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Abstract

This paper presents a Bayesian algorithm to
cluster continuous time series. We assume
that the series are generated by stationary
processes and can be modeled as autoregres-
sive equations. The algorithm applies an ag-
glomerative clustering procedure to discover
the most probable set of clusters describ-
ing the essential dynamics of these time se-
ries. This search across the exponential space
of possible clusters is made feasible by a
distance-based heuristic strategy. The algo-
rithm is tested on empirical and real data.

1. Introduction

The time series in Figure 1 describe the annual yield
of grain produced between 1852 and 1925 in 17 plots
of the Broadbalk field at the Rothamstead experimen-
tal station. The left picture depicts the grain yield
evolution in the first nine plots, while the right pic-
ture depicts the annual yield grain in the last eight
plots. The field was divided in 17 plots — the vertical
strips in Figure 2 — and each plot was treated with
a particular fertilizer. The main object of this experi-
ment was to determine whether grain could be grown
continuously by means of artificials alone or with no
manure, and also to compare the results obtained by
chemicals on the one hand and by farmyard manure
on the other. We want to analyze these data in an
unsupervised way, by grouping the 17 time series on
the basis of their similarity to identify the treatments
having the same effect. This is a classical problem in
the analysis of time series and the solution depends
on the meaning of similar time series. A time se-
ries is the realization of stochastic processes and we
define two or more time series similar when they are
generated by the same process. Therefore, deciding
whether two time series are similar is equivalent to
deciding whether they are observations of the same

Vearly grain yield between 1852-1925 in pots 12-19

Figure 1. Annual yield of grain produced in plots 2B, 3,
5-11 (left) and plots 12-19 (right) between 1852 and 1925
in the Broadbalk Experiment at the Rothamsted experi-
mental station.

process. This recognition task can be described as a
clustering problem: given a batch of time series, we
cluster them so that each cluster contains series gen-
erated by the same process. Current approaches treat
time series of continuous values as vectors, and they
group the series using one of the traditional clustering
methods (Kazikawa et al., 1998). These approaches
are distance-based, they require the specification of
a preset number of clusters or a threshold, and they
overlook the correlation between observations.

The solution we propose is an algorithm for Bayesian
clustering of continuous time series. Given a batch of
stationary time series, we model the process generating
each of them as an autoregressive model of order p, say
AR(p). An AR(p) models the autoregressive structure
of a stationary time series as a Markov process of order
p (Box & Jenkins, 1976). Then, we cluster those time
series with a high posterior probability of being gen-
erated by the same AR(p) model. The distinguished
feature of our method is to describe clustering as a
statistical model so that the clustering task is solved



Figure 2. A sketch of the Broadbalk field at the Rotham-
sted experimental station. The vertical strips represent
the 17 plots, labeled 2B, 3, 5-19, from right to left.
http://wuw.res.bbsrc.ac.uk/era/broadbalk_1.html.

as a Bayesian model selection problem: the cluster-
ing model we look for is the most likely partition of
the time series, given the data at hand. In principle,
we just need to evaluate the posterior probability of
all possible clustering models and select that one with
maximum posterior probability. However, the num-
ber of clustering models grows exponentially with the
number of time series and a heuristic search is needed
to make the method feasible. The solution we devel-
oped uses a measure of similarity to drive the search
process in a subspace of all possible clusters. An im-
portant feature of this heuristic search is to provide a
stopping rule, so that clustering can be done without
assuming a preset number of clusters.

2. Autoregressive Models

Let S = {y—p,Y—p+1,---:Yt,-.-Yn} be a stationary
time series of continuous values. The series follows an
AR(p) model, with mean 0, if the value of the time se-
ries at time t is a linear function of the values observed
in the previous p steps. More formally:

v B=> Biwj+e (1)

=1

where 31,..., 8, are autoregressive coefficients, and ¢
is the error, that we assume normally distributed, with
expected value E(e;) = 0, and variance V(e;) = 02 =

771, for any t. The value p is the order of the au-
toregression, and specifies that y; is independent of

(y—pa . 7yt—P—1)7 given (yt—pa . ;?Jt—l)-

The time series is stationary if it is invariant by tem-
poral translation: if we observe the series in a differ-
ent time interval, we expect to see the same evolution
about the process mean, except for sampling variabil-
ity. There are several methods to check whether a
series is stationary. Particularly, the roots of the poly-
nomial f(u) = 1-377_, Bju/ must have moduli greater
than unity. If some of the roots have moduli smaller
than unity, the process is non-stationary but typically
some transformation of the variables is sufficient to
transform a non-stationary process into a stationary
one (Box & Jenkins, 1976).

The model described by Equation (1) represents the
deviation of the process from its mean. To generalize
the model to include a non-zero mean p for each yy,
we can add an intercept term Sy, so that y; | 8 = 8o +
> Biyi—j + e and Bo/(1 = 30, B;) is the mean
of the process. We will find convenient to write the
model in matrix form

ylB=XB+e

where y is the vector (yi,...,yn)7; X is the n x ¢

matrix with ¢th row given by (y¢—1,...,y:—p) for a
model with no intercept and (1,y;—1,...,¥:—p) for a
model with intercept term; 5 = {fo,S1,...,0p} is a

vector of autoregressive coefficients and € is a vector
of uncorrelated errors. The value ¢ is either p or p+1
according to whether or not there is an intercept term.

Given a series S, two tasks need to be performed:
estimating the parameters f and 7 from data, and
computing the autoregressive order best fitting the
data. Both tasks can be done by using Bayesian meth-
ods. Suppose first we know p. The Bayesian esti-
mation of the parameters § and 7 consists of updat-
ing their prior distribution into the posterior distribu-
tion by Bayes’ Theorem. So, with f(3,7) denoting
the prior density, we need to compute the posterior
density which is given by the formula: f(5,7|S,p) =
F(S18,7,0)£(B,7)/£(SIp). The quantity f(S|3,7,p) is
the likelihood function, and f(S|p) is the marginal like-
lihood: the former is the joint density of the data, con-
ditional on the parameters 3,7 and p, the latter is the
averaged likelihood function in which the parameters
B and 7 are integrated out. With the recommended
Jeffrey’s prior f(3,7) = 772, 7 > 0, (O’Hagan, 1994),
we can solve this integration analytically.

Conditional on the first p values of the series, the like-



lihood function is

(;:)n exp <_T(y —Xﬂ);(y —Xﬂ)> _

Suppose X is of full rank, and define [5’ =
(XTX)"1XTy and rss= yT (I, — X(XTX)~1XT)y.
Then, it is well known (Box & Jenkins, 1976) that
the marginal likelihood is

fS18,7) =

(@) (g4+2—n)/2 r (n—q—2)

f(S1p) = (2;)(n—q)/2 det(XT)?)l/z' (2)

The posterior distribution of 7 and [ is normal-
gamma, with 8|y, 7 ~ N3, [r(XTX)]™1), and 7|y ~
Gamma (rss/2, (n — g — 2)/2). Bayesian estimates of
3 and o2 are § and rss/(n — q — 2).

Essential to the above solution is the knowledge of the
autoregressive order p. Given a series S, we can find
the autoregressive order best fitting the data by using a
Bayesian model selection approach. Suppose we want
to choose the best order p from the set 1,2,...,k and,
a priori, each order has probability P(j). Then, the
Bayesian solution selects the order p with maximum
posterior probability. Routine calculations show that,
when the prior probabilities are uniform, the posterior
probability P(j]S) is proportional to the marginal like-
lihood f(S|p), so that the search for the autoregressive
order best fitting the data is equivalent to searching for
the order with maximum marginal likelihood.

3. Clustering

Suppose now we have a batch of time series S =
{51, 52,...,Sm}, generated by an unknown number of
stationary AR(p) models with a common autoregres-
sive order p and different autoregressive coefficients.
We want to cluster the time series in S according to
their dynamics. The task of the algorithm is two-fold:
finding the set of clusters that gives the best partition
of the data and assigning each time series S; to one
and only one cluster. Contrary to common practice,
we do not want to specify, a priori, a preset number
of clusters. Formally, the clustering method regards
a partition as an unobserved discrete variable C with
states C1,...,C.. Each state C of the variable C' la-
bels, in the same way, the time series generated by the
same AR(p) model with coefficients 8y and, hence, it
represents a cluster of time series. The number ¢ is
unknown but it is bounded above by the total number
of time series in the data set S. The clustering algo-
rithm tries to re-label those time series that are likely
to have been generated by the same AR(p) model and
merges the initial states C1, ..., C,, of the variable C
into a subset C1,...,C., with ¢ < m.

The specification of the number ¢ of states of the vari-
able C and the assignment of one of its states to each
time series S; define a statistical model M.. This al-
lows us to regard the clustering task as a Bayesian
model selection problem, in which the model we seek is
the most probable way of clustering time series, given
the data. If P(M,.) is the prior probability of each
model M., by Bayes’ Theorem its posterior probabil-
ity is P(M.|S) o< P(M.)f(S|M,.) and we select the
clustering model with maximum posterior probability.
We show next that, under some assumptions on the
sample space, the adoption of a particular parameter-
ization for the model M, and the specification of a
uniform prior lead to a simple, closed-form expression
for the marginal likelihood f(S| M.).

Conditional on the model M. and, hence, on a specifi-
cation of the number of states of the variable C' and of
the labeling of the original time series, we suppose that
the marginal distribution of C' is multinomial, with
cell probabilities 8, = P(C = C}, |0). Furthermore,
we suppose that, conditional on C = (Y}, the batch of
my, time series {Sk;} in cluster C is independent of
the batch of time series {S;;} in any other cluster Cj,
and that the time series generated by the same AR(p)
model in each C} are mutually independent. We de-
note by [ the vector of autoregressive coefficients of
the AR(p) model in cluster C}, and suppose that each
of these series can be represented as

Ykj | Br, T = XijBr + €xj-

The index k indicates cluster membership and eg; is
a vector of uncorrelated errors, which we assume nor-
mally distributed, with E(exj:) = 0 and V(egjr) =
T, ! for any t. The fact that series assigned to the
same cluster C} are characterized by the same vector
of autoregression coefficients f; and by the same vari-
ance o2 = 7, allows us to represent the whole batch
of series {Si;} in cluster Cy as yi | Bk, 7o = XiBk + €k,
where the vector y; and the matrix X are defined as

Ykl X1
) X, = )

Ykmy, Xkemy,

Let B denote the set of parameter vectors {8},
and let 7 denotes the set of parameters 7, for k =
1,...,c. Then, by the independence of series assigned
to different clusters, the overall likelihood function is

F(S10,8,7) = TTiey 07 f(yk | Xk, Br, ), where my,
is the number of series in C},.

We now define a prior distribution for 8 as a Dirichlet
D(ay,...,a.) (O'Hagan, 1994), and f(3,7) = [[, 71 °
to f and 7. Then, using the result in (2), and



standard results on Dirichlet integration, it is easy
to show that the marginal likelihood f(S|M.) =

[ £(S16,8,7)(6)f(8,7)dodSdr is
()

fSIMe) = —=——
M(a+ ) myg)
Xk: k

c (g+2—nx)/2 ng—g—2
I(ay +my) (%) I (m5=)
<11
k=1

Dlag)  (2m)0m—9)/2 det(X}F Xy)1/2

3)

where o = ), a; is the overall cluster prior pre-
cision, my is the dimension of the vector yg, and
rssy = y,{([n—Xk(X,z’Xk)_lX,?)yk is the residual sum
of squares in cluster Cj.

Once the, a posteriori, most likely partition has
been selected, each cluster C} is associated with
parameters () modeling the autoregression equa-
tion, and precision 74. The posterior distribution
of Br|7h,yr is N(Br, (XTI Xk)]™"), where f =
(XFXy) " X yy, while the posterior distribution of
71 | yx is Gamma (rssy. /2, (n, — q — 2)/2). So, By is the
estimate of fj, and (ny — g — 2)/rssy is the estimate
of the within-cluster precision 73. The estimate of the
probability of C' = Cy, is pr = (o + 1) /(e + Y ).

In practical applications, we use symmetric prior dis-
tributions for the parameters 8 with a common prior
precision a. The initial m hyper-parameters aj are
set equal to a/m and, when two time series are as-
signed to the same cluster C}, their hyper-parameters
are summed up. Thus, the hyper-parameters of a clus-
ter corresponding to the merging of my time series will
be mya/m. In this way, the specification of the prior
hyper-parameters requires only the prior global pre-
cision «, which measures the confidence in the prior
model. The current implementation of the algorithm
assumes that the series follow stationary autoregres-
sive models of a given order p and checks stationarity
at the end of the clustering process.

4. Search

In principle, the clustering method described in the
previous section requires only the computation of the
posterior probability of each clustering model and the
choice of the model with maximum posterior probabil-
ity. However, since the number of possible partitions
grows exponentially with the number of series, we need
a heuristic method to make the search feasible.

Our method uses a measure of similarity between
AR(p) models to efficiently guide the search process
in a subset of all possible clustering models. Since all
AR(p) models have the same order, this similarity mea-

sure is an estimate of the symmetric Kullback-Liebler
divergence (Jeffreys, 1946) between marginal posterior
distributions of the autoregressive coefficients Sy | S.
This similarity is estimated by computing the sym-
metric Kullback-Liebler divergence for every pair of
parameters B, 3;, assuming normal distribution con-
ditional on the cluster precisions 7 and 7;. These
precisions are replaced by their posterior estimates.

The algorithm starts by transforming the time series
in S into a set of m AR(p) models, using the procedure
described in the previous sections, and computes the
set of m(m — 1)/2 pairwise distances between poste-
rior distributions of the parameters. Then, the algo-
rithm merges the two closest AR(p) models and evalu-
ates whether the resulting model M., in which the two
closest AR(p) models are assigned to the same cluster,
is more probable than the model M, in which they are
distinct. If the probability P(M,|S) is larger than
P(M;|S), the algorithm updates the set of series by
replacing the two series with the cluster resulting from
their merging. Consequently, the algorithm updates
the ordered set of distances, and the procedure is it-
erated on the new set. If the probability P(M,|S) is
not larger than P(Mj, | S), the algorithm tries to merge
the second best, the third best, and so on, until the set
of pairs is empty and, in this case, returns the most
probable partition found so far. The rationale behind
this heuristic is that merging closest AR(p) models first
should speed up the search for the clustering model
with maximum posterior probability.

5. Evaluation

To assess the accuracy of the algorithm, we carried
out four experiments. In each experiment we gener-
ated three batches of 30 time series each, each batch
having series of length n, for n = 25,50,100. In the
first experiment, we generated the time series from
three AR(3) models with different autoregressive coef-
ficients and different variances. In the second exper-
iment, the generating models were three AR(3) mod-
els with different autoregressive coefficients but simi-
lar variances. To further increase the similarity of the
generated series, in the third experiment the generat-
ing models were three AR(3) models with autoregres-
sive coefficients constrained to give the same process
mean. Finally, to test the robustness of the algorithm
to the common autoregressive order assumption, in the
fourth experiment we generated the time series from
AR(1), AR(2), and AR(3) models. We then run the
clustering algorithm on each batch of time series using
five different autoregressive orders: p = 1,...,5, and
three values of the global cluster precision: a = 1,2, 3.



EXPERIMENT 1

EXPERIMENT 2

EXPERIMENT 3 EXPERIMENT 4

25 50 100 25 50 100 25 50 100 25 50 100
AR(1) 3 5 4 4 5 5 4 4 3 3 3 3
AR2) 3 3 3 2 3 3 3 3 3 3 3 3
AR(3) 3 3 3 2 3 3 3 3 3 3 3 3
AR(4) 2 3 3 2 3 3 3 3 3 3 3 3
ARB) 2 3 3 1 3 3 3 3 3 3 3 3
AR(1) 03 .00 .00 .17 .07 .03 .17 .10 .00 .00 .00 .00
AR(2) 03 .00 .00 .43 .00 .03 .20 .10 .00 .00 .00 .00
AR(3) 03 00 .00 .37 03 .00 .13 .03 .00 .00 .00 .00
AR(4) 33 00 00 .37 00 .00 .10 .03 .00 .00 .00 .00
Ar(5) 33 00 .00 .67 .07 .00 .17 .07 .00 .00 .03 .00

Table 1. Number of clusters found by the algorithm in the 12 experiments (top) and average impurity rate (bottom), for

five different autoregressive orders.

We evaluate the algorithm performance using the num-
ber of clusters found and an average cluster impurity
rate, which is defined as follows. In each experimental
condition, the series are generated by three different
models, so that a perfect clustering would partition
the 30 series in each experimental condition into three
groups G, G4 and (3, each group consisting of series
generated by the same model. Therefore, for each clus-
ter C, found by the algorithm we count the number of
series belonging to each of the three groups, say myg1,
My2, and mys, identify the maximum my; and label
the cluster as group j. The impurity rate of cluster Cj,
is defined as the number 1 —my;/ >, my;, and varies
between 0 and 2/3. The value 0 is taken when the clus-
ter consists only of series generated by the same group.
The maximum is taken when myg; = mgs = mg3, SO
that the cluster mixes series belonging to the three
groups in equal proportion, and it is impossible to la-
bel the cluster. In the special case in which two of the
three groups are equally represented in the cluster, we
choose one of the two at random. The average cluster
impurity rate is then a weighted average of the cluster
impurity rates and turns out to be the ratio between
the total number of series assigned to the wrong group,
and the total number of series in the batch.

The algorithm reproduces essentially the same results
for the different choices of a. Summaries of the exper-
imental results are in Table 1, for a = 1. In the first
experiment, in which 30 series were generated from
three AR(3) models, the accuracy of the algorithm to
both identify the correct number of clusters and assign
the series correctly to each cluster is very good. When
the autoregressive order is larger than 1 and the series
are at least 50 step long, the algorithm always parti-

tions the series into three clusters, with zero impurity
rate, so that each of the three clusters merges series
generated from the same model. When the autore-
gressive order is 1 and the series are 50 step long, the
algorithm returns five clusters with zero impurity rate:
the ten series S; — S1o generated by the AR(3); model
are partitioned in two clusters C1 = {S1—S6s, So—S10}
and Cy = {S7 — Ss}; similarly, the ten series Si; — Sao
generated by the AR(3)2 model are partitioned in two
clusters 03 = {511 — 513,515 — 517,519 — 520} and
Cy = {S1a4 — Si1s}; the last cluster merges all series
Sa1 — S3o generated by the AR(3)3 model. When the
series are 100 step long and an order p =1 is used, the
algorithm finds four clusters, again with zero impu-
rity rate. Thus, although the algorithm fails to return
the correct partition, it does not mix series generated
by different models. Only when the series are short,
the algorithm is unable to partition the series correctly
and two groups of series are merged in the same clus-
ter when the autoregressive order is p = 4 or 5 so that
the impurity rate in 1/3.

In the second experiment, in which the series were
generated from autoregressive models with different
coefficients but same variance, the task of the algo-
rithm should be more difficult. When the series are
25 step long, the algorithm is unable to reconstruct
the correct partition of time series and merges the se-
ries into four clusters when p = 1, and two or one
clusters when p > 1. The impurity rate ranges be-
tween .67, when all series are merged into one cluster,
and .17, when the series are merged into four clus-
ters and five series are assigned to the wrong clus-
ter. The algorithm partitions correctly the series when
they are sufficiently long and the autoregressive or-



der is at least 2. The impurity rate is now slightly
larger than in the first experiment, with 1 or 2 series
allocated to the wrong cluster. However, the algo-
rithm does a reasonably good job in partitioning the
time series and the overall accuracy increases with the
length of the series. For example, when p = 3 and the
series are 25 step long the algorithm finds two clus-
ters: 01725 = {51 — S10,512, 521 — S23, 525 — 530} and
02725 = {511,513 — 520,524}. Thus, 01725 merges all
series generated by the AR(3); with one generated by
the AR(3), and 9 generate by the AR(3)s. When the
series are 50 time step long, the model consists of three
clusters 01750 = {Sl — Sg}, 02750 = {511 — Sz()} and
03750 = {Slo, 521 —530}. Thus, the cluster 01725 looses
the series Si2, now assigned to C3 59, and is split in
two, C1,50 and Cs509. Particularly, Cs 50 absorbs the
series Su4, previously assigned to Cy 5. When the se-
ries are 100 step long, the algorithm partitions the
series in the correct way.

In the third experiment, the generating models have
autoregressive coefficients constrained to reproduce
the same process means. The algorithm identifies al-
ways 3 clusters, for all autoregressive orders greater
than 1. The impurity rate decreases with the length
of the series: when the series are 25 step long, at most
6 series are assigned to the wrong cluster, with an im-
purity rate of 0.20; when the series are 50 step long,
at most 3 series are assigned to the wrong cluster, and
the impurity rate is 0.1. The partition is perfect when
the series are 100 step long. In the last experiment,
the series were generated from three models with dif-
ferent autoregressive order. The algorithm partitions
the series correctly, for every autoregressive order used,
except for one case in which one series is assigned to
the wrong cluster.

Facts emerging from this small experimental evalua-
tion are a monotonic discriminatory ability of the algo-
rithm, that is, an accuracy increasing with the length
of the series; a robustness of the algorithm to misspec-
ification of the autoregressive order; and a robustness
of the algorithm when the batch consists of series gen-
erated by models with different autoregressive orders.

6. Application

We apply the clustering algorithm described in the pre-
vious section to the time series of grain yield produced
in the seventeen plots of the Broadbalk experiment.
The plots are labeled 2B, 3, 5-19, and they correspond
to the seventeen vertical strips in Figure 2. Plot 2B is
the first strip on the right side of the Figure, followed
— from right to left — by plots 3, 5 and so on.

0 10 20 3 40 50 60 70 0 10 20 30 4 5 6 70
Observed yield: plots 17, 18 Observed yield: plots 3, 5

0 10 20 30 4 5 6 70
Observed yield: plots 28, 6-16, 19

Figure 3. Clusters found by the algorithm for the time se-
ries in Figure 1.

We first searched, for each time series, the best au-
toregressive order fitting the data. This search was
carried out by using the Bayesian method described in
Section 2. All but two series — those representing the
grain yield in plots 17 and 18 — were best fitted by
autoregressive models of order 3. For the two remain-
ing series, the best order was four. However, since the
majority of the time series was best described by an
AR(3) model, we cluster the 17 time series assuming
p = 3. We also assumed a = 1, f(Bx, ) = 72, and
uniform prior on all clustering models.

Results of the clustering algorithm are displayed in
Figure 3. The algorithm finds three clusters: C; in
the top-left picture, Cy in the top-middle picture, and
C5 in the top-right picture. Cluster C; groups the
series of grain yield collected in plots 17 and 18. Esti-
mates of the autoregressive coefficients are fy ~ 1.13,
f1 = —0.05, B2 = 0.52 and B3 =~ —0.21, with a mean
i = 1.53. Cluster Cy groups the series of grain yield
collected in plots 3 and 5. The estimates of the au-
toregressive coefficients are 30 ~ 0.33, ﬁl ~ 0.36,
B2 =~ 0.10 and f3 =~ 0.16, with a mean g = 0.9. Cluster
Cs5 groups the time series of the yields in the remaining
14 plots. Estimates of the autoregression coefficients
are By =~ 0.62, 5 ~ 0.34, B ~ 0.27 and B3 =~ 0.06,
and mean i = 1.88.

At first glance, the series in each cluster seem to share



0 10 20 3 40 50 60 70 0 10 20 30 4 5 6 70
Fitted yield: plots 17, 18 Fitted yield: plots 3,5

0 10 20 30 4 5 6 70
Fitted yield: plots 28, 6-16, 19

Figure 4. Fitted values for the time series assigned to the
three clusters by the algorithm.

the same dynamics. Further information about the
treatments of the 17 plots and their positions can help
to evaluate the clusters found by the algorithm. First
of all we notice that plots 3 and 5 are adjacent, as
well as the plots 17 and 18. In both cases, the time
series are assigned to the same cluster. Plots 17 and
18 were treated with the same combination of fertil-
izer, superphosphate, sulphate of potash, magnesium,
and nitram in proportions changed seasonally. So, the
fact that the time series of the grain yield produced
by these two plots are assigned to the same cluster is
consistent with the similar treatment received by the
two plots.

Plot 3 is the only one which was not treated with any
chemical fertilizer, while plot 5 was treated with super-
phosphate, sulphate of potash, and magnesium. How-
ever, some authors point out that adjacent plots could
be contaminated (Howard, 1945), so that plot 3 could
actually and non-intentionally have received a combi-
nation of the treatments given to plots 2B — farm-
yard manure — and plot 5. This contamination may
justify the similar dynamics shown by the two series
and their merging in the same cluster. The merging
of the time series for the yields in plots 6-16 and 19
into cluster 3 is consistent with the treatment given
to the plots: all treatments are a mixture of differ-
ent chemicals and nitram is always present, although

120 140

100

123456 7 8 9 1011121314 1516 17 18 10
steps

Figure 5. Change of the marginal likelihood, in logarithmic
scale, at each step of the agglomerative search procedure.

in different proportions. The yield of plot 2B is also
merged in the same cluster, this plot is the only one to
receive an organic treatment, but the yield evolution
is very similar to that of the others assigned to the
same cluster. This result is consistent with the view
that, under Rothamsted conditions, satisfactory yields
of wheat can be obtained by means of chemicals only
and that no outstanding advantage follows the use of
farmyard manure (Howard, 1945).

During the analysis we assumed the time series were
all generated by AR(3) models. Plots of the observed
and fitted values in Figure 4 provide an overall assess-
ment of the robustness of the result with respect to
this assumption. Fitted values reproduce the original
time series very satisfactory. Since the search for the
best autoregressive order showed that the evolutions of
grain yield in plots 17 and 18 were best described by
AR(4), we also run our clustering algorithm assuming
that the series were generated by AR(4). The clusters
found were the same, so that the fact that in the orig-
inal clusters the two series for plots 17 and 18 were
merged would again suggest a robustness of the algo-
rithm to mispecification of the autoregressive order.

Finally, note that the three clusters of time series were
found by the search algorithm in just nineteen steps.
Figure 5 shows the increase of the log-marginal like-
lihood at each step of the agglomerative search pro-
cedure. In the first fourteen steps there is a linear
increase of the marginal likelihood. Thus, merging the
time series which belong to the clusters with nearest
autoregressive coefficients increases the marginal like-
lihood. In the next steps merging the closest clusters
does not always increase the marginal likelihood, so
that the merging of the second nearest clusters is eval-
uated and accepted. This is so until step 17, when
the algorithm has merged the fourteen time series into
three clusters. At this point, the three possible merg-
ing of two clusters at a time are evaluated and, since
they all result in a decrease of the marginal likelihood,



the algorithm stops and returns the three clusters so
found.

7. Discussion and Related Work

Both the evaluation on synthetic data and the pre-
vious application show that our clustering algorithm
does a good job in summarizing a batch of time se-
ries into clusters characterized by similar dynamics.
The summary is achieved by using simple models —
autoregressive equations — which are able to capture
the essential dynamics of the original time series.

An essential feature of our clustering method is that
it is model-based: a clustering is represented as a sta-
tistical model and the search for the best clustering of
time series becomes a model selection problem. Tra-
ditional clustering methods are distance-based so that
the decision as to whether merging two time series into
the same cluster would require to treat a time series as
a vector, and to merge two time series if their distance
exceeds a prespecified threshold. In our algorithm, the
distance between parameter estimates is used only to
drive the search process, while the decision of merg-
ing is based on the posterior probability of the clus-
tering model. In fact, our application shows that the
distance-based clustering would fail to reproduce the
partition found by our algorithm.

Model-based clustering of time series has been pro-
posed by Ridgeway (1997) and Cadez et al. (2000),
and their approach does not use a threshold to decide
when merging, but requires a preset number of clus-
ters. Our approach differs in three main aspects. By
explicitly modeling cluster membership, our algorithm
does not use mixture models and, therefore, does not
need iterative procedures to compute a scoring metric
for a set of clusters. By using an agglomerative clus-
tering procedure and a heuristic search, our algorithm
does not need a preset number of clusters and, further-
more, the scoring metric used by our algorithm is the
marginal likelihood and not the maximized likelihood
function. When applied to cluster discrete Markov
chains (Ramoni et al., 2000a), our clustering procedure
proved to be superior to the mixture-model approach
of Cadez et al. (2000), and we expect this higher ac-
curacy to hold even for continuous time series, as long
as autoregressive models provide a reasonable approx-
imation of the dynamics of the time series.

Current limitations of our new algorithm are the fact
that it is limited to univariate time series, and as-
sumes AR(p) models with a common order p. We
anticipate that the algorithm can be generalized to
multivariate time series by generalizing the approach

in Ramoni et al. (2000b). At first glance, modeling
time series as autoregressive equations may appear to
limit the applicability of our method. Often, how-
ever, non-stationary time series can be transformed
into stationary ones by making some transformation
as, for example, computing the first differences of the
log-transformed series. The empirical evaluations we
carried out suggest a robustness of the algorithm with
respect the the “common p” assumption, at least when
the batch consists of series of similar orders. In practi-
cal applications, analysis of the fitted values or residual
sum of squares provides an overall assessment of the
results and a comparative measure for sets of clusters
found with different autoregressive orders.
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