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Abstract. 
 
This paper uses a novel Bayesian clustering method to categorize the temporal evolution of the 
share of population participating in tertiary/higher education in 14 European nations. The method 
represents time series as autoregressive models and applies an agglomerative clustering procedure 
to discover the most probable set of clusters describing the essential dynamics of these time series. 
To increase efficiency, the method uses a distance-based heuristic search strategy. This clustering 
method partitions the evolution of school population into three groups, thus revealing significant 
differences among tertiary/higher education in the 14 European nations.    

 

1. Introduction 
 
The time series in Figure 1 describe the evolution of the share of population enrolled in higher 
education in 14 nations of the European community between 1970 and 1995. Our task is to group 
the 14 time series on the basis of their similarity in order to detect significant differences among 
European higher education trends. Data were provided by UNESCO and Eurostat, via the r·cade 
data bank, available at the URL http://www-rcade.dur.ac.uk, (Unesco, 1997). 
 
The method to solve this problem depends on the meaning we attach to similar time series. 
Throughout this paper, we will assume that time series are the realization of stochastic processes 
and two or more time series are similar when the same process generates them. Thus, deciding 
whether two time series are similar is equivalent to deciding whether they are observations of the 
same process. Put in this way, the task of grouping of the time series can be solved as a clustering 
problem: given a batch of time series, we wish to cluster them so that each cluster contains time 
series generated by the same process. Particularly, we wish to solve this problem without 
specifying, a priori, the number of clusters. We solve this problem by using a novel Bayesian for 
method clustering of contributions. 
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We model the stochastic process generating each time series as an autoregressive model of order p, 
say AR(p), and then we cluster those time series that have a high posterior probability of being 
generated by the same AR(p) model. The distinguished feature of this method is to describe a 
clustering of time series as a statistical model so that the clustering task can be solved as a Bayesian 
model selection problem. Thus, the clustering model we look for is the most likely partition of the 
time series, given the data at hand and prior information about the problem.  
 
In principle, we just need to evaluate the posterior probability of all possible clustering models of 
time series and select that one with maximum posterior probability. However, the number of 
clustering models grows exponentially with the number of time series and a heuristic search is 
needed to make the method feasible. The method we adopt uses a measure of similarity between 
AR(p) models to drive the search process in a subspace of all possible clustering models. An 
important feature of this heuristic search is to provide a stopping rule, so that clustering can be done 
without assuming a given number of clusters as traditional clustering methods do. 
 
The clustering method we use is fully described and evaluated in Sebastiani and Ramoni (2001). In 
the next section we briefly describe the method and the search algorithm. The analysis of the higher 
education data set is described in Section 3 and a discussion is in Section 4. 
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Figure 1. Share of population enrolled in higher education, between 1970 and 1996, in the14 

European countries: AU: Austria; BE: Belgium; DK: Denmark; GR: Greece; FR: France; ES: 
Spain; PT: Portugal; IT: Italy; IE: Ireland; FI: Finland; NL: The Netherland; UK: United 

Kingdom; Lu: Luxemburg; SW: Sweden. 

 



2. Bayesian clustering by dynamics 
 
The clustering method we describe here has three components: a model for the time series, the 
posterior probability of a clustering model and a heuristic search strategy. These three elements are 
described very briefly. More details are provided in Sebastiani and Ramoni (2001). 
 

2.1. Autoregressive models  
 
Let },,,,,,,{ 11 ntp yyyyyS LLL −−= be a time series of values observed for a continuous variable 
Y. The series follows an AR(p) model if 
 

εββ += Xy |  
 
where y  is the n-dimension vector ),,( 1 nyyy L= , X  is the  nn ×  matrix with tth row given by 
the vector of p observations ptt yy −− ,,1 L , ),,( 1 pβββ L=  is a vector of autoregressive coefficients, 
and ε  is a vector of uncorrelated errors. We assume that the errors are normally distributed, with 
expectation 0)( =tE ε , and variance 2)( σε =tV for any t. We shall denote by τ the precision, so 
that τσ /12 = . 
 
The value p is called the order of the autoregression, and specifies the Markov order of the series: 
namely that ),,(|),,( 11 pttptpt yyyyy −−−−−⊥ LL , where we use the symbol ⊥ to denote stochastic 
independence. The series follows a stationary process if the roots of the polynomial 
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1)( β  have moduli greater than unity. When some of the roots have moduli smaller 

than unity, the process is non-stationary, but typically some transformations of the data are 
sufficient to achieve stationarity.   
 
The model above describes the evolution of the process around a zero mean. By adding an intercept 
term 0β , the model can be extended to include a non-zero mean µ , for each ty , so that 

),,,( 10 pββββ L= and the matrix X  is augmented of a column of ones. The process mean and the 

autoregressive coefficients are related by: ∑ =
−= p

j j10 )1/( ββµ . 

 
We wish to compute Bayesian estimates of the parameters β  and τ . To compute the Bayesian 
estimates of β  and τ , we need to up-date their joint prior density ),( τβf  into the posterior 
density )|,( yf τβ  , by using Bayes' Theorem: 
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Where ),|( τβyf is the likelihood function and )( yf  is the marginal likelihood, which is 
computed as 
 

∫= τβτβτβ ddyffyf ),|(),()( . 
 
For a given autoregressive order p, we compute the likelihood function, conditional on the first p 
values of the time series, as 
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We assume as prior density for β  and τ  the improper prior 2−∝ ττβ Xf ),( , with 0>τ  (see 
Jeffreys, 1946). Suppose the matrix X  is of full rank, and let β̂ and RSS  denote respectively the 
ordinary least squares estimate of β  and the residual sum of squares respectively: 
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where nI  is the  identity matrix. Then, one can show that the marginal likelihood is 
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where q is the dimension of the vector β . Furthermore, the posterior distribution of β  and τ , is 
normal-gamma, with 
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where Gamma(a,b) is a gamma distribution with expected value a/b and variance a/b2 . 
 
Both distributions are proper whenever as the matrix X  is of full rank, and 2+> qn . The 
Bayesian posterior point estimates of β and τ  are ∝ and RSSqn /)2( −− . 
 



2.2. Clustering  
 
Suppose  we have a batch of time series },,{ 1 mSSS L= , which are generated by an unknown 
number of stationary AR(p) models with a common autoregressive order p, and different 
autoregressive coefficients. We wish to cluster the time series in S according to their dynamics. 
Our goal is two-fold:  
 

• To find the set of clusters that gives the best partition of the data; 
• To assign each time series to one and only one cluster.  

 
Contrary to common practice, we do not want to specify, a priori, a preset number of clusters. 
 
Formally, the clustering method regards a partition as an unobserved discrete variable C  with 
states cCC ,,1 L . Each state kC of the variable C  labels, in the same way, the time series generated 
by the same AR(p) model and, hence, it represents a cluster of time series. The number c of states 
of the variable C  is unknown, but it is bounded above by the total number of time series in the data 
set S . The clustering algorithm tries to re-label those time series that are likely to have been 
generated by the same AR(p) model and thus merges the initial states mCC ,,1 L of the variable C  
into a subset cCC ,,1 L , with mc < . 
 
The specification of the number c of states of the variable C  and the assignment of one of its states 
to each time series iS  define a statistical model cM . This allows us to regard the clustering task as 
a Bayesian model selection problem, in which the model we seek is the most probable way of re-
labeling time series, given the data. If )( cMP  is the prior probability of each model cM , by Bayes' 
Theorem its posterior probability is )|()()|( ccc MSfMPSMP ∝ , where )|( cMSf  is the 
marginal likelihood, now written as explicit function of the clustering model. A model-based 
Bayesian solution to the clustering problem consists of selecting the clustering model with 
maximum posterior probability. It is shown in Sebastiani and Ramoni (2001) that, under some 
assumptions on the sample space, the adoption of a particular parameterization for the model cM  
and the specification of an improper-uniform prior lead to a simple, closed-form expression for the 
marginal likelihood )|( cMSf . 
 
Conditional on the model cM  and, hence, on a specification of the number of states of the variable 
C  and of the labeling of the original time series, we suppose that the marginal distribution of the 
variable C  is multinomial, with cell probabilities )|( θθ kk CCP == . Furthermore, we suppose 
that, conditional on kCC = , the batch of km time series }{ kjS  assigned to cluster kC  are 
independent of the batch of time series }{ ljS  assigned to any other cluster lC , and that the time 
series generated by the same AR(p) model in cluster kC  are mutually independent. We denote by 

kβ  the vector of auto-regression coefficients and by kτ  the precision of the AR(p) model 
generating the time series in cluster kC .  We suppose that each of these series can be represented as 
 



kjkkjkkkj Xy εβτβ +=,| . 
 
The index k indicates cluster membership, and kjε  is a vector of uncorrelated errors, which we 

assume to be normally distributed, with 0)( =kjtE ε  and 1)( −= kkjtV τε , for any t .  The fact that 
series assigned to the same cluster kC  are characterized by the same vector of auto-regression 

coefficients kβ , and by the same variance 12 −= kk τσ , allows us to represent the whole batch of 
series }{ kjS  in cluster kC as 
 

kkkkkk Xy εβτβ +=,|  
 
where the vector ky  and the matrix kX are defined as 
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Let β  denote the set of parameter vectors )( kββ = , where each kβ  is a random vector, and let τ  
denote the set of parameters )( kττ = , for ck ,,1L= . Then, by the independence of series assigned 
to different clusters, the overall likelihood function is 
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where km  is the number of time series that are assigned to cluster kC . Here, the overall likelihood 
is conditional on the set of )2( +pc  values upon which the likelihood function of each series is 
conditioned. 
 
We take as our prior distribution for θ  a Dirichlet ),,( 1 cD αα L , and assign the improper prior 

with density ∏ −∝
k kf 2),( ττβ  to β  and τ . Then, using standard results on Dirichlet integration, 

it is easy to show that the marginal likelihood is 
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where 

kk∑= αα  is the overall cluster prior precision,  kn  is the dimension of the vector ky , and  

kk
T

kk
T

knk
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k yXXXXIyRSS ))(( 1−−=  is the residual sum of squares in cluster kC . The marginal 
likelihood is well defined as long as each matrix kX  is of full rank. 
 
Once the most likely partition has been selected a posteriori, each cluster kC  is associated with 
theparameters kβ , which model the auto-regression equation, and the precision kτ . The posterior 

distribution of kkk y,|τβ  is )))((,ˆ( 1−
kk

T
kk XXN τβ  with kk
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posterior distribution of kk y|τ  is ( )2/)2(),2/( −− qnRSSGamma kk .  The marginal posterior 
distribution of the auto-regression coefficients kk y|β  is a non-central Student's t, with expectation 

kβ̂ , which provides a point-estimate of kβ . The estimate of the within cluster precision kτ  is 

( )kk RSSqn /)2( −− . The probability that kCC =  is estimated by )/()(ˆ mmkkk ++= ααθ . 
 
In our application, we use a symmetric prior distribution for the parameter vector θ , with a 
common prior precision α . The initial m  hyper-parameters kα  are set equal to m/α  and, when 
two time series are assigned to the same cluster kC , their hyper-parameters are summed up. Thus, 
the hyper-parameters of a cluster merging km  time series will be )/( mmk α . In this way, the 
specification of the prior hyper-parameters requires only the global prior precision α , which 
measures the confidence in the prior model. The current implementation of the algorithm assumes 
that the series follow stationary autoregressive models of a given order p, and then checks that the 
stationarity conditions are met at the end of the clustering process.  
 

2.3. Search  
 
In principle, the clustering method described in the previous section requires one to compute the 
posterior probability of each clustering model and then choose the clustering model with maximum 
posterior probability. Since the number of possible partitions grows exponentially with the number 
of series, a heuristic method is required to make the search feasible. 
 
Our method uses a measure of similarity between AR(p) models to efficiently guide the search 
process in a subset of all possible clustering models. Since all AR(p) models have the same order, 
this similarity measure   is an estimate of the symmetric Kullback-Liebler divergence (Jeffreys, 
1946) between marginal posterior distributions of the auto-regressive coefficients kk y|β  
associated with the clusters. The estimate is given by computing the symmetric Kullback-Liebler 



divergence for every pair of parameters jk ββ , , assuming a normal distribution conditional on the 
within-cluster precisions jk ττ , . The precisions are then replaced by their posterior estimates. 
 
Initially, the algorithm transforms the time series in S  into a set of m  AR(p) models, using the 
procedure described in the previous section, and computes the set of 2/)1( −mm  pair-wise 
distances between posterior distributions of the parameters. Then, the algorithm sorts the generated 
distances, labels in the same way the two closest AR(p) models and evaluates whether the resulting 
clustering model cM , in which the two closest AR(p) models are assigned to the same cluster, is 
more probable than the model sM  in which they are distinct. If the probability )|( yMP c is larger 
than )|( yMP s , the algorithm updates the set of series by replacing the two series with the cluster 
resulting from their merging. Consequently, the algorithm updates the set of ordered distances by 
removing all the ordered pairs involving the merged time series, and by adding the distances 
between the parameters of the new AR(p) model and the remaining models in the set. The 
procedure is then iterated on the new set. If the probability )|( yMP c  is not larger than )|( yMP s , 
the algorithm tries to merge the second best, the third best, and so on, until the set of pairs is empty 
and, in this case, returns the most probable partition found thus far. The rationale behind this 
heuristic is that merging closest AR(p) models first should speed up the search for clustering 
models with large posterior probability. Empirical evaluations of the methods on simulated data 
appear to support this intuition (see Sebastiani and Ramoni, 2001). 
 

3. Analysis 
  
We apply the clustering algorithm described in section 2 to the analysis of the fourteen time series 
reporting the temporal evolution of the share of the population engaged in tertiary/higher education 
in 14 European countries depicted in Figure 1. Since the average length of a university degree 
across European nations is three-four years, we applied the clustering algorithm under the 
assumption that all time series were generated by stationary AR(3) models with a non-zero mean. 
We assumed 1=α , the improper prior with density ∏ −∝

k kf 2),( ττβ , and uniform prior on all 
clustering models. Stationarity of the autoregressive models was checked at the end of the 
clustering process. Figure 2, 3 and 4 show the three clusters of time series found by the algorithm.  
 
Cluster 1C  groups the evolutions of the proportion of the population enrolled in higher education 
institutes in Portugal and Luxembourg, see Figure 2. The estimates of the auto-regression 
coefficients are 657.0ˆ

0 ≅β , 133.1ˆ
1 ≅β , 044.0ˆ

2 ≅β  and 254.0ˆ
3 −≅β . Thus, the model is 

stationary --- the roots of the polynomial )(uf  are -2.38, 1.28±0.11i --- with a mean %532.8ˆ ≅µ . 
Note that the time series describing the evolution of school population in Luxemburg has a slight 
increasing trend during the 1970s, and then becomes stationary, with a mean slightly above 8%.  
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Figure 2. Cluster C1 groups the evolution of school population in Portugal and Luxemburg. 

 
The evolutions of the proportion of the population enrolled in higher education institutes in Austria, 
Denmark, Greece, Spain and Ireland are merged into cluster 2C  in Figure 3. The estimates of the 
auto-regression coefficients are 074.0ˆ

0 ≅β , 085.2ˆ
1 ≅β , 233.1ˆ

2 −≅β  and 138.0ˆ
3 ≅β , with a 

mean 4.7ˆ ≅µ . The AR(3) model is stationary, with roots of the polynomial )(uf  equal to 6.09 and 
1.02±0.1i.  
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Figure 3 Cluster of time series describing the evolution of school population in Austria, Denmark, 

Greece, Spain and Ireland. 



Of the series assigned to this cluster, those describing the evolution of school population in Austria, 
Denmark and Greece are evidently stationary, while the time series describing the evolution of 
school population in Spain and, particularly, Ireland exhibit some trend. The assignment of the two 
series to this cluster could indicate that the increasing trend is only temporary, and that the 
proportion of the population enrolled in higher education institutes becomes stable during the 
1990s. 
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Figure 4 Cluster merging the evolution of school population in Belgium, France, Italy, Finland, 

The Netherlands, the United Kingdom and Sweden. 

Cluster 3C in Figure 4 groups the evolutions of the proportion of the population enrolled in higher 
education institutes in Belgium, France, Italy, The Netherlands, Finland, United Kingdom and 
Sweden. The estimates of the auto-regression coefficients are 015.0ˆ

0 ≅β , 593.2ˆ
1 ≅β , 

283.2ˆ
2 −≅β , and 688.0ˆ

3 ≅β , thus defining a stationary auto-regression equation, with roots of the 
polynomial )(uf  equal to 1.023 and 1. ±0.32i. The mean of the process is 5.7ˆ ≅µ .   
 
This  cluster groups the European nations that have been consistently stronger from an economic 
point of view in the past thirty years.  All these nations have a solid higher education tradition, and 
university curricula lasting, on the average, four years. All series assigned to this cluster are 
increasing up to the 1980s, and then decrease. This fact would be consistent with the large demand 
for highly skilled labors and for higher education created by the pace of economic development in 
Europe in the 1960s.  The contraction of the population together with the economic recession in the 
1980s, could be responsible for the decrease of the proportion of population enrolled in higher 
education in the late 1980s and the 1990s.  
 



The means of the processes generating the time series assigned to clusters 2C  and 3C  are 
essentially the same. However, the autoregressive equation for cluster 3C  describes a more stable 
process around the mean, with smaller fluctuations. Thus, the results would suggest a more stable 
higher education enrollment in Italy, France, The Netherlands, United Kingdom, Belgium, Finland 
and Sweden, compared to Austria, Denmark, Greece, Spain and Ireland.   
 
The fact that the time series describing the evolution of the population in higher education of The 
Netherlands is assigned to the third cluster is slightly disappointing: the dynamic of this series is 
similar to that of the other series in the cluster, but this series has a different mean. To evaluate the 
influence of this time series on the results, we run the clustering algorithm excluding the time series 
of The Netherlands. The algorithm found the same three clusters, thus showing that this series is 
not “influential”. 
 
 

 
 
 

Figure5 .Observed (continuous line) and fitted (dash line) time series in the clusters in Figure 2. 
 
During the analysis we assumed the time series were generated by AR(3) models. Plots of the 
observed and fitted values within clusters provide an overall assessment of the robustness of the 
result with respect to this assumption. Figure 5 plots the time series of observed values in the three 
clusters and values fitted using the AR(3) models associated with each cluster. The close match 
supports the assumption that AR(3) models are a good approximation of the processes generating 
the original fourteen series. 
 
 
Finally, we note that the search algorithm found the three clusters of time series in just eighteen 
steps. This number is much smaller than the total number of clusters to be considered without the 
heuristic search. Figure 6 shows the increase of the log-marginal likelihood --- up to a constant --- 
at each step of the agglomerative search procedure. In the first seven steps, there is a linear increase 
of the marginal likelihood. Thus, merging the time series that belong to the clusters with nearest 



autoregressive coefficients increases the marginal likelihood. In the next eight steps, merging the 
closest clusters does not always increase the marginal likelihood, so that the merging of the “second 
best” is evaluated and accepted. This is so until step 15, when the algorithm has merged the 
fourteen time series into three clusters. At this point, the three possible merging of two clusters at a 
time are evaluated and, since they all result in a decrease of the marginal likelihood, the algorithm 
stops and returns the three clusters so found. 
 

 
Figure 6.Change of the marginal likelihood, in logarithmic scale, at each step of the agglomerative 

search procedure. 
 
 

4. Discussion and related work 
 
Auto-regressive models have received great attention, (see Box and Jenkins, 1976, for a systematic 
exposition and West and Harrison, 1997, for a Bayesian analysis). Bayesian model-based clustering 
was originally proposed by Banfield and Raftery, (1993), to cluster static data.  Ramoni et al., 
(2000, 2001) proposed a Bayesian clustering by dynamics algorithm, called BCD, to cluster 
discrete time series. BCD clusters time series modeled as Markov chains and, contrary to popular 
methods, finds also the number of clusters. Notwithstanding the, somewhat restrictive, Markov 
chain assumption, BCD has been applied successfully to cluster robot experiences based on sensory 
inputs (see Sebastiani et al., 2001), simulated war games (Sebastiani et al., 1999), as well as the 
behavior of stocks in the financial market and automated learning and generation of Bach's 
counterpoint.  
 
Unlike BCD, the algorithm used in this paper clusters time series of continuous variables. The 
different type of data requires different modeling assumptions thus producing an algorithm which is 



similar to BCD, in being Bayesian and model-based, but its methodology is novel. The heuristic 
search used by the clustering method is similar to that implemented in BCD although, here, the 
search is driven by a distance between posterior distributions of parameters characterizing the 
AR(p) models of different clusters, while in BCD the search uses the distance between predictive 
distributions of estimated Markov chains. 
 
The model selection strategy of our algorithm seeks the clustering model with maximum posterior 
probability. Other choices here would be possible such as selecting the median posterior probability 
model (Barbieri and Berger, 2000). One would need to compare these different model choices and 
see whether a similar heuristic search can be developed when the algorithm seeks for the median 
posterior probability model. 
 
At first glance, modeling time series with auto-regression equations of the same order may appear 
to be a severe restriction. We have investigated the limitation of this assumption in simulated data 
(see Sebastiani and Ramoni, 2001) and the emerging result is that the results of our clustering 
method are robust to misspecification of the autoregressive order. 
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