
EC 501: Problem Set 10, Solutions

1. (a) The Nash equilibria in pure strategies are (T, L) and (B, R). For (T,
L), the row player has no incentive to deviate since 10>5 and the column
player has no incentive to deviate since 5>3. For (B, R), the row player
has no incentive to deviate since 20>5 and the column player has no in-
centive to deviate since 2>0.

(b) Suppose the row player plays T with probability p and B with proba-
bility (1-p) and the column player plays L with probability q and R with
probability (1-q). Then the row player's expected payo� is

E(πr) = p {10q + 5(1− q)}+ (1− p) {5q + 20(1− q)} .

Setting the derivative of this with respect to p equal to zero gives us

∂E(πr)

∂p
= 10q + 5(1− q)− 5q − 20(1− q) = 20q − 15.

Then

p∗ =

{
0 if q < 3

4

1 if q > 3
4

and p∗ can take any value in the interval [0,1] if q = 3
4 .

Similarly, the column player's expected payo� is

E(πc) = q {5p}+ (1− q) {3p+ 2(1− p)} .

Setting the derivative of this with respect to q equal to zero gives us

∂E(πc)

∂q
= 5p− 3p− 2(1− p) = 4p− 2.

Then

q∗ =

{
0 if p < 1

2

1 if p > 1
2

and q∗ can take any value in the interval [0,1] if p = 1
2 .

The best response functions are shown in the graph below.
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Thus there is a Nash equilibrium in mixed strategies at the point where
the best response functions intersect, with the row player playing (T, B)
with probabilities

(
1
2 ,

1
2

)
and the column player playing (L, R) with prob-

abilities
(
3
4 ,

1
4

)
.

(c) The normal form of the sequential game is as follows:
Column Player

LL LR RL RR
Row T 10,5 10,5 5,3 5,3
Player B 5,0 20,2 5,0 20,2

(d) There are three Nash equilibria in pure strategies for this game: (T,
LL), (B, LR) and (B, RR):
(T, LL) because 10>5 and 5>3
(B, LR) because 20>10 and 2>0
(B, RR) because 20>5 and 2>0.

Of these, (B, LR) is the subgame perfect equilibrium, because L is the
best response to T (5>3) and R is the best response to B (2>0). (T,
LL) involves the non-credible threat of L in response to B, while (B, RR)
involves the non-credible threat of R in response to T; thus these two
strategy pairs are not subgame perfect equilibria.

2. (i) Acme will set MR=MC. Now we know MC=5. To �nd MR, write the
demand curve as:

p = 15− 1

300
Q.

Then total revenue is

R(Q) = 15Q− 1

300
Q2
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so MR is:

MR = 15− 1

150
Q.

Then pro�ts are maximized where MR=MC, that is, where

15− 1

150
Q = 5 → Q = 1500.

To �nd the price, we use the demand curve:

p = 15− 1

300
(1500) → p = 10.

Then, since the variable cost of each unit of production is 5, annual pro�ts
will be:

π = (10− 5) ∗ 1500− 3000 = 4500.

(ii) If the market becomes a Cournot duopoly, equilibrium will occur at
the intersection of the two reaction functions. To �nd Acme's reaction
function, we need to solve its pro�t-maximization problem. We index
Acme by a and Better by b. Acme's pro�ts are:

πa =

{
15− 1

300
(Qa +Qb)

}
Qa − 5Qa − 3000

Pro�t is maximized when

∂πa
∂Qa

= 15− 1

300
Qb −

1

150
Qa − 5 = 0 → Qa = 1500− 1

2
Qb.

This is Acme's best response function. By a similar process, we can �nd
Better's best response function to be

Qb = 1500− 1

2
Qa.

Solving the two reaction functions together, we �nd

Qa = Qb = 1000.

To �nd the price, we use the demand curve:

p = 15− 1

300
(2000) → p =

25

3
.

Pro�ts per �rm will be:

πa = πb = (
25

3
− 5) ∗ 1000− 3000 =

1000

3
.

Since pro�ts are positive, Better would �nd it pro�table to enter.
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(iii) The �gure shows the key points of the two solutions. Welfare is taken
as the sum of consumers' surplus and �rm pro�ts. When the market is a
monopoly:

Consumers′ surplus = areaCKE and Profit = areaKELN−3000(fixed cost).

When the market is a duopoly:

Consumers′ surplus = areaCJF and Profit = area JFMN−6000(fixed cost).

So the net gain from entry is area EFML - 3000. Now

areaEFML =
1

2
· 5

3
· 500 +

10

3
· 500 = 2083.33.

So the net welfare e�ect is a loss of 3000-2083.33=916.67.

Of this, consumers gain:

areaKEFJ =
5

3
· 1500 +

1

2
· 5

3
· 500 = 2916.67.

Better Drug gains 333.33 (its pro�t, calculated in part ii), while Acme
loses 4500 - 333.33 = 4166.67 (its pro�t in part i minus its pro�t in part
ii). The net then is

∆W = 2916.67 + 333.33− 4166.67 = 916.67.
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So this adds up to the net welfare e�ect we calculated earlier.

(iv) If Acme played as a Stackelberg leader, it would take Better's re-
action function and optimize over that. The expression for πa we used at
the start of part (ii) will then be modi�ed by substituting Better's reaction
function for Qb. Thus Acme's pro�t can be written as:

πa =

{
15− 1

300

(
Qa +

{
1500− 1

2
Qa

})}
Qa − 5Qa − 3000,

which can be simpli�ed to

πa = 5Qa −
1

600
Q2

a − 3000.

Acme will then maximize pro�ts where

dπa
dQa

= 5− 1

300
Qa = 0 or Qa = 1500,

which is actually the same output level it had chosen in the monopoly
solution.

Using Better's reaction function, we can see how much it will produce:

Qb = 1500− 1

2
Qa = 750.

Total output is therefore 2250 and so

p = 15− 1

300
(2250) → p =

15

2
.

In that case, Better's pro�ts are

πb = (
15

2
− 5) ∗ 750− 3000 = −1175.

Thus Better would be making losses and so would not want to enter. The
solution would therefore revert to the one we found in part (i).

3. (i) The ith �rm's pro�t is

πi = 38qi − q2i − 0.2q̃iqi − 72 + 10qi − q2i .

Pro�t is maximized where:

∂πi
∂qi

= 38− 2qi − 0.2q̃i + 10− 2qi = 0 → qi = 12− 0.05q̃i.

This is �rm i 's reaction function.

5



(ii) If there are 11 identical �rms, each with the same reaction function, the
equilibrium will be symmetric. Thus, in the reaction function, q̃i = 10qi.
Substituting this in the reaction function, we get

qi = 12− 0.05(10qi) → qi = 8.

Thus each �rm will produce 8 units of output, total output will be 88
units and the price will be

p = 38− 8− 0.2(80) = 14.

(iii) Suppose there are (n+1) �rms in the �nal equilibrium. Using the ith
�rm's reaction function, we can write

qi = 12− 0.05(nqi) or nqi =
12− qi

0.05
.

Then the price will be

p = 38− qi − 0.2

(
12− qi

0.05

)
= 3qi − 10.

In this case, the ith �rm's pro�ts will be

πi = 3q2i − 10qi − 72 + 10qi − q2i = 2q2i − 72.

In free entry equilibrium, each �rm's pro�ts will be zero (or just above
zero). Therefore, in equilibrium,

2q2i = 72 → qi = 6.

Then the price will be

p = 3qi − 10 → p = 8

and the number of �rms can be found by noting that

n =
12− qi
0.05qi

= 20.

Since we had assumed the number of �rms to be (n+1), that �gure is 21
�rms.

4. (a) Able's pro�t, as a function of its level of production, is

π = (14−W ) ·W − 2W.

Di�erentiating with respect to W and setting equal to zero yields the
pro�t-maximizing output level: W=6. Then p=8 and π=36.
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(b) Let's assume Baker �nds it pro�table to enter and see what the
Cournot equilibrium would be. Let Wa and Wb represent the output
levels of Able and Baker respectively. Baker's pro�t would be

πb = (14−Wa −Wb) ·Wb − 2Wb.

Di�erentiating with respect to Wb, setting equal to zero, and simplifying,
yields Baker's best-response function:

W ∗b =
12−Wa

2
.

Able's best-response function will be symmetrical to Baker's. Solving the
two functions simultaneously yields the Cournot equilibrium:

Wa = Wb = 4.

Then p=6 and pro�ts are πa = 16, πb = 12, (remember that Baker has
the �xed entry cost of 4).

(c) If Able can pre-commit to an output level, it needs to decide whether
to accommodate or deter Baker's entry. If it accommodates entry, it will
play as a Stackelberg leader, taking Baker's best-response function into
account when maximizing its pro�t:

πa =

{
14−Wa −

12−Wa

2

}
·Wa − 2Wa.

Optimizing over Wa and then completing all the calculations, we get:

Wa = 6,Wb = 3, p = 5, πa = 18, πb = 5.

Since πb > 0, Baker would �nd it pro�table to enter and this equilibrium
would emerge.

In order to deter entry, Able would have to pre-commit to an output level
high enough so as to reduce Baker's operating pro�t to 4, thereby mak-
ing its entry unpro�table. Suppose this output level is W ∗a . Then, using
Baker's best-response function, we can infer that Baker would produce

Wb =
12−W ∗a

2
.

Then Baker's pro�t will be

πb =

{
14−W ∗a −

12−W ∗a
2

}
·
{

12−W ∗a
2

}
− 2

{
12−W ∗a

2

}
.

Setting this equal to 4 and solving, we �nd

W ∗a = 8.
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If Able pre-committed to this output level, Baker would not enter and
therefore

p = 6 and πa = 32.

Able is therefore better o� deterring entry and this will be the equilibrium.
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