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Abstract. This paper describes an application of Caged (Cluster Analysis of Gene Expres-
sion Dynamics) to a data set of gene expression temporal profiles from Saccaromicys Cere-
visiae. The goal of the analysis is to identify groups of genes with similar temporal patterns
of expression during the cell cycle. We show that Caged groups gene expression temporal
profiles into meaningful clusters and identifies genes with a putative role in the cell cycle.

1 Introduction

Several applications of genome-wide clustering methods focus on the temporal pro-
filing of gene expression patterns. Temporal profiling offers the possibility of ob-
serving the cellular mechanisms in action and tries to break down the genome into
sets of genes involved in the same or related processes. Standard clustering methods,
such as the hierarchical clustering method of Eisen et al. (1998) or the self organiz-
ing maps (Tamayo et al., 1999), should not be used to analyse the data generated
from these experiments because they typically rest on the assumption that the set
of observations for each gene are independent and identically distributed (iid). On
the other hand, gene expression data collected from temporal experiments are real-
izations of time series, where each observation may depend on prior ones (Box and
Jenkins, 1976; West and Harrison, 1997), and standard similarity measures currently
used for clustering gene expression data, such as correlation or Euclidean distance,
are invariant with respect to the order of observations: if the temporal order of a pair
of series is permuted, their correlation or Euclidean distance will not change.

A second critical problem of clustering approaches to gene expression data is
the arbitrary nature of the partitioning process. This operation is often done by vi-
sual inspection, by searching for groups of genes with similar expression patterns.
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Permutation tests are sometimes used to validate the partitions found by this proce-
dure (Eisen et al., 1998), and a bootstrap-based validation technique is presented in
Kerr and Churchill (2001). The gap statistic of Tibshirani et al. (2001) is also used
to find the optimal number of groups in the data.

CAGED (Cluster Analysis of Gene Expression Dynamics) is a model based,
Bayesian clustering procedure developed by Ramoni et al. (2002) to cluster gene
expression profiles measured with microarrays in temporal experiments. Contrary
to popular clustering methodsAGED takes into account explicitly the fact that
expression profiles in temporal experiments may be serially correlated and uses a
model-based, Bayesian procedure to identify the best grouping of the gene expres-
sion data in an automated way. An important property a6€D is that it automati-
cally identifies the number of clusters and partitions the gene expression time series
in different groups on the basis of the principled measure of the posterior proba-
bility of the clustering model. In this way, AGED allows the investigator to assess
whether the experimental data convey enough evidence to support the conclusion
that the behavior of a set of genes is significantly different from the behavior of
another set of genes. This feature is particularly important because decades of cog-
nitive science research have shown that the human eye tends to overfit observations
by selectively discounting variance and “seeing” patterns in randomness, see Kah-
neman et al. (1982). By contrast, a recognized advantage of a Bayesian approach to
model selection, such the one adopted in this chapter, is the ability to automatically
constrain model complexity and to provide appropriate measures of uncertainty.

We applyCAGED to cluster a data set of gene expression temporal profiles from
Saccaromicys Cerevisiae. The goal of the analysis is to detect those genes whose
transcript levels vary periodically within the cell cycle. Cell cycle is a very com-
plex ordered set of events that consists of several phases culminating in cell growth
and division into daughter cellsnjtosig. During this period, the cell is constantly
synthesizing RNA, producing protein and growing in size. In@igphase, the cell
increases in size, produces RNA and synthesizes proteins. The next step is the syn-
thesis phas&in which DNA replication occurs. This phase is followed by tA2
phase in which the cell continues to grow and to produce new proteins, and by the
mitosis (M phase). Many genes are involved in DNA synthesis, budding and cytoki-
nesis that occur only once per cell cycle. In addition, many of these genes are also
involved in controlling the cell cycle itself. For this reason, the expression levels of
the genes that have a regulatory role in cell cycles are expected to show periodical
behaviors across time and to present at least one peak during the phase in which
they are activated. The data were originally analyzed by Spellman et al. (1998),
using Fourier models, and the authors identified several clusters by visual inspec-
tions. We show that Caged finds automatically clusters of gene expression temporal
profiles that exhibit periodic behavior.

The next section gives a brief description of the model based clustering proce-
dure that is implemented inAGED. Section 3 provides details of the analysis and
conclusions and suggestions for further work are in Section 4.
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2 Caged

The clustering method implementeddaGED is based on a novel concept of sim-

ilarity for time series: two time series are similar when they are generated by the

same stochastic process. Therefore, the componentsaHD are a model describ-

ing the dynamics of gene expression temporal profiles, a metric to decide when two

gene expression temporal profiles are generated by the same stochastic process, and

a search procedure to efficiently explore the space of possible clustering models.
CAGED models gene expression temporal profiles by autoregressive equations

(West and Harrison, 1997). Lét; = {z;1,...,2j, ..., 2;,} denote a stationary

time series. An autoregressive model of orgesay ARp), for the time series can

be described in matrix form as

rj=X;Bj + e
wherez; is the vector(z;(,41), ..., jn)", X; is the(n — p) x (p + 1) regres-
sion matrix whoseth row is (1, z;—1), ..., 2j—p)) for t > p, g; is the vector

of autoregressive coefficients angthe vector of uncorrelated errors that are as-
sumed normally distributed with expected valliée;;) = 0 and precisiorr;, for

any time point. Given the data, the model parameters can be estimated using stan-
dard Bayesian procedures, and details are in Ramoni et al. (2002).

To select the set of clusterSAGED uses a novel model-based Bayesian cluster-
ing procedure. A set of clusters,, ..., C., each consisting ofn; time series, is
represented as a modgl.. The time series assigned to each cluster are treated as
independent realizations of the dynamic process represented by the cluster, which
is described by an autoregressive equation. The posterior probability of the model
M, is computed by Bayes theorem B$M. |y) o« P(M.)f(x|M.) whereP(M.)
is the prior probability ofM,. and f(z|M.) is the marginal likelihood. Assuming
independent uniform prior distributions on the model parameters and a symmetric
Dirichlet distribution on the cluster probability,, the marginal likelihood of each
cluster modelV/. can be easily computed in closed form by solving the integral:

f(2lM,) = / F(216.)£(6.)d6,.

whered.. is the vector of parameters that describe the likelihood function, condi-
tional on a clustering modél/., and f(6.) is the prior density. In this way, each
clustering model has an explicit probabilistic score and the model with maximum
score can be found. In practice, we assume that each clustering model has the same
prior probability so that the marginal likelihoof{z|M,) is the scoring metric of

the clustering model/...

As the number of clustering models grows exponentially with the number of
time series, GGED uses an agglomerative search strategy, which iteratively merges
time series into clusters. The procedure starts by assuming that eachnofyibiee
expression time series is generated by a different process. Thus, the initial model
M, consists ofm clusters, one for each time series, with scéfe|M,,). The
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next step is the computation of the marginal likelihood oftlign — 1) models in

which two of them profiles are merged into one cluster. The modg},_; with
maximal marginal likelihood is chosen and the merging is rejectg¢daifM,,,) >
f(z|Mp,—1) and the procedure stops. f{z|M,,) < f(z|M,,—1) the merging is
accepted, a cluster;, merging the two time series is created, and the procedure is
repeated on the new set of — 1 time series that consist of the remainimng— 2

time series and the cluster profile. Although the agglomerative strategy makes the
search process feasible, the computational effort can be extremely demanding when
the number of time series is large. To further reduce this effort, we use a heuristic
strategy based on a measure of similarity between time series.

The intuition behind this strategy is that the merging of two similar time series
has better chances of increasing the marginal likelihood. The heuristic search starts
by computing then(m — 1) pair-wise similarity measures of the time series and
selects the model/,,,_; in which the two closest time series are merged into one
cluster. If the merging increases the marginal likelihood, the two time series are
merged into a single cluster, a profile of this cluster is computed by averaging the
two observed time series, and the procedure is repeated on the newsetidfime
series. If this merging is rejected, the procedure is repeated on the two time series
with second highest similarity until an acceptable merging is found. If no acceptable
merging is found, the procedure stops. Note that the clustering procedure is actually
performed on the posterior probability of the model and the similarity measure is
only used to increase the speed of the search process and to limit the risk of falling
into local maxima. Similarity measures implemented inGED are Euclidean dis-
tance, correlation and cross correlation. Empirical evaluations, see Sebastiani et al.
(2003b), have shown that this heuristics makes the search process faster, without
loosing accuracy. Compared to other clustering methods such as hierarchical clus-
tering or self organizing mapsAGED identifies the set of clusters with maximum
posterior probability without requiring any prior input about the number of clusters
and avoids the risk of overfitting.

Standard statistical diagnostics are used as independent assessment measures
of the cluster model found by the heuristic search. Once the procedure terminates,
the coefficientsd, of the AR{p) model associated with each clustgg are esti-
mated by Bayesian Least Squares, whife= RSSj/(ny — p) is the estimate of
the within-cluster variance antlS.S;, is the within cluster residual sum of squares.
The parameter estimates can be used to compute the fitted vajuésr the series
in each cluster, from which we compute the residugls— Z;x. If AR(p) models
provide an accurate approximation of the processes generating the time series, the
standardized residuals should behave like a random sample from a standard normal
distribution. A normal probability plot, or the residual histogram per cluster, can be
used to assess normality. Departures from normality cast doubt on the autoregressive
assumption, so that some data transformation, such as a logarithmic transformation,
may be needed. Plots of the fitted values versus the observed values and of the fitted
values versus the standardized residuals in each cluster provide further diagnostics.
To choose the best autoregressive order, we repeat the clustering for different autore-
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gressive ordergy; = 0,1, ..., w for some presety, and compute a goodness-of-fit
score defined as = cq + > nglog(ng — q) — > nilog(RSS;), where c is the
number of clustersy, the total number of time points in clustéf,. This score
trades off model complexity with lack of fit and it generalizes the well known AIC
goodness-of-fit criterion of Akaike (1973) to a set of autoregressive models. We use
the goodness of fit score to choose the best autoregressive order.

3 Application

3.1 Materials

The data we analyze are expression levels of genes from the budding yeast Sac-
caromyces Cerevisiae that were collected on spotted cDNA microarrays. Data were
drawn from time courses during the cell cycle after synchronization by alpha fac-
tor arrest in 18 time points. The original data set is available at http://genome-
www.stanford.edu/Saccharomyces and consists of expression profiles of 6178 genes.
About 1500 expression profiles had missing data and because the shortness of time
series would make traditional imputation methods not very reliable those gene ex-
pression profiles were disregarded. To reduce the noise, we excluded those time
series in which the ratio between the minimum and maximum expression level did
not exceed 2. This filter is justified by the fact that significant biological events are
characterized by at least a 2-fold change, see Sebastiani et al. (2003a) for a discus-
sion and further references. With this filter we selected 1574 temporal profiles.

3.2 Methods

We analyzed the data set witthGED. The software is freely available and can be
downloaded from http://www.genomethods.org/caged. Details about the software
are described in Sebastiani et al. (2003b). For selecting the most probable cluster
model given the data, the user needs to specify the autoregressive order, the distance
to be used during the heuristic search, a threshold on the Bayes factor that deter-
mines the odds for merging similar time series, and some prior hyper-parameters.
We performed the analysis several times varying both the hyper-parameters and the
autoregressive order. Among the available similarity measures, Euclidean distance
always lead to cluster models with greater marginal likelihood. The Bayes Factor
was set to 10 so that an aggregation occurs only if the model in which the clusters
are merged is 10 times more probable than the model in which they are separated.
This choice is recommended in Kass and Raftery (1995) to force the model se-
lection toward significant dependencies. We also run some sensitivity analysis to
prior settings that lead to set the prior precision to 10. Once the parameters were
chosen, the last step was the choice of the autoregressive order that was chosen by
comparing the goodness of fit of clustering models induced by different autoregres-
sive orders. The autoregressive model that best fitted the data was an autoregressive
model of order 2. Therefore, the method found a temporal dependency in the data:
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Fig. 1. Histogram of the standardized residuals for the time series assigned to Cluster 1.

each observation of a gene expression time series depends on its two immediate
predecessors. This model fits the data better than the autoregressive model of order
0, in which observations are assumed to be marginally independent. Goodness of
fit statistics confirm that autoregressive models of order 2 provide a good fit. As an
example, Figure 1 shows the standardized residuals for the cluster of time series in
Figure 2 (Cluster 1 in the top-left panel). The symmetry confirms that the model
assumptions are reasonable.

3.3 Results

CAGED merged the 1574 genes time series into 13 distinct clusters and by query-
ing the GeneOntology database (http://www.geneontology.org/), genes assigned to
each cluster were annotated by their biological processes. Five of the thirteen clus-
ters have periodical profiles, while four of the clusters have at least one spike of
expression during the cell cycle, and two clusters group genes that are systemati-
cally upregulated or downregulated during the cell cycle. Two clusters group genes
that do not appear to have cell-cycle related change of expression. Among the clus-
ters found by the algorithm, particularly noteworthily are four clusters in which
either a periodical trend is detected (Cluster 1 and 2 in Figure 2) or only one spike
is detected (Cluster 3 and 4 in Figure 2). All genes belonging to these clusters are
strongly cell cycle regulated.

Cluster 1 contains 18 genes that spike at 7 and 70 minutes, so that one can
conjecture that they are coregulated during the M/G1 transition of the cell cycle.
Peak expressions occur in early G1 phase that consists of growth and preparation of
chromosomes for replication. Most of the genes are involved in cell wall, which is
laid out during the division of the cell. Five of the 18 genes have unknown functions,
and the fact that they are merged into a cluster of genes involved with cell wall
suggests that they may have the same function. Cluster 2 contains 66 genes that
are characterized by two spikes at time 21 minutes and 77 minutes and, because
of the time shift, the conjecture is that these genes are involved in the S/G2 phase.
A large proportion of these genes have DNA replication and repair functions, thus
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Fig. 2. Plot of the gene expression profiles assigned to significant clusteZabgD.

confirming the conjecture that the cluster groups genes involved in the S/G2 phase.
The third cluster contains four genes that are systematically down regulated during
the cell cycle. All genes have arole in cell fusion. The six genes assigned to Cluster
4 are down regulated during the first hour and then spike at about 70 minutes. The
functions of the genes assigned to this clusters have already been associated with the
cell cycle, and include cell fusion, cell cycle arrest, and completion of separation.

4 Conclusions

Several applications of genome-wide clustering methods focus on the temporal pro-
filing of gene expression. The intuition behind this analytical approach is that genes
showing a similar expression profile over time are acting together, because they be-
long to the same, or similar, functional categories. The novelty and strength of the
clustering algorithm implemented @nGEDis that it takes into account the dynamic
nature of gene expression data in temporal microarray experiments and the analy-
sis presented in this paper confirms the capabilitcatED to detect groups of
gene expression temporal profiles with periodical patterns and genes having related
functions in a complex event such as the cell cycle.
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