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1. Introduction

In June 2000, leaders of the Human Genome Project, Craig Venter of Celera
Genomics, and U.S. President Clinton announced the completion of a “working draft”
of the human genome: the genetic blueprint of a human being. Today, the legacy of that
announcement is the challenge to annotate this map, by understanding the roles and func-
tions of genes—and their interplay with proteins and the environment—to create complex,
dynamic living systems. This understanding is the goal of functional genomics.

Functional genomics has recently become a major focus of machine learning applications
thanks to the development of the new technology of DNA or expression microarray (Schena
et al., 1995; Lockhart et al., 1996). Microarrays enable investigators to observe the genome of
entire organisms in action by simultaneously measuring the level of activation of thousands
of genes under the same experimental conditions. This technology provides today unprece-
dented discovery opportunities and is reshaping biomedical sciences by shifting its paradigm
from a hypothesis driven to a data driven approach (Lander, 1999). Not surprisingly, parallel
to these technological advances has been the development of machine learning methods able
to integrate and understand the data generated by this new kind of experiments. However,
most of this research has been conducted outside the traditional machine learning research
community. The aim of this special issue is to bridge this divide by reporting methodological
advances in automated learning from functional genomic data to the core machine learning
community.

2. Microarray technology

The modern concept of gene expression dates back to the seminal work of Jacob and Monod
(1961) and their fundamental discovery that differential gene expression—that is when and
in what quantities a gene is expressed—determines differential protein abundance that
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induces different cell functions (note that this one-to-one correspondence is not necessarily
true even though it is a useful heuristic or generalization). During its expression, a gene
transcribes its DNA sequence into molecules of mRNA (messenger Ribonucleic acid) that
are then transported out of the cell nucleus and used as a template for making a protein.
This two-step representation of the protein-synthesis process constitutes the central dogma
of molecular biology (Crick, 1970).

Since the first step of a gene expression consists of copying its DNA code into mRNA
molecules, the amount of mRNA molecules produced during this process provides a mea-
sure of the gene expression level. The basic idea behind microarray technology is to measure
the expression level of thousands of genes in a particular cell or collection of cells by si-
multaneously measuring their mRNA abundance. Technically, a microarray is a platform
gridded in such a way that each location of the grid corresponds to a gene and contains
several copies of the DNA sequence of the gene (cDNA microarrays) or several copies
of a short specific segments—known as synthetic oligonucleotides—characteristic of the
gene (synthetic oligonucleotide microarrays) (Duggan et al., 1999). The tethered copies of
DNA sequences or synthetic oligonucleotides are called the probes. To measure the relative
expression level of the genes in a particular cell, investigators prepare the target by extract-
ing the mRNA from the cell and making a fluorescence-tagged copy of this mRNA. This
tagged copy is then hybridized to the probes in the microarray. During this process, if a
gene is expressed in the target cells, its mRNA representation will bind to the probes on the
microarray, and its fluorescence tagging will make the corresponding probe on the microar-
ray brighter. Studies have demonstrated that the brightness of a probe is correlated with the
amount of mRNA in the original sample and, therefore, to the expression level of each gene.

Aside from some technical differences—described for example in Kohane, Kho, and
Butte (2002) and Sebastiani, Kohane, and Ramoni (2003)—both cDNA and oligonucleotide
microarrays provide a panoramic view of the activity of genes under particular experimental
conditions, and are nowadays used to answer the same broad classes of questions.

3. Analysis of microarray experiments

Typical experimental questions investigated by microarray experiments are the detection of
genes differentially expressed across two different experimental conditions, such as normal
and tumor tissues. Microarray experiments can answer a variety of questions: they can
be used to build the expression profile of a particular tissue, say breast cancer tissue, and
develop new diagnostic devices; they can help to identify new classes of cells; they can
elucidate the control mechanisms underlying the expression dynamics of the genome.

One of the main analytical challenges of microarray experiments is that the technology
is still comparatively expensive and that some cell types, such as some kinds of tumors,
are relatively rare or difficult to acquire. Investigators are therefore usually faced with the
task of identifying differences, discovering new classes or decoding control mechanisms in
thousands of genes with a very small set of experiments.

In the simplest experimental setting, comparing the molecular profile of cells in two
experimental conditions, differential analysis is carried out to select the genes that have
substantial differential expression in the two conditions. The aim of these experiments is
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to build classifiers able to diagnose molecular differences hard, or sometimes impossible,
to identify using traditional methods. Popular techniques are based on the empirical fold
change—the ratio of the expression sample means in the two conditions—or some standard-
ization of the sample mean difference, and threshold values are often computed by using
permutation tests (Golub et al., 1999; Tusher, Tibshirani, & Chu, 2000). To investigate
whether the selected genes are predictive of the class, classification models are often built
from the expression data of the selected genes. Typical approaches are based on nearest
neighbor classification (Golub et al., 1999), support vector machines, or other discriminant
analysis techniques (Dudoit, Fridlyand, & Speed, 2002).

The determination of the error rate of these classifiers using a relatively small number
of samples is a critical problem to foster the development and the application of these
new diagnostic methods. Hsing et al. in their contribution Relation between permutation
test p-values and classifier error estimates examine this important issue, and the validity
of permutation procedures to assess the dependency of the error rate from the particular
data set used to build the classifier. Particularly, they show that random labeling does not
provide any further insight into the accuracy of the classifier or the precision of the error
estimate. Relevant to the problem of building classification models from gene expression
data is the contribution by Long and Vega Boosting and microarray data. The authors
identify situations in which boosting does not perform well, particularly when a strong
association exists between the gene expression profile and the class designation, and identify
modifications to improve the construction of class prediction rules.

When the objective of the microarray data analysis is to group genes with a similar ex-
pression profile, or samples with a similar molecular profile, investigators use unsupervised
classification techniques, such as clustering or multidimensional scaling. Given the ex-
ploratory nature of these studies and the multi-dimensionality of the data, it is critical to the
success of an application to be able to graphically display the results in a manner amenable
to biologists. Very popular techniques for clustering gene expression profiles or sample
molecular profiles are hierarchical clustering (Eisen et al., 1998) and self-organizing maps
(Kohonen, 1997). Self-organizing maps have been used, for instance, to identify classes
of genes with similar functions in the yeast cell cycle (Tamayo et al., 1999) and they have
been combined with the nearest neighbor classification method to discriminate between
different types of acute leukemia (Golub et al., 1999). The contribution of Hautaniemi et al.
Analysis and visualization of gene expression microarray data in human cancer using self-
organizing maps addresses the issue of visualization of the results. Their study shows that
self-organizing maps offer excellent resources for visualization, analysis, and interpretation
of the vast amounts of multi-dimensional gene expression data. Although self-organizing
maps are a form of k-mean clustering, tailored to atemporal data, they are often used to
group gene expression profiles from temporal experiments. Zhang et al. in their contribution
Self-organizing latent lattice models for temporal gene expression profiling develop a learn-
ing method designed for temporal gene expression profiling. Their method learns proba-
bilistic lattice maps of the gene expressions, which are then used for profiling the trajectories
of temporal expressions of co-regulated genes. This self-organizing latent lattice (SOLL)
model combines the topographic mapping capability of self-organizing maps and the gen-
erative property of probabilistic latent-variable models.
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A critical issue of any clustering method is the determination of the cardinality of the
cluster set. Monti et al., in their contribution Consensus clustering, present a new method of
class discovery and clustering validation that addresses both the issues of the dependency
of the clusters on the specific data set, and the determination of the optimal number of
clusters. Their method, called consensus clustering uses the agreement across multiple
runs of a clustering algorithm to assess the stability of the discovered clusters to random
perturbations of the data. They show that this method can also be used to represent the
consensus over multiple runs of a clustering algorithm with random restart to inspect several
features of the clustering model, including the best number of clusters and the robustness
of cluster membership.

One of the intuitions behind the use of standard machine learning techniques for clustering
gene expression profiles is that genes belonging to the same cluster have similar functions
(Eisen et al., 1998). Provided this intuition is correct, it is important to develop automated
ways to integrate standard machine learning techniques with the increasing information
available about particular genes. Raychaudhuri et al. address this issue in their contribution
Inclusion of textual documentation in the analysis of multidimensional data sets: application
to gene expression data. The authors present a method that integrate text analysis with gene
expression data analysis to find meaningful gene expression patterns that correlate with the
biology described in scientific literature. Their method—called neighbor divergence per
gene—assigns a score to a given subgroup of genes indicating the likelihood that the genes
share a biological property or function and an algorithm that searches for linear projections in
gene expression data that separate functionally related groups of genes from the other genes.

In microarray studies, clustering techniques are also used for comparative analysis of
gene expression data collected in a variety of conditions. However, clustering techniques
by themselves are unable to account for the dependency structure underlying the functions
of genes. Boolean networks are currently used as knowledge representation formalisms to
capture these interactions among genes. A critical step to identify these regulatory networks
from gene expression data is to find a network that is consistent with the given observations or
determine whether such a network exists at all. This problem—known as the Consistency
Problem—is considered in On Learning Gene Regulatory Networks Under the Boolean
Network Model by Lädesmäki et al., which addresses the specific issue that gene expression
data are not noise-free and present algorithms to find one or all Boolean networks relatively
consistent with a set of the gene expression measurements.

Besides their important role as knowledge representation formalism, Boolean networks
can help investigators understand the co-regulation of genes and the behavior of a biology
system under particular controllable conditions. This problem is examined in External
control in Markovian genetic regulatory networks by Datta et al. They present a procedure
to identify the sequence of control actions that minimize some performance index in a finite
number of steps, thus gaining the ability to identify when to suspend treatments in patients
and observe the consequences before making the decision as to whether further intervention
is necessary.

Eric Lander (Lander, 1999), one of the most influential scientists of the genomic era and a
mathematician by training and profession, wrote that developing experimental designs able
to take advantage of the full power of microarray technology is the challenge for biologists
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of this century but he also acknowledged that, to fully understand the results of microarray
experiments, new analytical perspectives are needed. The contributions to this special issue
tackle some fundamental issues in the application of machine learning methods to functional
genomics and, in so doing, provide an outlook on the variety of computational challenges
laying ahead.

We are proud to present the machine learning community with this randonnee at the
heart of the exciting area at the intersection between artificial intelligence and biological
sciences, and we are grateful to the authors and the referees for creating it.
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