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SUMMARY

This paper uses a novel Bayesian clustering method to categorize the tem-
poral evolution of the share of population participating in tertiary/higher
education in 14 European nations. The method represents time series as
auto-regressive models and applies an agglomerative clustering procedure
to discover the most probable set of clusters describing the essential dy-
namics of these time series. To increase efficiency, the algorithm uses a
distance-based heuristic search strategy.
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1. INTRODUCTION

The time series in Figure 1 describe the share of population enrolled in higher
education in 14 nations of the European community between 1970 and 1995.
Our task is to group the 14 time series on the basis of their similarity in order
to detect significant differences among European higher education trends. Data
were provided by UNESCO and Eurostat, via the r-cade data bank!, (Unesco,
1997).

The method to solve this problem depends on the meaning attached to the
words similar time sertes. Throughout this paper, we will assume that time
series are the realization of stochastic processes and two or more time series are
similar when they are generated by the same process. Thus, deciding whether
two time series are similar is equivalent to deciding whether they are obser-
vations of the same process. Put in this way, this task can be described as a
clustering problem: given a batch of time series, we wish to cluster them so that
each cluster contains time series generated by the same process. The solution
we propose is an algorithm for Bayesian clustering by dynamics of continuous
time series.

We model the stochastic process generating a time series as an auto-regressive
model of order p, say AR(p), and then we cluster those time series that have a
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Figure 1. Share of population enrolled in higher education, between 1970 and
1996, in 14 European countries.

Years: 1970+

high posterior probability of being generated by the same AR(p) model. The
distinguished feature of our method is to describe a clustering of time series
as a statistical model so that the clustering task can be solved as a Bayesian
model selection problem. Thus, the clustering model we look for is the most
likely partition of the time series, given the data at hand and prior information
about the problem. Hence, in principle, we just need to evaluate the posterior
probability of all possible clustering models of time series and select that one
with maximum posterior probability. However, the number of clustering mod-
els grows exponentially with the number of time series and a heuristic search
is needed to make the method feasible. The solution we have developed is to
use a measure of similarity between AR(p) models to drive the search process
in a subspace of all possible clustering models. An important feature of this
heuristic search is to provide a stopping rule, so that clustering can be done
without assuming a given number of clusters as traditional methods do.

The next section describes the method and the search algorithm. The anal-
ysis of the higher education data set is describe in Section 3 and a discussion is
in Section 4.

2. DESCRIPTION OF THE CLUSTERING ALGORITHM

The clustering method we present here has three components: a model for the
time series, the posterior probability of a clustering model and a heuristic search



strategy. These elements are considered in turns and they are explained with
more details in Sebastiani and Ramoni (2000).

Autoregressive Models Let S = {y_p,y—p+1,..-,¥t;-..Yn} be a time geries
of continuous values. The series follows an AR(p) model if
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where y is the vector (yo,¥1,--.,%n)T; X is the n xp matrix with ¢th row given by
(Yt—15+- Yt—p); B ={B1,...,0p} is a vector of autoregressive coefficients and
€ is a vector of uncorrelated errors which we assume normally distributed, with
E(e;) = 0and V(e;) = 0? = 771, for any . The value pis called the order of the
auto-regression, and specifies the Markov order of the series: namely that y; L
(Y—ps-+sYt—p—-1) | Wt—ps---,¥t—1) where the symbol L denotes independence.
The series follows a stationary process if the roots of the polynomial f(u) =
1- Z;’:l B;ju’ have moduli greater than unity. The model can be extended
to include a non-zero mean p for each y¢, so that 8 = {Bo,51,...,06p}, Bo =
w(l — Z§=1 B;), and the matrix X is augmented of a column of ones.
Conditional on the first p values, the likelihood function is
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We need to compute the posterior distributions of 8 and 7 and the marginal
likelihood f(S|p), given a prior distribution for (8, 7) and the conditional like-
lihood in (1). Given an AR(p) model specification, we assume as prior density
for (8, 7) the improper prior f(3,7) = 72, with 7 > 0. Suppose X is of full
rank, and let
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Then, one can show that the marginal likelihood is
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where ¢ is the dimension of 8. The posterior distribution of 7 and 8 is normal-
gamma, with

N —q—2
Bly, T~ N@B,[r(XTX)™) 7|y ~ Gamma (r;_s,%) (4)
Both distributions are proper as long as X is of full rank, and n > ¢ + 2.
Bayesian estimates of 3 and o? are 8 and rss/(n — q — 2).



Clustering Suppose now we have a batch of time series S = {51, S3, ..., Sm },
which are supposed to be generated by an unknown number of stationary AR(p)
models with a common auto-regressive order p and different auto-regressive
coeflicients. We want to cluster the time series in S according to their dynamics.
The task of the algorithm is two-fold: finding the set of clusters that gives the
best partition of the data and assigning each time series S; to one and only one
cluster. Contrary to common practice, we do not want to specify, a priori, a
preset number of clusters.

Formally, the clustering method regards a partition as an unobserved discrete
variable C' with states C1,...,C.. Each state Cj of the variable C labels, in
the same way, the time series generated by the same AR(p) model with auto-
regression coeflicients 8y, and, hence, it represents a cluster of time series. The
number ¢ of states of the variable C is unknown but it is bounded above by the
total number of time series in the data set S. The clustering algorithm tries
to re-label those time series that are likely to have been generated by the same
AR(p) model and thus merges the initial states Ci,...,Cy, of the variable C
into a subset C4,...,C., with ¢ < m.

The specification of the number ¢ of states of the variable C' and the as-
signment of one of its states to each time series S; define a statistical model
M,. This allows us to regard the clustering task as a Bayesian model selection
problem, in which the model we seek is the most probable way of re-labeling
time series, given the data. If P(M,) is the prior probability of each model M.,
by Bayes’ Theorem its posterior probability is P(M.|S) « P(M.)f(S|M.)
and we select the clustering model with maximum posterior probability. We
show next that, under some assumptions on the sample space, the adoption
of a particular parameterization for the model M, and the specification of an
improper-uniform prior lead to a simple, closed-form expression for the marginal
likelihood f(S| M.).

Conditional on the model M, and, hence, on a specification of the number
of states of the variable C and of the labeling of the original time series, we sup-
pose that the marginal distribution of the variable C' is multinomial, with cell
probabilities 8 = P(C = Cy, | 6). Furthermore, we suppose that, conditional on
C = Cp, the batch of my, time series {Sg;} assigned to cluster Cy are indepen-
dent of the batch of time series {S;;} assigned to any other cluster Cj, and that
the time series generated by the same AR(p) model in cluster Cj are mutually
independent. We denote by 8 the vector of auto-regression coefficients of the
AR(p) model generating the time series in cluster C}, and suppose that each of
these series can be represented as

Yii | B, Th = XijBr + €xj-

The index k indicates cluster membership, and €; is a vector of uncorrelated er-
rors which we assume normally distributed, with E(ex;:) = 0 and V (ex;) = 73,
for any t. The fact that series assigned to the same cluster Cy are characterized
by the same vector of auto-regression coefficients 8, and same variance o} = 7, !



allows us to represent the whole batch of series {Sy;} in cluster Cy as

Yy | Br, T = XiBr + €
where the vector Yz and the matrix X are defined as

Ykl Xkl
Y, = X, =
Ykmk kak

Let 8 denote the set of parameter vectors {8}, where each S is a random
g-vector, and let T denotes the set of parameters 73 for k = 1,...,¢. Then, by
the independence of series assigned to different clusters, the overall likelihood

function is
[+
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where my, is the number of time series that are assigned to cluster Cy. Here,
the overall likelihood is conditional on the set of ¢(p + 2) values upon which the
likelihood function of each series is conditioned.

We now define a prior distribution for  as a Dirichlet D(aq,...,a.) and
assign improper priors f(8,7) = [[, 7, 2 to B and 7. Then, using the result in
(3), and standard results on Dirichlet integration, it is easy to show that the
marginal likelihood f(S|M.) = [ f(S|8,8,7)f(8)f(B,7)d0dBdr is
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where o = )~ a3 is the overall cluster prior precision, ny is the dimension of
the vector yg, and rssp = y¥ (I, — X5(XT Xk) LX)y, is the residual sum of
squares in cluster Cx. We note that the marginal likelihood is well-defined as
long as each matrix Xy, is of full rank.

Once the, a posteriori, most likely partition has been selected, each cluster
C}, is associated with parameters §; modeling the auto-regression equation, and
precision 7. The posterior distribution of By | 75, yr is N(Bk, [7h (XkTXk)]_l),
while the posterior distribution of 73, |y is Gamma (rssi /2, (ng — ¢ — 2)/2), from
which the marginal posterior distribution of the auto-regression coefficient 8y, | yg
is a non-central Student’s ¢, with expectation Bk. Thus, Bk provides a point-
estimate of By, and (ng —g—2)/rssy, is an estimate of the within-cluster precision.
The probability of C = Cj can be estimated as pr = (ag +nz)/(a + >, mz).

In practical applications, we use symmetric prior distributions for the pa-
rameters § with a common prior precision a. The initial m hyper-parameters
ay, are set equal to a/m and, when two time series are assigned to the same
cluster Cf, their hyper-parameters are summed up. Thus, the hyper-parameters
of a cluster corresponding to the merging of my, time series will be mpa/m. In



this way, the specification of the prior hyper-parameters requires only the prior
global precision a, which measures the confidence in the prior model. The cur-
rent implementation of the algorithm assumes that the series follow stationary
autoregressive models of a given order p and then checks that the stationarity
conditions are met at the end of the clustering process. A search algorithm
to identify the best autoregressive order is described in Sebastiani and Ramoni
(2000).

Search In principle, the clustering method described in the previous section
requires one to compute the posterior probability of each clustering model and
choose that one with maximum posterior probability. Since the number of
possible partitions grows exponentially with the number of series, a heuristic
method is required to make the search feasible.

Our method uses a measure of similarity between AR(p) models in order to
efficiently guide the search process in a subset of all possible clustering mod-
els. Since all AR(p) models have the same order, this similarity measure is an
estimate of the symmetric Kullback-Liebler divergence (Jeffreys, 1946) between
marginal posterior distributions of the auto-regressive coefficients Si | S asso-
ciated with the clusters. The estimate is given by computing the symmetric
Kullback-Liebler divergence for every pair of parameters 8, §;, assuming nor-
mal distribution conditional on the within-cluster precisions 7, and 7;. The
precisions are then replaced by their posterior estimates.

Initially, the algorithm transforms the time series in S in a set of m AR(p)
models, using the procedure described in the previous sections, and computes
the set of m(m — 1)/2 pairwise distances between posterior distributions of the
parameters. Then, the algorithm sorts the generated distances, labels in the
same way the two closest AR(p) models and evaluates whether the resulting
model M., in which the two closest AR(p) models are assigned to the same
cluster, is more probable than the model M, in which they are distinct. If the
probability P(M, | S) is larger than P(M,| S), the algorithm updates the set of
series by replacing the two series with the cluster resulting from their merging.
Consequently, the algorithm updates the set of ordered distances by removing all
the ordered pairs involving the merged time series, and by adding the distances
between the new parameter of the new AR(p) model and the remaining models
in the set and the procedure is iterated on the new set. If the probability
P(M,.|S) is not larger than P(M;|S), the algorithm tries to merge the second
best, the third best, and so on, until the set of pairs is empty and, in this case,
returns the most probable partition found so far. The rationale behind this
heuristic is that merging closest AR(p) models first should speed up the search
for clustering models with large posterior probability and empirical evaluations
of the methods on simulated data appear to support this intuition.



Figure 2. Clusters found by the algorithm for the time series in Figure 1.

& = &

— PT —— BE || —— NL

LU FR UK
o ] ]
= B S| T — sw
Fl
S E S
© © A ©o -
< < s </’//7/_/>777 >>>> T~
o~ o A o~
0 10 20 0 10 20 0 10 20
c1 c2 c3
3. ANALYSIS

We apply the clustering algorithm described in the previous section to the analy-
sis of the data set reporting the temporal evolution of the share of the population
engaged in tertiary/higher education in 14 European countries. The fourteen
time series depicted in Figure 1. Since the average length of a university degree
across Furopean nations is three-four years, we applied the clustering algo-
rithm under the assumption that all time series were generated by stationary
AR(3) models with a non-zero mean. We assumed a = 14, the improper prior
f(Bk, ) = 772, and uniform prior on all clustering models. Stationarity of the
autoregressive models was checked at the end of the clustering process.

Figure 2 shows the three clusters of time series found by the algorithm.
Cluster C; groups the trends of Portugal and Luxembourg. Estimates of the
auto-regression coefficients are Bo = 0.657, Bl =~ 1.133, Bg = 0.044 and 5'3 &
—0.254, thus the model is stationary — roots of the polynomial f(u) are -2.38,
1.2840.11i — with a mean f = 8.532. Cluster Cs groups the trends of Austria,
Denmark, Greece, Spain and Ireland, and the estimates of the auto-regression
coefficients are [30 = 0.074, Bl = 2.085, Bg ~ —1.233 and (3 ~ 0.138, with a
mean i = 7.4. The AR(p) is stationary, with roots of the polynomial f(u) equal
to 6.09 and 1.02 £ 0.1i. Cluster C3 groups the time series of Belgium, France,
Italy, The Netherlands, Finland, United Kingdom and Sweden. Estimates of
the auto-regression coefficients are Bo = 0.015, Bl ~ 2.593, B ~ —2.283 and
Bg = 0.688, thus defining a stationary autoregression equation with roots of the
polynomial f(u) equal to 1.023 and 1.14 + 0.32i, and a mean i = 7.5. These
results do not seem to be susrprising. For example the third cluster groups
the European nations which have been consistently stronger from an economic
point of view in the past thirty years.

The fact that the time series of The Netherlands is assigned to the third



Figure 3. Observed (continuous line) and fitted (dash line) time series in the
clusters in Figure 2.
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cluster is slightly disappointing: the dynamic of this series is similar to that of
the other series in the cluster, but this series has a different mean. To evaluate
the influence of this time series on the results, we run the clustering algorithm
excluding the time series of The Netherlands. The algorithm found the same
three clusters, thus showing that this series is not influential.

During the analysis we assumed the time series were generated by AR(3)
models. Plots of the observed and fitted values within clusters provides an
overall agssessment of the robustness of the result with respect to this assumption.
Figure 3 plots the time series of observed values in the three clusters and values
fitted using the AR(3) models associated with each cluster. The close match
supports the assumption that the AR(3) models are a good approximation of
the processes generating the original fourteen series.

Finally, it is interesting to point out that the three clusters of time series
were found by the search algorithm in just eighteen steps. This number is
much smaller than the total number 2!4 of clusters to be considered without
the heuristic search. Figure 4 shows the increase of the log-marginal likelihood
at each step of the agglomerative search procedure. In the first seven steps there
is a linear increase of the marginal likelihood. Thus, merging the time series
which belong to the clusters with nearest autoregressive coefficients increases
the marginal likelihood. In the next eight steps merging the closest clusters
does not always increase the marginal likelihood, so that the merging of the
second nearest clusters is evaluated and accepted. This is so until step 15, when
the algorithm has merged the fourteen time series into three clusters. At this
point, the three possible merging of two clusters at a time are evaluated and,
since they all result in a decrease of the marginal likelihood, the algorithm stops
and returns the three clusters so found.



Figure 4. Change of the marginal likelihood, in logarithmic scale, at each step
of the agglomerative search procedure.
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4. DISCUSSION AND RELATED WORK

Auto-regressive models have received great attention and a systematic exposi-
tion is in Box and Jenkins (1976). The Bayesian analysis of AR(p) models is
described in West and Harrison (1997). Bayesian model-based clustering was
originally proposed by Banfield and Raftery (1993) to cluster static data. Ra-
moni et al. (2000, b) proposed a Bayesian clustering by dynamics algorithm,
called BCD, to cluster discrete time series. BCD clusters time series modeled
as Markov chains and, contrary to popular methods, finds also the number of
clusters. Notwithstanding the, somewhat restrictive, Markov chain assumption,
BCD has been applied successfully to cluster robot experiences based on sensory
inputs (Sebastiani et al., 1999), simulated war games (Ramoni et al., 2000, b),
as well as the behavior of stocks in market and automated learning and gen-
eration of Bach’s counterpoint. The algorithm was extended by Ramoni et al.
(2000, a) to cluster multivariate time series.

Contrary to BCD, the algorithm presented in this paper clusters continuous
time series. The different type of data requires different modeling assumptions
thus producing an algorithm which is similar to BCD, in being Bayesian and
model-based, but its methodology is novel. The heuristic search described in this
paper is similar to that implemented in BCD although, here, the search is driven
by a distance between posterior distributions of parameters characterizing the
AR(p) models of different clusters, while in BCD the search uses the distance



between predictive distributions of estimated Markov chains.

The model selection strategy of our algorithm seeks the clustering model
with maximum posterior probability. Other choices here would be possible such
as, for example, selecting the median posterior probability model (Barbieri and
Berger, 2000). An open question is to compare these different model choices and
to see whether a similar heuristic search can be developed when the algorithm
seeks for the median posterior probability model.

At first glance, modeling time series as auto-regression models of the same
order may appear to be a severe restriction. We have investigated the limitation
of this assumption in simulated data (Sebastiani and Ramoni, 2000) and the
emerging result is that the results of our clustering algorithm are robust to
mispecification of the autoregressive order, as long as the specified order is
higher than the order of the generating processes.
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