 42 samples. The error rate of model folding and
ignorable imputation is within the sampling variability; in 100
complete samples generated by the same model, my—x11 x2

was
selected in 80% of cases.

Figure 1 reveals the reasons for the large error rates
of Bayesianly proper imputation and data deletion. Figures
1(a) and 1(b) show two distinct groups of points, the esti-
mates of log4p4y—my—™55 and log4p4y—x21my—x2

55 in the lower
part of the � gure and the estimates of log4p4y—x11 my—x1

55
and log4p4y—x11 x21my—x11x2

55 in the top. These two groups
maintain the ordering between the posterior probabilities
computed from the complete samples. Bayesianly proper
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Figure 1. Marginal Likelihood (in log-scale) of my —™( 0) , my —x1
(1) , my —x2

( 2) , and my —x1 , x2
(3) , in the 100 Incomplete Samples Generated From

the Data in Table 3. (a) Model folding; (b) Ignorable imputation; (c) Bayesianly proper imputation; (d) data deletion.

imputation introduces an evident bias. The estimates of
log4p4y—x21 my—x2

55 are almost all above the estimates of
log4p4y—my—™55, and the estimates of log4p4y—x11my—x1

55 are
almost all greater than those of log4p4y—x11 x21my—x11 x2

55. If
missing data are ignored, then there is no longer an evident
distinction between the marginal likelihood of the four mod-
els. This bias is clear from the summary statistics reported in
Table 4.

6.2 Robustness

The accuracy of model folding relies on the ability to use
the information about the missing-data mechanism to adjust
the estimates computed from the complete cases. However, it
is reasonable to wonder whether such accuracy can become
a drawback when the missing-data mechanism is supposed to
be partially ignorable but the probability of nonresponse is a
function of Y . To answer this question, we ran another set of
simulations in which the data in Table 3 were deleted with

Table 4. Mean Values of the Log-Marginal Likelihood of my —™, my —x1
, my —x2

, and my —x1 , x2
in the First Experiment

Method my —™ my —x1
my —x2

my —x11 x2

Model folding ƒ27502661 ƒ25502350 ƒ27106484 ƒ25204831
Ignorable imputation ƒ27500549 ƒ25502079 ƒ27103363 ƒ25200717
Bayesianly proper imputation ƒ27704527 ƒ24906824 ƒ27009706 ƒ25109317
Data deletion ƒ19308340 ƒ17803028 ƒ19005554 ƒ17706876
Complete samples ƒ27403278 ƒ25505745 ƒ27104870 ƒ25203128

NOTE: The last row reports average values on 100 simulated complete samples.

a nonignorable missing-data mechanism. We generated 100
incomplete samples by removing the entries of Y with prob-
ability .8, when Y D 1 and those with probability .6 when
Y D 2. The success rate of model folding was 69%, whereas
ignorable imputation and data deletion selected the correct
model in 71% cases. Bayesianly proper imputation had a suc-
cess rate of 44% and selected my—™ in 7 samples, my—x2

in 36
samples, and my—x11 x2

in 13 samples. Both model folding and
ignorable imputation are more accurate than Bayesianly proper
imputation, although the increased error rates suggests that the
inappropriate assumption of ignorability, or partial ignorabil-
ity, can jeopardize the inference accuracy.

We also ran a small simulation to investigate the robustness
of both model folding and ignorable imputation when an inac-
curate model for the missing-data mechanism is selected. The
data in Table 3 were subjected to the same random deletion
of Y entries described in the previous section, to produce 100
incomplete tables. On each incomplete dataset, we ran model
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Table 5. Sample Generated From Model my —x2
Specifying

Dependence of Y on X2

X11X2

Y (1,1) (1,2) (2,1) (2,2)

1 101 105 82 79
2 46 41 27 26
3 16 7 39 22

folding and ignorable imputation assuming the three missing-
data mechanisms mr —x1

, mr —x2
, and mr —x11x2

. When the missing-
data mechanism was modeled by mr —x1

, model folding selected
the correct model my—x11x2

in 86 samples and selected my—x2
in

14 samples. Similarly, ignorable imputation selected my—x11x2
in

88 samples and my—x2
in 12 samples. Model folding gave the

same results when the model for the missing-data mechanism
was mr —x1 1x2

, whereas ignorable imputation selected the wrong
my—x2

model in only 10 samples. With the missing-data mech-
anism modeled by mr —x2

, model folding selected my—x1 1x2
in 81

samples and my—x2
in 19 samples, whereas ignorable imputa-

tion selected my—x11x2
in 88 samples and my—x2

in 12 samples.
This small experiment suggests that both model folding and
ignorable imputation are robust to an inaccurate model of the
missing-data mechanism. However, using the wrong missing-
data mechanism can decrease the accuracy of both methods,
particularly that of model folding.

6.3 Bias

The data in Table 5 were randomly generated from the
model my—x2

specifying the dependence of Y on X2, conditional
on a sample generated from the model of association between
X1 and X2. The data were used to compute the marginal like-
lihood of the four models my—™, my—x1

, my—x2
, and my—x21x3

and
the logarithm of the Bayes factors of my—x2

versus my—™, my—x1
,

and my—x21x3
are 7.11, 11.1, and 12.33. In each case we used

symmetric hyper-Dirichlet prior distributions with � D 1, so
that the marginal likelihood of each model is that in (7).
Thus under uniform prior probabilities on the model space
­y—xc

, my—x2
is selected conditional on the data. The com-

plete data were subjected to a random deletion of Y entries
with the same procedure described in the � rst experiment. In
this case, the distribution of R was randomly chosen to be
p4R D 1—X1 D 11X2 D 15 D 02, p4R D 1—X1 D 11X2 D 25 D 04,
p4R D 1—X1 D 21X2 D 15 D 06, and p4R D 1—X1 D 21 X2 D 25 D
01. The deletion process was repeated 50 times, and in each
incomplete sample we used model folding, ignorable imputa-
tion, Bayesianly proper imputation, and data deletion to com-
pute the Bayes factors of my—x2

versus my—™, my—x1
, and my—x21x3

.
In model folding, incomplete data were distributed using the
estimates computed from the saturated model my—x11x2

, with
‚3

kj D 0125 and � D 1. Similarly, ignorable imputation replaced
missing data by values generated from the predictive distribu-
tion of Y , conditional on my—x11x2

and the observed data yo.
Figure 2 depicts the results. Model folding selected the cor-

rect model my—x2
in 47 samples and selected my—™ is 3 samples.

Ignorable imputation selected my—x2
in 48 samples and my—™

in 2 samples. Bayesianly proper imputation selected my—x2
in

37 samples, my—™ in 12 samples, and my—x1 1x2
in 1 sample.

Ignoring the missing data performed terribly, leading to selec-
tion of my—™ in all 50 incomplete samples. The average val-
ues of the logarithm of the Bayes factor of my—x2

versus my—™,
my—x1

, and my—x2 1x3
were 10.79, 7.73, and 11.19 for model fold-

ing; 10.17, 8.21, and 11.29 for ignorable imputation; 10.19,
2.73, and 10.29 for Bayesianly proper imputation; and ƒ2054,
.53, and 6.66 for data deletion. The results con� rm the accu-
racy of model folding and ignorable imputation (which per-
form almost equally), the potential bias of Bayesianly proper
imputation, and, in particular, of data deletion. At least in this
example, there is no evidence that the model chosen for impu-
tation, (i.e., mr —x11x2

) should bias model selection.

7. APPLICATION

In this section we model the incomplete dataset given in
Table 1. In Example 3 we showed that the missing-data mech-
anism is only partially ignorable, because the distribution of
R is a function of children’s age. Assuming independence of
age and gender on the missing-data mechanism, the associa-
tion between these two variables can be modeled regardless of
the missing-data mechanism. Using (7) with � D 8 and sym-
metric hyper-Dirichlet, the log-Bayes factor of the model of
independence against the model of association is 2.8. Thus
age and gender appear to be independent.

Next, we proceed by modeling the incomplete data. We
adopt symmetric hyper-Dirichlet prior distributions on the
parameters ˆc

kj and –k, with precisions � D 8 and ‚ D 1.
Model folding returns the values log4p4y—my—™55 D ƒ2447,
log4p4y—x21 my—x2

55 D ƒ2448, log4p4y—x11my—x1
55 D ƒ2400,

and log4p4y—x11 x21my—x11x2
55 D ƒ2410. Model my—x1

has
the maximum marginal likelihood, followed by the sat-
urated model. Hence, with uniform probabilities on the
model space, we select my—x1

, so we conclude that being
overweight is related only to the age of the children.
Ignorable imputation produces identical conclusions. Dis-
regarding nonresponse gives log4p4yo—my—™55 D ƒ16950352,
log4p4yo—x21 my—x2

55 D ƒ16970261, log4p4yo—x11my—x1
55 D

ƒ16850701, and log4p4yo—x11 x21 my—x1 1x2
55 D ƒ16900491, so

that my—x1
would be selected, but with a different strength of

evidence. Bayesianly proper imputation, based on 10 repli-
cations, is very unstable and leads to results favoring either
model my—x2

or the saturated model.
Table 7 reports the model folding estimates of the obe-

sity rate among respondents and nonrespondents. The former
are calculated by disregarding missing data, and the latter are
given by O”2

kj . For comparison, the table reports the estimates
derived by Park and Brown (1994) under the assumptions that
the missing-data mechanism is not ignorable and that both
gender and age are signi� cant factors. The results are com-
parable overall. Note that the estimates of the obesity rate
among nonrespondent s is slightly lower than the obesity rate
among respondents. If the assumption that overweight children
tend to hide their status were true, then we would expect the
obesity rate to be higher among nonrespondents than among
respondents. Hence the nonignorability assumption appears to
be doubtful.

We conducted the analysis assuming the missing-data
mechanism learned for the variable R. We also ana-
lyzed the data by assuming that the variable R depends
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Figure 2. Logarithm of Bayes Factors of my —x2
Versus my —™(0) , my —x1

(1) , and my —x2 , x3
( 3) in the 50 Incomplete Samples Generated From Data

in Table 5. (a) Model folding; (b) ignorable imputation; (c) Bayesianly proper imputation; (d) data deletion.

on gender and by assuming that the variable R depends
on both gender and age. In the � rst case, model fold-
ing estimates the marginal likelihood as log4p4y—my—™55 D
ƒ2452, log4p4y—x21 my—x2

55 D ƒ2452, log4p4y—x11my—x1
55 D

ƒ2402, and log4p4y—x11 x21my—x11 x2
55 D ƒ2410. In the sec-

ond case, the estimates are log4p4y—my—™55 D ƒ2422,
log4p4y—x21 my—x2

55 D ƒ2424, log4p4y—x11my—x1
55 D ƒ2401,

and log4p4y—x11 x21 my—x11 x2
55 D ƒ2410. Ignorable imputation

produced comparable results. In both cases, the estimates
rank the four models in the same way, and my—x1

is always
the most likely model. This result again suggests a robust-
ness of both model folding and ignorable imputation to
misspeci� cation of the missing-data mechanism. Because
model folding uses the mxs

model to estimate the probabil-
ity distribution of the nonrespondents, we also analyzed the
data assuming an association between age and gender. The
estimates of the marginal likelihood are log4p4y—my—™55 D
ƒ2422, log4p4y—x21 my—x2

55 D ƒ2424, log4p4y—x11my—x1
55 D

Table 6. Distribution of Obese Children Among Respondent and Nonrespondent Using Model Folding
Under the Assumption That Only Age Affects the Probability of Being Overweight and the Smoothing

Bayesian Method When Both Age and Gender Affects the Obesity Rate

Model folding Not ignorable

Age Gender Respondent Nonrespondent Respondent Nonrespondent

Young Male 01546 01539 01504 01408
Female 01546 01539 01572 01472

Old Male 02281 02238 02240 02093
Female 02281 02238 02403 02106

ƒ2405, and log4p4y—x11 x21my—x1 1 x2
55 D ƒ2410. Thus again

my—x1
would be selected, but with a weaker evidence than when

compared to my—™ or my—x2
.

8. CONCLUSIONS

In this article we have provided a new approach to Bayesian
selection of decomposable models with incomplete data. We
have shown that when only one variable is partially observed
and the missingness probability is independent of the variables
fully observed in the dataset, the missing-data mechanism is
ignorable for Bayesian model selection and missing data can
be ignored. When the missingness probability is a function
of the variables fully observed, then the missing-data mecha-
nism is only partially ignorable, and we described ignorable
imputation and model folding for proper model selection. Both
methods reconstruct a complete sample that takes into account
the missing-data mechanism, thus following suggestions given
by several authors to consider the variables responsible for
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the missing data in model selection. Empirical evaluations
showed that both methods appear to be very accurate, although
further work is needed to make them the standard approach to
Bayesian modeling of incomplete data.

The results presented herein are restricted to situations
where only one variable is partially observed. The challenge
now is to generalize the results presented here to situations in
which a whole subset of variables ¸m is partially observed. If
we assume that the missingness probabilities can be a func-
tion only of the variables ¸sn¸m, which are fully observed,
then we can apply a procedure generalizing that discussed in
Section 4 to decide whether the missing-data mechanism is
ignorable or partially ignorable. Ignorability again will ensure
that model selection can be carried out without considering the
missing-data mechanism. From a computational standpoint,
this can be done by using the � rst-order approximation of each
model marginal likelihood, which depends on estimates of the
parameters computed with either the EM algorithm (Dempster,
Laird, and Rubin 1977) or Gibbs sampling (Spiegelhalter et al.
1996). An open question is, however, whether model selection
can be still carried out by exploiting the decomposability of
the models. Partial ignorability will pose further problems, and
an interesting hypothesis is to see whether modeling can be
carried out by � nding, for each model of dependency explored,
the minimum model for which the missing-data mechanism
is ignorable and then use a generalization of ignorable impu-
tation to reconstruct a completion of the complete sample to
estimate the marginal likelihood.

[Received February 1999. Revised March 2001.]
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