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Abstract. 
 

This paper uses Bayesian modeling techniques to analyze a data set extracted from the 
British General Household survey. The models used are Bayesian networks, which provide 
a compact and easy to interpret knowledge representation formalism. An issue considered 
is the need for automated Bayesian modeling.  

 

1. Introduction 
The General Household Survey is a yearly survey, based on a sample of the general population 
resident in private households in Great Britain. The General Household Survey began in 1971 and 
data is available from 1973 onwards. It is widely regarded as a “gold standard” because of survey 
design and data collection and has been copied by several countries. The goal of this survey is to 
provide continuous information about the major social fields of population, housing, education, 
employment, health and income. Since the survey covers all these topics, it provides users with the 
opportunity to examine not only each topic separately, but also their mutual interplay.  Summary of 
the statistical findings are published by the British Office of National Statistics, and are typically 
presented via contingency tables relating two or three variables at a time, (see Thomas et al., 1998). 
We believe that this communication style fails one of the primary objectives of the survey, which is 
to offer, to a non-technical audience, an up-to-date picture of living in Great Britain. 
To avoid the fragmentation of the overall information, one should try to build a model that 
associates a large number of variables. To be a communication tool, however, such a model needs 
to be easily understandable, and easy to use. Understandability and usability being the 
requirements, we focus on Bayesian networks, which are known for providing a compact and easy-
to-use representation of probabilistic information, (see Lauritzen, 1996, and Cowell et al., 1999). A 
Bayesian network has two components: a directed acyclic graph and a probability distribution. 
Nodes in the directed acyclic graph represent stochastic variables and arcs represent directed 
stochastic dependencies among these variables. Thus, the graph provides a simple summary of the 
dependency structure relating the variables. The probability distribution for the network variables 
decomposes according to the conditional independencies represented by the directed acyclic graph, 
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and each component - a conditional probability table - quantifies the remaining directed 
dependencies. The graph is an effective way to describe the overall dependency structure of a large 
number of variables, thus removing the limitation of examining the pair-wise associations of 
variables. Furthermore, one can easily investigate undirected relationships between the variables, as 
well as making prediction and explanation, by querying the network. This last task consists of 
computing the conditional probability distribution of one variable, given that values of some 
variables in the network are observed. Nowadays there are several efficient algorithms for 
probabilistic reasoning, which take advantage of the network decomposability  (Castillo, 1997), and 
commercial programs such as Bayesware Discoverer (available at http://www.bayesware.com) or 
Hugin (available at http://www.hugin.com) implement these algorithms. 
 
The problem to be addressed, and we believe  one of the reasons for the slow gain in popularity of 
these models  in the statistical community, is how to practically build a Bayesian network from a 
large data set using Bayesian methods. This is considered in the next section. In Section 3 we 
analyze a data set extracted from the 1996 General Household Survey. The model selected is a 
network that displays a global picture of living in Britain and discovers interesting associations 
among variables describing the household wealth, the socio-economic status and the ethnic group 
of the head of the household. 
 

2. Overview of automated learning 
 
A Bayesian network is a directed acyclic graph and a probability distribution.  Nodes in the 
directed acyclic graph represent stochastic variables ),,,( 21 vXXXX L= , and directed arcs from 
parent nodes to a child node represent conditional dependencies. Any conditional dependence is 
quantified by the set of conditional distributions of the child variable given the configurations of 
the parent variables. Marginal and conditional independencies encoded by the directed acyclic 
graph (Lauritzen, 1996), provides the following factorization of the joint probability distribution 
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Here, ),,,( 21 vkkk xxx L  is a combination of values of the variables in X . For each i , the variable 

iΠ  denotes the parents of iX while ikx and ijπ  denote the events iki xX = , and iji π=Π . 
Particularly, ijπ  is the combination of values of the parent variable iΠ  in the event 

),,,( 21 vkkk xxxX L= . 
 
The problem we consider next is learning a Bayesian network from data. We can describe this as a 
hypotheses testing problem.  Suppose we have a set },,,{ 21 gMMMM L=  of Bayesian networks, 
for the discrete random variables ),,,( 21 vXXXX L= . Each Bayesian network represents a 
hypothesis on the dependency structure relating the variables. We wish to choose one Bayesian 
network after observing a sample of data },,,{ 21 vkkk xxxD L= , for nk ,,1L= .  With )( hMp  
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denoting the prior probability of hM , for each gh ,,1L= , the typical Bayesian solution to the 
model selection problem consists of choosing the network with maximum posterior probability  
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The quantity )|( hMDp  is the marginal likelihood, and it is computed as follows. Given the 
Bayesian network hM , let hθ  denote the vector parameterizing the joint distribution of the 
variables ),,,( 21 vXXXX L= . We denote by )( hp θ  the prior density of hθ . The likelihood 
function is )|( hDp θ and the marginal likelihood is computed by averaging out hθ  from the 
likelihood function )|( hDp θ . Hence  
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The computation of the marginal likelihood requires the specification of a parameterization of each 
model hM , and the elicitation of a prior density for hθ .  
 
In this paper we suppose that the variables ),,,( 21 vXXXX L=  are all discrete, so that the 
parameter vector hθ  consists of the conditional probabilities ),|( θπθ ijiikiijk

h xXp =Π== . In 
this framework, it is easy to show that, under the assumption of multinomial sampling with 
complete data, the likelihood function becomes  
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where ijkn  is the sample frequency of pairs ),( ijikx π  in the database D . The Hyper-Dirichlet 
distribution, which is defined as a set of independent Dirichlet distributions ),,( 1 iijcijD αα L , one 

for each set of parameters kijk
h }{θ  associated with the conditional distribution ijiX π| , is a 

numerically convenient choice. It is well known (see Cowell et al., 1999), that this choice for the 
prior distribution provides the following formula for the marginal likelihood of the data. 
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Here, ∑=

k ijkij nn  is the marginal frequency of ijπ  in the database, and ∑=
k ijkij αα .  

 
For consistent model comparisons, we adopt symmetric Hyper-Dirichlet distributions, which 
depend on one hyper-parameter α , called global precision. Each hyper-parameter ijkα  is computed 
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from α  as )/( iiijk cqαα = , where ic  is the number of categories of the variable iX , and iq  is the 
number of categories of the parent variable iΠ . The rationale behind this choice is to distribute the 
overall prior precision α  in a uniform way among the parameters associated with different 
conditional probability tables. In this way, the prior probabilities quantifying each network are 
uniform, and all the prior marginal distributions of the network variables are uniform and have the 
same prior precision. 
 
In principle, given a set of Bayesian networks, with prior probabilities, and a complete data set, one 
can compute their posterior probability distribution and select the network with maximum posterior 
probability. However, as the number of variables in the data set increases, the size of the search 
space makes the task infeasible. Thus some heuristic is required to reduce the dimension of the 
search space. Fortunately, under some particular model prior probabilities, the posterior probability 
of each model hM  factorizes, thus allowing local computations. This property can be fully 
exploited by imposing an order over the variables, which transforms model selection into a 
sequence of locally exhaustive searches. We will also describe a greedy search algorithm to reduce 
the complexity of each locally exhaustive search when the model space is still too large. 
 
The marginal likelihood )|( hMDp  above has a multiplicative form. This fact, together with the 
assumption that the network prior probabilities are decomposable (Heckerman et al., 1995), 
provides a factorization of each model posterior probability.  A prior probability for a network 

hM is termed decomposable if it admits the factorization  
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where )( i

hMp  is the prior probability of the local network structure that specifies the parent set iΠ  
for the variable iX . Thus, decomposable priors are elicited by exploiting the modularity of a 
Bayesian network, and are based on the assumption that the prior probability of a local structure 

i
hM of a Bayesian network is independent of the other parts j

hM . This factorization of each model 
prior probability, together with the factorization of the marginal likelihood, ensures that the 
posterior probability of the Bayesian network hM  can be written as 
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Thus, the network posterior probabilities are decomposable and, in the comparison of models that 
differ only in the parent sets of a variable iX , only the quantity  
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matters. Thus, for fixed i , the comparison of two local network structures i
hM  and i

hM~ specifying 
different parent sets for iX  can be done by simply evaluating the product of the local Bayes factor  
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and the prior odds  
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to compute the posterior odds of i

hM  versus i
hM~ . This comparison is independent of any other 

associations among the other 1−i  variables. 
 
Now, the problem is how to exploit this posterior probability decomposability. One approach, 
proposed by Cooper and Herskovitz (see Cooper and Herskovitz, 1992), is to restrict the model 
search to a subset of all possible networks, which are consistent with an order relation f on the 
variables ),,,( 21 vXXXX L= . The order relation f is defined by jX  f iX , if iX  cannot be a 
parent of jX  in any network in M . In other words, rather than exploring networks with arcs 
having all possible directions, this order limits the search to a subset of networks in which there are 
interesting directed associations.  
 
At first glance, the requirement for an order among the variables appears to be a serious restriction 
on the applicability of this search strategy, but we have successfully implemented it in other 
applications. (see Sebastian 2000) From a modeling point of view, specifying this order is 
equivalent to specifying the hypotheses to be tested and some careful screening of the variables in 
the data set may avoid the surprise of selecting a not very sensible model or explore uninteresting 
associations. In the next section, we will consider the problem of selecting an order among the 
variables in a real application. 
 
This order imposed on the variables, induces a set of ik  possible parents for each variable iX , say 

},,,{ 21 iikiii XXXP L= .  One way to proceed, which produces the sequence of locally exhaustive 
searches, is to implement an independent model selection for each variable iX  as follows. For each 
variable iX , we define iM  to be the set of networks given by the possible combinations of parents 
for iX . The set of networks can be displayed on a lattice with ik  levels, each level having models 
in which the associated directed acyclic graph specifies k  parents for iX . The first level of the 

lattice contains the model iM 0  in which iX  does not have parents. The second level contains the 

ik  models i
jM in which ijX  alone is parent of iX  and so on. For each variable iX , the exhaustive 

search consists of evaluating the posterior probability of each model in the lattice so that the model 
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with maximum posterior probability   can be identified. The global model is then found by linking 
together the local models for each variable iX . 
 
Although the order among the variables greatly reduces the dimension of the search space, this 
locally exhaustive search should explore a lattice of ik2  models for each variable iX  and, for large 

ik , this may be infeasible. A further reduction is obtained via   a greedy search strategy, also 
known as the K2 algorithm, (see Cooper and Herskovitz, 1992). The K2 algorithm is a bottom-up 
strategy, so that simpler models are evaluated first. For each variable iX , rather than computing the 
posterior probability of all networks in the set iM , the search moves up in the lattice as long as in 
the level just explored there is at least one network with posterior probability higher than the 
posterior probabilities of the networks in the precedent level. The search starts by evaluating the 
marginal likelihood )|( iMDp 0 of the local network structure iM 0  encoding independence of iX  
and the variables in the set iP . The next step is the computation of the marginal likelihood 

)|( i
jMDp  of the ik  Bayesian networks i

jM , each of which describes the dependence of iX  on 

the variable ijX . If the maximal marginal likelihood )|( i
jMDp , for some J is greater than 

)|( iMDp 0 , the parent iJX  is accepted and the search proceeds in the same manner by trying to add 
one of the parents from the set iJi XP \  to the Bayesian network selected. If none of the ik  
Bayesian networks has a marginal likelihood greater than )|( iMDp 0 , the model 0

iM  is accepted 
and the search moves to some other variable. Clearly, this heuristic search can end up in a local 
maximum, and one should be aware of this risk, when interpreting the model eventually selected. 
Other search strategies have been proposed to address this problem (see Cowell et al., 1999, and 
references therein). 
 

3. Analysis 
In this section we analyze a data set extracted from the British General Household Survey2, which 
was conducted between April 1996 and March 1997 by the Social Survey Division of the Office of 
National Statistics in the United Kingdom. This annual, multipurpose survey is based on a sample 
of around 10,000 private households in Great Britain. Interviews are conducted with everyone aged 
over 16 in the household (around 18,000 adults). The data set we consider comprises 9033 British 
households, which following the definition introduced since 1981, consist of as a single person or 
of a group of people who have the address as their only or main residence and who share either one 
meal a day or the living accommodation.   

In order to show the potential usefulness of our methodology, we selected thirteen variables 
describing the British households in terms of composition (variables Ad_fems, Ad_males, Children, 
Hoh_age, Hoh_gend), regions of the United Kingdom (variable Region), one ethnicity indicator 
(variable Hoh_origin), one mobility indicator (variable Hoh_reslen) and economic indicators of the 
household (variables Accom, Bedrms, Ncars, Hoh_status, Tenure). A complete description of these 
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variables and their states are summarized in Table 1. This group of variables was fully observed in 
the data set extracted from the survey. 
The modeling of the data was carried out with the program Bayesware Discoverer, which 
implements the model search approach described in the previous section.  
 
 

Variable Description State description 
Region Region of birth of the 

Hoh 
England, Scotland and Wales 

Ad_fems Number of adult females 0, 1, ≥ 2 
Ad_males Number of adult males 0, 1, ≥ 2 
Children Number of children 0, 1, 2, 3, ≥ 4 
Hoh_age Age of  the Hoh    17-36; 36-50; 50-66; 66-98 

(years) 
Hoh_gend Gender of  the Hoh Male, Female 
Hoh_origin Ethnic group of the Hoh  Cauc., Black, Chin., Indian, Other 
Hoh_reslen Length of residence 0-3; 3-9; 9-19; ≥ 19 (months)  
Hoh_status Status of Hoh Active, Inactive, Retired  
Accom Type of accommodation Room, Flat, House, Other 
Bedrms Number of bedrooms 1, 2, 3, ≥ 4 
Tenure House status Rent, Owned, Social-Sector 
Ncars Number of cars 1, 2, 3, ≥ 4 

 
Table 1. Description of the variables extracted from the 1996 General Household Survey. Hoh 
denotes the Head of the Household. Numbers of adult males, females and children refer to the 
household.  
 
The approach to model selection described in the previous section requires the variables to be 
discrete. Therefore, the first step of the analysis was to discretize the continuous variables into four 
bins of approximately equal proportions. Before this step, variables having a skewed distribution 
were transformed in a logarithmic scale. Many integer-valued variables --- as those indicating the 
number adult males or females in the household --- were appropriately recoded and states observed 
with  low frequency were grouped into a unique state. We then choose the following order among 
the variables to limit the space of models to be explored.  
 

Region f Hoh_origin f  Hoh_gend f  Ad_fems f Ad_mal f  Hoh_age f 
 Hoh_status fChildren f  Tenure f Hoh_reslen f Accomod f Bedrms f Ncars. 

 
The choice was based on the following considerations.  Geographic variables precede household 
variables and thus we are interested in conditioning on them first (e.g., see Thomas, et al., 1988).  
The ordering of some of the household demographic variables (e.g., Hoh_origin, Hoh_gend, 
Ad_fems, Ad_males, Hoh_age) and we chose the particular ordering for convenience.  These 
variables are commonly thought of as explaining house wealth which is described by the variables 
Hoh_status, Children, Tenure, Hoh_reslen, Accomod, Bedrms, Ncars, while dependencies in which 
the age of the household head are directed influenced by any of these variables do not seem to be 
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interesting. The remaining order was chosen in a similar way, on the basis of possible cause-effect 
relationships between the remaining variables. 
 
We used this order to build 4 models, using the K2 algorithm, uniform prior probabilities on the 
possible networks, and symmetric Hyper-Dirichlet prior distributions for the model parameters. We 
chose four values for the global precision α =1, 5, 10, 20 to evaluate the effect of changing the 
global prior precision on the model selected. The evaluation was carried out by comparing the 
networks topologies, and their different predictive capabilities. This last aspect was evaluated by 
computing the classification accuracy of the four networks. Full details of the analysis are in 
Sebastiani and Ramoni, (see Sebastiani and Ramoni, 2001) and led to select the network learned 
with α =5. This network is depicted in Figure 1 and is described in the next section. 
 

 
Figure 1 The Bayesian network selected from the data when the global prior precision α is 5. 

4. Results and discussion 
 
The network in Figure 1 shows important, directed dependencies and conditional independencies. 
The dependency of the ethnic group of heads of the households on the variable Region reveals a 
more cosmopolitan society in England than Wales and Scotland, with a larger proportion of Blacks 
and Indians as head of households. The variables describing the ethnic group of the head of the 
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household, of the gender of the head of the household, and the number of adult females in the 
household, separate Region from most of variables describing household wealth. 
 
The working status of the head of the household (variable Hoh_status) is independent of the ethnic 
group given the gender and age of the head of the household. The estimated conditional probability 
table shows that when a young female is head of a household, she is much more likely to be 
inactive than a young male (40% compared to 6% when the age group is 17--36). This difference 
attenuates as the age of the head of the household increases. The conditional distribution 
quantifying the dependency of the gender of the head of the household on the ethnic group reveals 
that Blacks have the smallest probability of having a male head of the household (64%) while 
Indians have the largest probability (89%). 
 
The age of the head of the household depends directly on the number of adult males and females, 
and shows that households with no females and two or more males are more likely to be headed by 
a young male while, on the other hand, households with no males and two or more females are 
headed by a mid age female. There appear to be more single households headed by an elder female 
than an elder male. Furthermore, the composition of the household changes in the ethnic groups: 
the most interesting fact is that Indians have the smallest probability of living in a household with 
no adult males (10%), while Blacks have the largest probability (32%). 
 
The tenure status of the accommodation depends directly on the age, gender and status of the 
household head. On the average, the largest proportion of British households is established in 
owned accommodations (75%), when the age of the head of the household is between 36 and 66 
years. Younger heads of household have a larger chance of living in rented accommodations (20%), 
while senior heads of household have a larger chance of living in accommodations provided by the 
social service (32%). These figures however change dramatically when the gender of the head of 
the household is taken into account. When the head of the household is a young female, the 
probability that the household is in an owned accommodation is 27%, against 65% when the 
household head is a young male. This probability rises up to 52% when the household head is an 
elder female compared to 69% for elder males. Households are more likely to be in an 
accommodation provided by the social service when the head is an inactive female rather than an 
inactive male. 
 
The number of bedrooms is directly affected by the number of children in the household, the type 
of accommodation and its tenure status. Households with two or more children are more likely to 
be in three bedroom flats or houses, but the accommodations provided by the social service are 
slightly smaller than those rented or owned by the head of the household.  Houses are more likely 
to have a larger number of bedrooms than flats: the most likely number of bedrooms of an owned 
house is three, compared to one in a flat. Interestingly, flats provided by the social sector are more 
likely to be one-bed flats, while rented and owned flats are most likely to be two-beds flats.  The 
length of residence is directly dependent on the age of the head of the household and the tenure 
status of the accommodation and shows that the length of residence in rented accommodations or 
those provided by the social service is shorter than that in owned accommodations. 
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Figure 2 An example of query with the Bayesian network induced from the data. 

 
By querying the network, one may investigate other undirected associations and discover that, for 
example, the typical Caucasian mid family with two children has 77% chances of being headed by 
a male who, with probability .57, is aged between 36 and 50 years. The probability that the head of 
the household is active is .84, and the probability that the household is in an owned house is .66. 
Results of these queries are displayed in Figure 2.  
 
These figures are slightly different if the head of the household is, for example, Black. In this case, 
the probability that the head of the household is male (given that there are two children in the 
household) is only .62 and the probability that he is active is .79. If the head of the household is 
Indian, then the probability that he is male is .90 and the probability that he is active is .88. On the 
average, the ethnic group changes slightly the probability of the household being in an 
accommodation provided by the social service (26% for Blacks, 23% for Chinese, 20% Indians and 
24% Caucasians). Similarly, black heads of household are more likely to be inactive than heads of 
household from different ethnic groups (16% Blacks, 10% Indians, 14% Caucasians and Chinese), 
and to be living in a less wealthy household, as shown by the larger probability of living in 
accommodations with a smaller number of bedrooms and of having a smaller number of cars. 
Households headed by  Blacks are less affluent than others, if the gender of the head of the 
household is not taken into account. However, the dependency structure shows that the gender of 
the head of the household and the number of adult females make all the other variables independent 
of the ethnic group. Thus, the model extracted suggests that differences in the household wealth are 
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more likely caused by the different household composition, and in particular by the gender of the 
head of the household, rather than racial issues. 
 
The robustness of many of these interpretations can be examined by careful alteration of the 
ordering of the variables and the structuring of the greedy search algorithm. 
 
 

5. Conclusions 
 
In this analysis, we focused on networks learned by using uniform model priors and sets of 
independent, symmetric Dirichlet distributions as prior distribution for each model parameters. The 
advantage of using these prior distributions is that they can be elicited simply by assigning the 
global prior precision and this choice produces consistent model comparisons. However, symmetric 
Dirichlet distributions are known to be too invariant, (see Forster and Smith, 1998), so that they 
model different dependency structures in the same way. One may wish to use a class of model 
parameter priors which encodes different prior information. An interesting challenge is to devise a 
class of prior distributions which maintains the consistency of model comparisons, feasibility of 
computations, and provides the user with more modeling freedom.  
 
The analysis here was carried out by discretizing all continuous variables, thus raising the issue of 
the effect of the discretization. We are currently working on the implementation of a more general 
learning algorithm, which selects networks from data sets with both continuous and discrete 
variables. 
 
One further issue is related to the publications of the results found with the method described here. 
A Bayesian network is not just the directed acyclic graph displaying the dependency structure 
selected, conditional on the data. It is also a probability distribution, and as such, the best way to 
publish the results is to give the entire network, and to let users make their own queries. Given the 
increasing importance that the World Wide Web is assuming  nowadays as a communication 
system, publication of the network over the WWW offers a simple way to display results without 
giving direct access to the original data, thus preserving data confidentiality. 
 
 

7. Acknowledgements 
 
This research was supported by Eurostat, under contract EP29105. Material from the General 
Household Survey 1996 is Crown Copyright and has been made available by the Office for 
National Statistics through The Data Archive and has been used by permission.  Neither the ONS 
nor The Data Archive bear any responsibility for the analysis or interpretation of the data reported 
here. 
 



 12

6. References 
 
Castillo, E., Gutierrez, J. M., and Hadi, A. S. (1997), Expert Systems and Probabilistic Network 
Models, Springer, New York, NY. 
 
Cooper, G. F., and Herskovitz, E. (1992), ‘A Bayesian method for the induction of probabilistic 
networks from data’, Machine Learning, Vol. 9,  pp. 309-347. 
 
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999), Probabilistic 
Networks and Expert Systems, Springer, New York, NY. 
 
Forster, J. J., and Smith, P. W. F. (1998), ‘Model-based inference for categorical survey data 
subject to non-ignorable non-response (with discussion)’, Journal of the Royal Statistical Society, 
B, Vol. 60, pp. 57-70. 
 
Heckerman, D., Geiger, D., and Chickering, D. M. (1995), ‘Learning Bayesian networks: the 
combinations of knowledge and   statistical data’, Machine Learning, Vol. 20, pp. 97-243. 
 
Lauritzen, S. L. (1996), Graphical Models, Oxford University Press, Oxford, UK. 
 
Sebastiani, P., and Ramoni, M. (2001), ‘Data analysis with Bayesian networks’, Under revision.  
 
Sebastiani, P., Ramoni, M., and Crea, A. (2000), ‘Profiling customers from in-house data’, ACM 
SIGKDD Explorations, Vol. 1, pp. 91-96. 
 
Thomas, M., Walker, A., Wilmot, A., and Bennet, N. (1998), Living in Britain: Results from the 
1996 General Household Survey, The Stationary Office, London, UK. 


	On the Use of Bayesian Networks to Analyze Survey Data
	
	Abstract.

	Introduction
	Overview of automated learning
	Analysis
	Results and discussion
	Conclusions
	7. Acknowledgements
	References


