
This is page 1
Printer: Opaque this

1

Bayesian Clustering of Gene
Expression Dynamics∗

Paola Sebastiani†

Marco Ramoni‡

Isaac Kohane§

Abstract

This chapter presents a Bayesian method for model-based clustering
of gene expression dynamics and a program implementing it. The
method represents gene expression dynamics as autoregressive equa-
tions and uses an agglomerative procedure to search for the most
probable set of clusters given the available data. The main contri-
butions of this approach are the ability to take into account the
dynamic nature of gene expression time series during clustering and
an automated, principled way to decide when two series are different
enough to belong to different clusters. The reliance of this method
on an explicit statistical representation of gene expression dynamics
makes it possible to use standard statistical techniques to assess the
goodness of fit of the resulting model and validate the underlying
assumptions. A set of gene expression time series, collected to study
the response of human fibroblasts to serum, is used to illustrate the
properties of the method and the functionality of the program.
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1.1 Introduction

Microarray technology [23, 16] enables investigators to simultaneously
measure the expression level of the genome of entire organisms under a
particular condition and is reshaping molecular biology. The promise of
this technology is the ability to observe the entire genome in action and, in
so doing, to uncover its underlying expression mechanisms. Cluster analysis
is today one of the favorite unsupervised learning approaches to identify
these mechanisms [7, 26, 6, 3]. Albeit different, these clustering algorithms
share the general strategy of grouping together genes according to the simi-
larity of their behavior across different experimental conditions or different
samples. The intuition behind this approach is that genes acting together
belong to similar, or at least related, functional categories. Cluster analysis
has become widely popular in molecular biology and it has been successfully
applied to the genome-wide discovery and characterization of the regulatory
mechanisms of several biological processes and organisms [29, 13, 10, 17].

Several applications of genome-wide clustering methods focus on the
temporal profiling of gene expression patterns. Temporal profiling offers
the possibility of observing the cellular mechanisms in action and tries to
break down the genome into sets of genes involved in the same, or at least
related, processes. In these experiments, different experimental conditions
correspond to the observation of the genome at a particular time point
during the temporal evolution of some biological process. In these cases,
standard clustering methods cannot be used any longer because they typi-
cally rest on the assumption that the set of observations for each gene are
independent and identically distributed (iid). While this assumption holds
when expression measures are taken from independent biological samples,
such as different subjects or different experimental conditions, it is no longer
valid when the observations are realizations of a time series, where each
observation may depend on prior ones (e.g. [5, 30]). Standard similarity
measures currently used for clustering gene expression data, such as cor-
relation or Euclidean distance, are invariant with respect to the order of
observations: if the temporal order of a pair of series is permuted, their
correlation or Euclidean distance will not change. Biomedical informatics
investigators over the past decade have demonstrated the risks incurred by
disregarding the dependency among observations in the analysis of time
series [25, 11]. Not surprisingly, the functional genomic literature is be-
coming increasingly aware of the specificity of temporal profiles of gene
expression data, as well as of their fundamental importance in unraveling
the functional relationships between genes [22, 12, 1].

A second critical problem of clustering approaches to gene expression
data is the arbitrary nature of the actual partitioning process. The method
described here automatically identifies the number of clusters and parti-
tions the gene expression time series in different groups on the basis of the
principled measure of the posterior probability of the clustering model. In
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this way, it allows the investigator to assess whether the experimental data
convey enough evidence to support the conclusion that the behavior of a
set of genes is significantly different from the behavior of another set of
genes. This feature is particularly important as decades of cognitive sci-
ence research have shown that the human eye tends to overfit observations,
by selectively discount variance and “seeing” patterns in randomness (e.g.
[28, 14, 9]). By contrast, a recognized advantage of a Bayesian approach to
model selection, like the one adopted in this paper, is the ability to auto-
matically constrain model complexity [18, 27] and to provide appropriate
measures of uncertainty.

We describe here a Bayesian model-based clustering method [21] to
profile gene expression time series that explicitly takes into account the
dynamic nature of temporal gene expression data. This method is a special-
ized version of a more general class of methods called Bayesian Clustering
by Dynamics (bcd) [20], which have been applied to a variety of time se-
ries data, ranging from cognitive robotics [19] to official statistics [24]. The
main novelty of bcd is the concept of similarity: two time series are similar
when they are generated by the same stochastic process. With this concept
of similarity, the Bayesian approach to the task of clustering a set of time
series consists of searching the most probable set of processes generating the
observed time series. The method presented here models temporal gene ex-
pression profiles by autoregressive equations [5], and groups together the
profiles with the highest posterior probability of being generated by the
same process. Although this chapter will adopt autoregressive equations to
model the dynamic of gene expression time series, the method presented
here can easily incorporate other representations, such as polynomial trend
models [30]. Another important character of the method here presented is
its reliance on an explicit statistical model of gene expression dynamics.
This reliance makes it possible to use standard statistical techniques to as-
sess the goodness of fit of the resulting model and validate the underlying
assumptions. This method is implemented in a computer program, called
caged (Cluster Analysis of Gene Expression Dynamics). This chapter will
first describe the theoretical framework and the clustering method; it will
then summarize the functionalities of the computer program implement-
ing this method; and it will finally illustrate the use of the program on a
publicly available database of gene expression dynamics.

1.2 Methods

The design of a microarray experiment exploring the temporal behavior of
a set of J genes usually consists of a set of n microarrays, each measuring
the gene expression level xjt of a set of genes at a time point t. We regard
the expression values of a single gene across these measurements as a time
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series Sj = {xj1, . . . xjt, . . . xjn}, and the entire experiment as a set of
J time series S = {S1, S2, ..., SJ}, generated by an unknown number of
stochastic processes. The task here consists of merging these expression
profiles into groups (clusters), so that each cluster groups the time series
generated by the same process. Our method searches for the most probable
set of processes responsible for the observed gene expression time series.
Our clustering method has two components: a stochastic description of a
set of clusters, from which we derive a probabilistic scoring metric to rank
the different ways of combining gene expression profiles, and a heuristic
search procedure to efficiently explore the space of these combinations.

1.2.1 Modeling Time

caged takes a Bayesian approach to clustering and searches for the most
probable set of processes responsible for the observed data. To do so, caged
looks for the set of clusters (i.e. ways of combining genes on the basis of
their expression values along time) with maximum posterior probability.
The critical point, here, is that the expression measurements of each gene
along time are not independent and identically distributed. caged rep-
resents this dependency using autoregressive equations. More formally, a
stationary time series Sj = {xj1, . . . xjt, . . . xjn} of continuous values fol-
lows an autoregressive model of order p, say ar(p), if the value of the series
at time t > p is a linear function of the values observed in the previous p
steps. We can describe this model in matrix form as

xj = Fjβj + εj (1.1)

where xj is the vector (xj(p+1), . . . , xjn)T , Fj is the (n − p) × q regression
matrix whose tth row is (1, xj(t−1), . . . , xj(t−p)), for t > p, and q = p + 1.
The elements of the vector βj = {βj0, βj1, . . . , βjp} are the autoregressive
coefficients and εj = (εj(p+1), . . . , εjn)T is a vector of uncorrelated errors
that we assume normally distributed, with expected value E(εjt) = 0 and
variance V (εjt) = σ2

j , for any t. The value p is the autoregressive order
and specifies that, at each time point t, xjt is independent of the past
history before p, given the previous p steps. The time series is stationary if
it is invariant by temporal translations. Formally, stationarity requires that
the coefficients βjk are such that the roots of the polynomial f(u) = 1 −∑p

k=1 βjkuh have moduli greater than unity. The model in Equation (1.1)
represents the evolution of the process around its mean µj , which is related
to the βj coefficients by the equation µj = βj0/(1−

∑p
k=1 βjk). In particular,

µj is well defined as long as
∑p

k=1 βjk 6= 1. When the autoregressive order
p = 0, the series Sj becomes a sample of independent observations from a
normal distribution with mean µj = βj0 and variance σ2

j .
Given a time series Sj , we wish to estimate the parameters βj and σ2

j

from the data. The Bayesian estimation of βj and σ2
j consists of updating
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their prior distribution into a posterior distribution by Bayes’ Theorem. So,
with f(βj , σ

2
j ) denoting the prior density, we need to compute the posterior

density

f(βj , σ
2
j |xj , p) =

f(xj |βj , σ
2
j , p)f(βj , σ

2
j )

f(xj |p)
·

The likelihood function f(xj |β, τ, p) is

f(xj |βj , σ
2
j ) =

√
σ2n

j

(2π)n
exp

(
− (xj − Fjβj)T (xj − Fjβj)

2σ2
j

)
(1.2)

and it is in fact a function of the first p values of the series, but we omit
the explicit dependence for simplicity of notation. As prior distributions
of βj and σ2

j , we assume the family of improper distributions with density
f(βj , σ

2
j ) ∝ σ2γ

j , for σ2
j > 0 and γ ≥ 0. When γ = 0, this formula represents

the uniform prior, when γ = 1 it is the typical reference prior, and when
γ = 2, it becomes the so-called Jeffreys prior [4]. The quantity f(xj |p) is
the averaged likelihood function in which βj and σ2

j are integrated out.
Suppose Fj is of full rank, and define

β̂j = (FT
j Fj)−1FT

j xj (1.3)

rssj = xT
j (In − Fj(FT

j Fj)−1FT
j )xj . (1.4)

Then, the quantity f(xj |p) is

f(xj | p) =

(rss
2

)(q+γ−n)/2
Γ
(

n−q−γ
2

)
(2π)(n−q)/2 det(FT

j Fj)1/2
(1.5)

where q is the dimension of βj . The posterior distribution of σ2
j and βj is

normal-inverse-gamma, with

βj |xj , σ
2
j ∼ N(β̂j , [τ(FT

j Fj)]−1) (1.6)

1/σ2
j |xj ∼ Gamma

(
rssj

2
,
n− q − γ

2

)
, (1.7)

and we define the density function of a Gamma(a, b) by f(τ) =
abΓ(b)−1τ b−1 exp(−τa). The posterior distributions (1.6) and (1.7) are
proper as long as Fj is of full rank, and n > q + γ.

1.2.2 Probabilistic Scoring Metric

We are actually interested in finding the clustering model with the highest
posterior probability given the observed gene expression time series. Since
all clustering models are compared with respect to the same data, and we
assume uniform prior distributions, the posterior probability of a clustering
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model becomes proportional to its marginal likelihood. We describe a set of
c clusters of gene expression time series as a statistical model Mc, consisting
of c autoregressive models with coefficients βk and variance σ2

k. Each cluster
Ck groups the time series data of Jk genes that are jointly modeled as

xk = Fkβk + εk

where the vector xk and the matrix Fk are defined by stacking the Jk

vectors xkj and regression matrices Fkj , one for each time series, as follows

xk =

 xk1

...
xkJk

 Fk =

 Fk1

...
FkJk

 .

Note that we now label the vectors xj assigned to the same cluster Ck with
the double subscript kj, and k denotes the cluster membership, so that∑

k Jk = J , and J is the total number of genes. The vector εk is the vector
of uncorrelated errors with zero expected value and constant variance σ2

k.
In principle, given a set of possible clustering models, the task is to rank
them according to their posterior probability. The posterior probability of
each clustering model Mc is:

P (Mc|x) ∝ P (Mc)f(x|Mc)

where P (Mc) is the prior probability of Mc, x consists of all the time
series data {xk}, and the quantity f(x|Mc) is the marginal likelihood. The
marginal likelihood f(x|Mc) is the solution of the integral∫

f(x|θ)f(θ|Mc)dθ

where θ is the vector of parameters specifying the clustering model Mc,
f(θ|Mc) is its prior density, and f(x|θ) is the overall likelihood function.
By independence of the series assigned to different clusters, the overall
likelihood function is

f(x | θ) =
c∏

k=1

pmk

k f(xk |Fk, βk, σ2
k)

where pk is the marginal probability that a time series is assigned to
the cluster Ck. We assume independent uniform prior distributions on
the model parameters βk, σ2

k and a symmetric Dirichlet distribution on
the parameters pk, with hyper-parameters αk ∝ pk and overall precision
α =

∑
k αk. By independence of the time series conditional on the cluster

membership, and parameter independence, the marginal likelihood f(x|Mc)
can be computed as
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f(x |Mc) =
Γ(α)

Γ(α + m)

c∏
k=1

Γ(αk + mk)
Γ(αk)

(
rssk

2

)(q+γ−nk)/2

Γ
(

nk−q−γ
2

)
(2π)(nk−q)/2 det(FT

k Fk)1/2

(1.8)
where nk is the dimension of the vector xk, and rssk = xT

k (In −
Fk(FT

k Fk)−1FT
k )xk is the residual sum of squares in cluster Ck. When

all clustering models are a priori equally likely, the posterior probability
P (Mc|x) is proportional to the marginal likelihood f(x|Mc), which becomes
our probabilistic scoring metric.

1.2.3 Heuristic Search

The Bayesian approach to the clustering task is to choose the model Mc
with maximum posterior probability. As the number of clustering models
grows exponentially with the number of time series, we use an agglomera-
tive, finite-horizon search strategy which iteratively merges time series into
clusters. The procedure starts by assuming that each of the J observed time
series is generated by a different process. Thus, the initial model MJ con-
sists of J clusters, one for each time series, with score f(x|MJ). The next
step is the computation of the marginal likelihood of the J(J − 1) models
in which two of the J series are merged into one cluster. The model MJ−1

with maximal marginal likelihood is chosen and, if f(x|MJ) ≥ f(x|MJ−1),
no merging is accepted and the procedure stops. If f(x|MJ) < f(x|MJ−1),
the merging is accepted, a cluster Ck merging the two time series is created,
and the procedure is repeated on the new set of J − 1 clusters, consisting
of the remaining J − 2 time series and the cluster Ck.

Although the agglomerative strategy makes the search process feasible,
the computational effort can still be extremely demanding when the number
J of time series is large. To further reduce this effort, we use a heuristic
strategy based on a measure of similarity between time series. The intuition
behind this strategy is that the merging of two similar time series has better
chances of increasing the marginal likelihood of the model. The heuristic
search starts by computing the J(J − 1) pair-wise similarity measures of
the J time series and selects the model MJ−1 in which the two closest
time series are merged into one cluster. If f(x|MJ−1) > f(x|MJ), the
merging is accepted, the two time series are merged into a single cluster,
an average profile of this cluster is computed by averaging the two observed
time series, and the procedure is repeated on the new set of J−1 time series,
containing the new cluster profile. If this merging is rejected, the procedure
is repeated on pair of time series with decreasing degree of similarity, until
an acceptable merging is found. If no acceptable merging is found, the
procedure stops. Note that the decision of merging two clusters is actually
made on the basis of the posterior probability of the model and that the
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similarity measure is only used to improve efficiency and to limit the risk
of falling into local maxima.

caged includes several similarity measures to assess the similarity of
two time series, both model-free — such as Euclidean distance, correla-
tion and lag-correlation — and model-based — such as the symmetric
Kullback-Leibler distance. This distance is computed for every pair of
parameter vectors βk, βj , using the normal distribution of each βk, con-
ditional on the cluster variance σ2

k. The variance is then replaced by the
posterior estimate. For a clustering model specifying c clusters Ck, with ma-
trices Fk and data xk, the conditional posterior distribution of βk|xk, σ2

k

is N(β̂k, σ2
k[(FT

k Fk)]−1), and the symmetric Kullback-Liebler divergence
between conditional distributions of βk, βj is

dkj =
∫

f(β|xk, Fk, σ2
k) log

f(β|xk, Fk, σ2
k)

f(β|xj , Fj , σ2
j )

dβ

+
∫

f(β|xj , Fj , σ
2
j ) log

f(β|xj , Fj , σ
2
j )

f(β|xk, Fk, σ2
k)

dβ

where β denotes the generic integration variable, and f(β|xk, Fk, σ2
k) is the

density function of a distribution N(β̂k, σ2
k[(FT

k Fk)]−1).
Model-free distances are calculated on the raw data. Since the method

uses these similarity measures as heuristic tools rather than scoring metrics,
we can actually assess the efficiency of each of these measures to drive the
search process toward the model with maximum posterior probability. In
this respect, the Euclidean distance of two time series Si = {xi1, . . . , x1n}
and Sj = {xj1, . . . , xjn}, computed as

De(Si, Sj) =

√√√√ n∑
t=1

(xit − xjt)2,

performs best on the short time series of our data set. This finding is
consistent with the results of [10] claiming a better overall performance of
Euclidean distance in standard hierarchical clustering of gene expression
profiles.

1.2.4 Statistical Diagnostics

Standard statistical diagnostics are used as independent assessment mea-
sures of the cluster model found by the heuristic search. Once the procedure
terminates, the coefficients βk of the ar(p) model associated with each clus-
ter Ck are estimated as β̂k = (FT

k Fk)−1FT
k xk, while σ̂2

k = rssk/(nk−q−δ)
is the estimate of the within-cluster variance σ2

k. The parameter estimates
can be used to compute the fitted values for the series in each clus-
ter as x̂kj = Fkj β̂k, from which we compute the standardized residuals
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rkj = (xkj − x̂kj)/σ̂k. If ar(p) models provide an accurate approxima-
tion of the processes generating the time series, the standardized residuals
should behave like a random sample from a standard normal distribution. A
normal probability plot, or the residuals histogram per cluster, are used to
assess normality. Departures from normality cast doubt on the autoregres-
sive assumption, so that some data transformation, such as a logarithmic
transformation, may be needed. Plots of fitted versus observed values and
of fitted values versus standardized residuals in each cluster provide further
diagnostics. To choose the best autoregressive order, we repeat the cluster-
ing for p = 0, 1, . . . , w, for some preset w — by using the same p for every
clustering model — and compute a goodness-of-fit score defined as

s = c(q+γ)−(1+log(2π))
∑

k

nk +
∑

nk log(nk−q−γ)−
∑

nk log(rssk)

where c is the number of clusters, nk is the size of the vector xk in Ck,
q = p + 1, p is the autoregressive order, and rssk is the residual sum of
squares of cluster Ck. This score is derived by averaging the log-scores cu-
mulated by the series assigned to each clusters, and details are in Appendix.
The resulting score trades off model complexity — measured by the quan-
tity cq +

∑
k nk log(nk − q) — with lack of fit — measured by the quantity∑

nk log(rssk), and it generalizes the well known AIC goodness-of-fit cri-
terion of [2] to a set of autoregressive models. We then choose the clustering
model with the autoregressive order p that maximizes this goodness-of-fit
score.

1.3 Software

The method described in the previous section is implemented in a computer
program called caged (Cluster Analysis of Gene Expression Dynamics).
The program runs under the various version of Microsoft Windows and the
graphic user interface is implemented as a Wizard interface. The Wizard
interface is composed by subsequent screens guide the user through the
steps of analyzing a database of gene expression dynamics. This section
describes the use of the program screen by screen.

1.3.1 Screen 0: Welcome Screen

When the program is started, a Welcome screen appears, containing a
welcome message and a summary of the End-User License. The bottom of
the screen contains six buttons, which will remain present in all subsequent
screens. The buttons are, from left to right, an About button — containing
some basic information about the program — an Help button — evoking
an on-line help file system — a Cancel button — to quit the program at any
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a) Getting Started

b) Analysis

c) Cluster Model

d) Pack and Go!

e) Dendrogram

Figure 1.1. Snapshots of the main screens of CAGED 1.0.

time — a Back button — to move backward in the succession of screens
— a Next button — to move forward — and a Finish button — which
will become active at the end of the analysis process. By hitting the Next
button, the user is taken to the next screen.
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1.3.2 Screen 1: Getting Started

The second screen, shown in Figure 1.1a is divided in three parts. The
first part allows the user to load a database for the analysis. caged ex-
pects files in ASCII Tab delimited format. The file format follows the rules
of most statistical genomics analysis program: gene expression time series
are reported along the rows of the database. The first column contains
a description of the gene, the second column an accession number to a
internet-available database (such as GenBank, Unigene, or an Affymetrix
accession number), and the following columns report the expression values
of such genes across time, that is, each column reports the expression value
of a gene in a particular microarray. The first row reports, except for the
first two columns, a label denoting the experimental conditions and, in this
case, it is expected to report a time stamp. Below the loading dialog, the
user is given the option to convert the absolute expression values of each
gene into ratios between each time point value and the value recorded at
first time point. This option can be particularly useful when the investi-
gator is interested in the relative dynamics of each gene expression time
series rather than the absolute values. For microarray platforms measuring
relative gene expression values, such as cDNA or oligonucleotide microar-
rays, this is usually the preferred option. For platforms measuring absolute
expression values, such as SAGE, the absolute expression values can be by
themselves meaningful and this options is usually left unchosen. The user
can also decide to filter out gene expression time series where a gene does
not show at least one value change higher than a user-defined threshold.
The second section of the screen allows the user to load a previously saved
analysis session. In this case, the button Next will take the user directly
to Screen 3 (Cluster Model). The last section of the screen allows the user
to open a web-site on the current machine to serve the program over the
internet.

1.3.3 Screen 2: Analysis

If the user has chosen to load a database for analysis, the Next button will
display the Analysis screen, shown in Figure 1.1b. This screen allows the
user to choose the statistical hypotheses to run the analysis, the distance
to guide the heuristic search, and some optional data transformations. Sta-
tistical hypotheses are encoded by some model parameters in the Modeling
panel in the top left corner of the screen. Here, the user can set the order p
in equation 1.1, representing the length of the memory of the model. The
user can also set the prior precision α and the parameter γ used to compute
marginal likelihood (Equation 1.5) and the cluster score (Equation 1.8).
These three parameters are usually dealt with using sensitivity analysis:
the user will run various analysis using different settings of the parameters
(typically, 0, 1 and 2 for all three) to check the robustness of the cluster-
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ing model with respect to these assumptions. The last parameter in the
panel sets a threshold on the Bayes factor: the ratio between the marginal
likelihood of two alternative models. Setting this parameter to δ will tell
the program to merge two gene expression time series or two clusters if the
marginal likelihood of the model resulting from such a merging is at least
δ times larger than the marginal likelihood of the model in which the two
gene expression time series or clusters are kept separated This screen also
offers the user the opportunity to choose the distance used by the heuristic
search process and described in the previous section. Since this measure is
meant to simply guide the search process, the best distance will be the one
leading to the clustering model with the largest marginal likelihood. The
program also offers the possibility to impose some optional transforma-
tions over the data, ranging from the common logarithmic transformation
to some standard power transformations.

1.3.4 Screen 3: Cluster Model

When the user hits the Next button from the Analysis screen, the program
will run the clustering process described in the previous section. The results
of this analysis are displayed in the Cluster Model screen, shown in Figure
1.1c. The model is primarily described by a set of plots collecting the gene
time series members of each cluster. The members and the basic statistical
properties of each cluster can be viewed by clicking the button below each
plot. The screen also offers the display of a dendrogram with a binary
tree representing the clustering order of the gene expression time series.
The nodes of the tree in this representation report the Bayes factor of
the merging, i.e. how many times the marginal likelihood of the model is
increased by the merging of the two sub-trees with respect to the model
in which the two sub-trees are kept separated. General properties of the
clustering model are displayed by the Property window, which also contains
a validation program to list which repeated genes fall in the same cluster.
An example of such a tree is given the dendrogram shown in Figure 1.1e.

1.3.5 Screen 4: Pack and Go!

The last screen of the program, shown in Figure 1.1d, allows the user to
save the results of the analysis in two formats. The first option saves the
analysis results in caged format, so that the results will be loadable and
viewable through the program. The second option generates a complete re-
port, including images and statistical diagnostics, in HTML format, which
can be posted on the World Wide Web or loaded in some word processing
program. An optional dialog allows the user to insert a URL template to
link the Accession numbers in the second column of the input data with
the appropriate internet resource database, such as Genbank, Unigene, or
an Affymetrix accession numbers repository.
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1.4 Application

This section illustrates the properties of this method and the use of caged
using a data set of gene expression dynamics. Iyer et al. [13] report the re-
sults of a study of the temporal deployment of the transcriptional program
underlying the response of human fibroblasts to serum. The study uses
two-dye cDNA microarrays to measure the changes of expression levels of
8613 human genes over 24 hours, at not equally spaced time points. The
actual data described in the study comprise a selection of 517 genes whose
expression level changed in response to serum stimulation. At the time of
their original publication, 238 genes were unknown expressed sequence tags
(ESTs). We relabeled the data set using the most recent UniGene database
(http://www.ncbi.nlm.nih.gov/UniGene) and 45 genes were left unknown.
The UniGene classification was used to identify repeated genes in the data
set. We found that 20 genes appear at least twice in the data set and were
not known to be part of the same UniGene cluster at the time of the original
report.

1.4.1 Analysis

The analysis of a database of gene expression dynamics typically involves
more than one run of the program. Statistical diagnostics play the funda-
mental role of assessing the best fitting model and, in general, validating
the soundness of the conclusions. After the database is loaded in Screen 1,
with no filter on the minimum required change, Screen 2 contains all the
parameters to set in order to explore different statistical hypotheses. As
the data in questions are actually ratios of two conditions, we choose to log
transform the data in order to treat symmetrically positive and negative
fold changes.

For this analysis, we choose a uniform prior (γ = 0) and a minimal prior
precision (α = 1), the default values in the Modeling panel in the top left
corner of Screen 2. Also, because the time point were not equally spaced,
we assumed that the spacing of the time points was irrelevant. In other
words, intervals of different lags were taken as equally informative about
the underlying process. We ran the clustering algorithm with four autore-
gressive orders p = 0, 1, 2, 3 and the similarity measures available in the
Distance panel and described in the Method section. Since the role of the
distance is simply to guide the search process, we can assess the best work-
ing distance by checking the Marginal Likelihood of the resulting model
in the Properties window in Screen 3. For all values of p, Euclidean dis-
tance gave the best results, i.e. the model with highest marginal likelihood.
At this point, we must choose the best Model 0rder p, the first parameter
in Modeling panel. The number of clusters found for p = 0, 1, 2, 3 var-
ied between 4 (p = 0, 1) and 3 (p = 2, 3). To choose a clustering model
among these four, we used the goodness-of-fit score called Autoregressive
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Cluster 1 Cluster 2 Cluster 3 Cluster 4

Figure 1.2. Diagnostic plots for the clustering model identified by the method
when the autoregressive order is p = 1. The first row reports histogram of stan-
dardized residuals. The second row reports the scatter plot of fitted values versus
observed values. The third row shows the scatter plot of fitted values versus
standardized residuals. The fourth row displays the four cluster average profiles
(continuous lines) computed as averages of the time observed time series in each
cluster and the averages of the fitted time series in each cluster (dashed lines).
In these plots, the x-axis reports time in hours.

Score in the Properties window of Screen 3. The scores for the four mod-
els were, for increasing p, 10130.78, 13187.15, 11980.38, and 11031.12, and
the model with order p = 1 was therefore selected. This model merges the
517 gene time series into four clusters of 3, 216, 293, and 5 time series,
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Cluster 1

Cluster 2

Cluster 4

Cluster 3

Figure 1.3. Binary tree (dendrogram) and labeled gene expression display showing
the clustering model obtained by our method on the data reported in Iyer et al.
[13]. The numbers on the branch points of the tree represent how many times
the merging of two series renders the model more probable. The model identifies
four distinct clusters containing 3 (Cluster 1), 216 (Cluster 2), 293 (Cluster 3)
and 5 (Cluster 4) time series.

with estimates of the autoregressive coefficients and within-cluster vari-
ance β̂10 = 0.518; β̂11 = 0.708; σ̂2

1 = 0.606 in cluster 1, β̂20 = 0.136; β̂21 =
0.776; σ̂2

2 = 0.166 in cluster 2, β̂30 = −0.132; β̂31 = 0.722; σ̂2
3 = 0.091 in

cluster 3, and β̂40 = −0.661; β̂41 = 0.328; σ̂2
4 = 0.207 in cluster 4.
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1.4.2 Statistical Diagnostics

In the selected model, merging any of these clusters decreases the posterior
probability of the clustering model of at least 10.05 times, a strong evidence
in favor of their separation [15]. The symmetry of the standardized residuals
in Figure 1.2, together with the lack of any significant patterns in the
scatter plot of the fitted values versus the standardized residuals and the
closeness of fitted and observed values, suggests that ar(1) models provide
a good approximation of the processes generating these time series. This
impression is further reinforced by the averages of the fitted time series
in each cluster, shown in Figure 1.2, which follow closely their respective
cluster average profiles. In caged, the button Show Residuals on Screen 4
shows the residuals plot and their basic statistics for each cluster.

1.4.3 Understanding the Model

The most evident difference between the model in Figure 1.3 and the model
obtained in the original article by visual inspection [13] is the number of
clusters: our method detects four distinct clusters, characterized by the
autoregressive models described above, while hierarchical clustering merges
all 517 genes into a single cluster and leaves it to the investigator to identify
subgroups by visual inspection. For example, Iyer et al. identify, by visual
inspection, eight subgroups of genes — labeled A, B, C,..., I, J — from
eight large contiguous patches of color. With the exception of a few genes,
our cluster 2 merges the subgroups of time series labeled as D, E, F, G,
H, I and J, and cluster 3 merges the majority of time series assigned to
subgroups A, B and C. Interestingly enough, the members of subgroups
A, B and C differ, on average, by one single temporal value and, similarly,
members of groups D and G differ by a single temporal value, as well as F,
H, J and I. The assignment of time series to different groups on the basis
of one temporal points could be a consequence of the fact that the human
eye tends to overfit.

Across the four clusters, both average profiles and averages of the fitted
time series appear to capture different dynamics. Our cluster 1 collects
the temporal patterns of three genes — interleukin 8, prostaglandin-
endoperoxide synthase 2, interleukin 6 (interferon beta 2). These time series
were assigned by [13] to the subgroups F, I, and J, respectively. Clus-
ter 4 collects the time series of five genes — receptor tyrosine kinase-like
orphan receptor, TRABID protein, death-associated protein kinase, DK-
FZP586G1122 protein, transcription termination factor-like protein. Three
of these time series were assigned by [13] to the A and B subgroups.
These two smaller clusters — cluster 1 and 4 — are particularly note-
worthy because they illustrate how our method automatically identifies
islands of particular expression profiles. The first of these two clusters
merges cytokines involved in the processes of the inflammatory response
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Gene name Group Cluster

serum/glucocorticoid regulated kinase J, J 2, 2

pre-B-cell colony-enhancing factor J, NA 2, 2

myeloid cell leukemia sequence 1 J, J 2, 2
serine proteinase inhibitor I, I 2, 2

stromal cell-derived factor 1 NA, H 2, 2

neurotrimin H, H 2, 2
dual specificity phosphatase 6 F, F 2, 2

v-ets avian erythroblastosis virus E26 F, F 2, 2
ESTs H, H 2, 2
DKFZP566O1646 protein B, A 2, 3

stearoyl-CoA desaturase C, C, C 3, 3, 3
pregnancy-associated plasma protein A C, C 3, 3
DEAD/H box polypeptide 17 B, B 3, 3
KIAA0923 protein B, B, B, B 3, 3, 3, 3
WW Domain-Containing Gene B, B 3, 3

Bardet-Biedl syndrome 2 B, B 3, 3
calcium/calmodulin-dependent protein kinase B, B 3, 3
Tax1 (human T-cell leukemia virus type I) A, B 3, 3

AD036 protein A, A 3, 3
DKFZp586I1823 A, A 3, 3

Table 1.1. Assignment of gene repeats to subgroups by Iyer et al. [13] (column 2)
and by our method (column 3). The first column reports the UniGene name of
the repeated genes. Subgroups in column 2 are identified by A to J letters,with
NA denoting a placement outside the eight clusters identified by the authors.

and chemotaxis, and the signal transduction and cell-cell signaling un-
derlying these processes. The cluster includes Interleukin 8, Interleukin
6, and Prostaglandin-endoperoxide synthase 2, which catalyzes the rate-
limiting step in the formation of inflammatory prostaglandins. The second
small cluster includes genes that are known to be involved in the cell-
death/apoptosis processes. It includes kinases and several transcription
factors reported to be involved in these processes. The cluster includes
receptor tyrosine kinase-like orphan receptor 2, TRAF-binding protein do-
main, and Death-associated protein kinase. The cluster also includes the
transcription termination factor-like protein, which plays a central role in
the control of rRNA and mRNA synthesis in mammalian mitochondria [8],
and DKFZP586G1122 protein, which has unknown function but has strong
homology with murine zinc finger protein Hzf expressed in hematopoiesis.

The number of clusters found by our algorithm is directly inferred from
the data, which also provide evidence in favor of a temporal dependency of
the observations: the goodness-of-fit score of the ar(0) clustering model,
where the observations are assumed to be marginally independent, is lower
than the goodness-of-fit score of the ar(1) clustering model, which assumes
that each observation depends on its immediate predecessor. The allocation
of the 20 repeated genes in the data set seems to support our claim that
identifying subgroups of genes by visual inspection may overfit the data:
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with the exception of the two repeats of the DKFZP566O1646 protein, our
model assigns each group of repeated genes to the same cluster, whereas
four of the repeated genes are assigned to different subgroups in [13]. De-
tails are shown in Table 1.1. The risks of overfitting by visual inspection
can be easily appreciated by looking at the color patterns in Figure 1.3.
As the dendrogram is built, genes with highly similar temporal profiles are
merged first, thus producing subtrees with similar patterns of colors. How-
ever, according to our analysis, the data do not provide enough evidence
to conclude that such subtrees contain time series generated by different
processes and they are therefore merged into a single cluster.

An example of this phenomenon is shown in detail in the dendrogram
displayed in Figure 1.1e, which enlarges part of the dendrogram in Figure
1.3 around the breaking point between cluster 1 and cluster 2. The first 28
time series from the top of the image, which appear to be more homoge-
neous by visual inspection, are merged in a subtree showing that at each
step of the iterative procedure, merging the time series induces a model
more likely than the model determined by not merging them. Similarly,
the next 18 time series are merged in a subtree labeled, at the top, by a
Bayes factor of 10, in logarithmic scale. These two subtrees are then merged
in a larger tree, with a Bayes factor of exp(33), meaning that the model in
which the two subtrees are merged together is exp(33) times more likely
than the model in which these subtrees are taken as two separate clusters.
The dramatic change of the color patterns two time series below the end
of this tree marks the beginning of cluster 2.

1.5 Conclusions

The analysis of gene expression data collected along time is at the basis of
critical applications of microarray technology. This contribution addresses
a fundamental property of temporal data — their directed dependency
along time — in the context of cluster analysis. We have represented the
dependency of temporal observations as autoregressive equations and we
have taken a Bayesian approach to the problem of selecting the number
and members of clusters. To explore the exponential number of possible
clustering models, we have devised a heuristic search procedure based on
pairwise distances to guide the search process. In this way, our method
retains the important visualization capability of traditional distance-based
clustering and acquires a principled measure to decide when two time se-
ries are different enough to belong to different clusters. It is worth noting
that the measure here adopted, the posterior probability of the clustering
model, takes into account all the available data and such a global measure
also offers a principled way to decide whether the available evidence is suf-
ficient to support an empirical claim. Our analysis shows that sometimes
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the available evidence is not sufficient to support the claim that two time
series are generated by two distinct processes. Figure 1.3 shows contiguous
patches of colors, but the posterior probability of the model does not sup-
port the claim that these subgroups are sufficiently distinct to be viewed as
distinct processes. This finding has interesting implications for experiment
design and sample size determination, because it allows the analyst to as-
sess whether the available information is sufficient to support significant
differentiations among gene profiles and, if necessary, collect more data. A
third feature of the method presented here is the reliance of the clustering
process on an explicit statistical model. Contrary to other approaches [12],
our method builds the clustering model using the parametric content of
the statistical model rather than providing statistical content to an estab-
lished clustering model. This stochastic content allows us to use standard
statistical techniques to validate the goodness of fit of the clustering model,
as illustrated at the end of the Application section. While the biological
validation of microarray experiments plays a critical role in the develop-
ment of modern functional genomics, practical considerations often limit
this validation to few genes, while the claims and the scope of a microarray
experiment involve thousands. A proper use of available statistical diag-
nostics provides analytical tools to independently assess the global validity
of a clustering model.

Autoregressive equations are very simple representations of process dy-
namics and they rely on the assumption that the modeled time series are
stationary. Our reason to choose this representation is its simplicity: since
the time series of gene expression experiments are typically very short,
more sophisticated representations could be prone to overfitting. Station-
arity conditions can be checked using the method described at the end of
the Methods section but, both in the data analyzed here and in our gen-
eral experience, the clustering process seems to be largely unaffected by
the presence of non stationary time series. In principle, however, other rep-
resentations can be integrated within the Bayesian framework described in
this paper. The forthcoming version of caged will include, besides autore-
gressive models, also polynomial trend models, to tackle the problem of
shorter time series and the explicit dependency upon time, and state-space
models to handle comparative experiments along time and multiple arrays.
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