EC 501: Problem Set 6 (Due in class on Thursday, October 17)

1. Adam and Barbara both buy widgets. Their (inverse) demand curves are respectively

$$
\mathrm{p}=50-2 \mathrm{q}_{\mathrm{a}} \text { and } \mathrm{p}=50-\mathrm{q}_{\mathrm{b}} .
$$

What is their combined demand curve for widgets?
2 There are 100 people in Slobovia whose individual demands for widgets are:
20 people each have a perfectly inelastic demand for 50 widgets;
30 people each have a perfectly inelastic demand for 40 widgets;
40 people each have a perfectly elastic demand for widgets at a price of $\$ 2$ per widget;
10 people each have a perfectly elastic demand for widgets at a price of $\$ 3$ per widget.
Find the market demand curve for widgets and illustrate it graphically. Explain carefully.
3 The market for calculators is perfectly competitive. The current price is $\$ 30$ and 2 million calculators are sold annually. The elasticity of demand has been estimated to be -1.7 and the elasticity of supply to be 0.8 .
(a) What would be the effect on the price of calculators and the quantity sold if government imposed a sales tax of $\$ 1.80$ per unit?
(b) How much tax revenue is collected? How much of this is actually paid by buyers?

4 The market for gadgets is in equilibrium, with the price at $\$ 5$ per unit and total sales being 1,000 gadgets per year. The elasticities of demand and supply at this equilibrium are estimated to be -0.7 and 2.0 respectively. Find the new equilibrium price and quantity as a result of the imposition of a 15% excise tax.

5 The market for widgets is in equilibrium, with price being $\$ 10$ per unit and 5 million widgets trading every year. By drawing a clearly-labeled diagram, show which of the following taxes would distort the widget market more:
(a) $\$ 1$ per unit excise tax
(b) 10% percentage excise tax.

6 The current price of widgets is $\$ 13.5$ per unit and 75 widgets are sold per period.
Econometricians have estimated that the demand curve for widgets is

$$
\mathrm{Q}_{\mathrm{d}}=1000 / \mathrm{p}
$$

And the supply curve is

$$
\mathrm{Q}_{\mathrm{s}}=50 \mathrm{p}-600 .
$$

These do not match the observed values of p and Q exactly, but are regarded as pretty good estimates.
(a) Suppose the government has found a way to reduce the marginal cost of widgets at all levels of output by $\$ 4$. If it gave this information to the firms in the industry, what would happen to the equilibrium price and quantity?
(b) Suppose that distributing this information would cost the government $\$ 400$ per period. Should they distribute it? Explain clearly, drawing a diagram to show how you calculate the benefits from this information.

