EC 501: Problem Set 6, Solutions

1. Rearrange the demand curves as follows:

$$
\begin{gathered}
p=50-2 q_{a} \\
p=2 q_{a}=50-p \quad \rightarrow \quad q_{a}=25-\frac{1}{2} p \\
p=50-q_{b} \quad \rightarrow \quad q_{b}=50-p .
\end{gathered}
$$

Then the market demand curve is the sum of the two:

$$
Q_{\text {market }}=q_{a}+q_{b}=75-\frac{3}{2} p
$$

which can also be written as

$$
p=50-\frac{2}{3} Q_{m} .
$$

2. A perfectly inelastic demand curve is a vertical line at the relevant quantity level. Since there are 20 people with an inelastic demand for 50 units each (for a total of $20^{*} 50=1000$ units) and 30 people with an inelastic demand for 40 units each (for a total of $40^{*} 30=1200$ units), there is a total inelastic demand for 2200 units.

A perfectly elastic demand curve is a horizontal line at the relevant price level. For example, the 40 people with a perfectly elastic demand at price $\$ 2$ have a demand for zero at any price above $\$ 2$ and an infinite demand at any price at or below $\$ 2$. The 10 people with a perfectly elastic demand at price $\$ 3$ have a demand for zero at any price above $\$ 3$ and an infinite demand at any price at or below $\$ 3$. Collectively, these 50 people's demands aggregate to a perfectly elastic demand at price $\$ 3$.

Putting these groups together yields the demand curve in the graph.

3. (a) To solve this problem, we use a discrete version of the formula

$$
\frac{d p_{d}}{d T}=\frac{\epsilon_{s}}{\epsilon_{s}-\epsilon_{d}} .
$$

We use

$$
\triangle p_{d}=\frac{\epsilon_{s}}{\epsilon_{s}-\epsilon_{d}} \cdot \Delta T
$$

Substituting the values in this case, we get

$$
\triangle p_{d}=\frac{0.8}{0.8+1.7} \cdot 1.80=0.576
$$

Therefore the new demand price is

$$
p_{d}^{\prime}=\$ 30.58
$$

and the supply price is

$$
p_{s}^{\prime}=\$ 28.78
$$

To find the new quantity, we could use a discrete version of the elasticity of demand:

$$
\epsilon_{d}=\frac{\triangle Q_{d}}{\triangle p_{d}} \cdot \frac{p_{d}}{Q_{d}}
$$

Using the initial values of p_{d}, Q_{d} we get

$$
\triangle Q_{d}=\frac{(-1.7)(0.576)(2,000,000)}{30}=-65,280
$$

and therefore the new quantity traded is

$$
Q^{\prime}=1,934,720
$$

(b) The tax revenue collected is

$$
\operatorname{Tax} R=(1.80) Q^{\prime}=\$ 3,482,496
$$

Of this, buyers pay a fraction of $\frac{0.576}{1.80}$, or 32%, which amounts to

$$
\text { Buyers }{ }^{\prime} \text { burden }=\left(\frac{0.576}{1.8}\right)(3,482,496)=\$ 1,114,399 .
$$

4. A simple first-order approximation for this problem would calculate the effect of a 75 cent tax $(=15 \%$ of $\$ 5)$, using the method used in the previous problem. Thus

$$
\triangle p_{d}=\frac{2}{2+0.7} \cdot 0.75=0.556
$$

and therefore the new demand price is

$$
p_{d}^{\prime}=\$ 5.56
$$

the supply price is

$$
p_{s}^{\prime}=\$ 4.81
$$

and the new quantity is

$$
Q^{\prime}=1000+\frac{(-0.7)(0.556)(1000)}{5}=922.22
$$

Alternatively, we could assume the demand and supply curves are of constant elasticity form:

$$
Q_{d}=a p^{-0.7} \quad \text { and } \quad Q_{s}=c p^{2}
$$

where a and c are constants. In this case, we know that

$$
p_{d}^{\prime}=p_{0}(1+t)^{\frac{\epsilon_{s}}{\epsilon_{s}-\epsilon_{d}}}
$$

Substituting the values in this example, we get

$$
\begin{gathered}
p_{d}^{\prime}=(5)(1.15)^{\frac{2}{2+0.7}}=\$ 5.55 \\
p_{s}^{\prime}=\frac{p_{d}^{\prime}}{1.15}=\$ 4.82 \\
Q^{\prime}=\frac{1000}{(5)^{-0.7}} \cdot\left(p_{d}^{\prime}\right)^{-0.7}=929.5
\end{gathered}
$$

So these numbers are slightly different from those found with the first-order approximation.
5. The answer to the previous question suggests that the percentage tax will lead to a smaller distortion, and we can confirm that conclusion by drawing a graph of the situation. In the Figure, D and S represent the pretax demand and supply curves respectively, with the initial equilibrium being at A. We know that a per-unit excise tax will cause the S curve to move in a parallel way, as shown by S^{\prime} (per-unit). A percentage tax will cause the supply curve to shift in a proportional way, as shown by S'(percentage). The key point is that the two S^{\prime} curves will cross at point B, directly above point A, since it is only when $p=\$ 10$ (as at A) that the vertical shift of S^{\prime} (percentage) will equal exactly $\$ 1$. Thus we see that the final equilibrium under the per-unit tax will be at C , while under the percentage tax it will be at $\mathrm{E} \ldots$ showing the bigger distortion is caused
by the per-unit tax.

6. (a) If MC falls by $\$ 4$ per unit, the supply curve will shift downwards by $\$ 4$ everywhere. The original supply curve was

$$
p=\frac{1}{50} Q_{s}+12
$$

so the new supply curve will be

$$
p=\frac{1}{50} Q_{s}^{\prime}+8
$$

which can be written as

$$
Q_{s}^{\prime}=50 p-400
$$

Equilibrium is where $Q_{s}^{\prime}=Q_{d}$, that is where

$$
50 p-400=\frac{1000}{p}
$$

Solving for p :

$$
\begin{gathered}
50 p^{2}-400 p-1000=0 \\
p^{2}-8 p-20=0 \\
(p+2)(p-10)=0 \\
p=10
\end{gathered}
$$

Then

$$
Q=\frac{1000}{10}=100
$$

(b) The situation is illustrated in the figure. The initial equilibrium is at E_{0}, and the final equilibrium is at E_{1}. Producers' surplus has gone up by area B minus area A, while consumers' surplus has gone up by area $\mathrm{A}+\mathrm{C}+\mathrm{D}$.

To calculate these:

$$
\begin{gathered}
\triangle P S=\frac{1}{2}(100)(2)-\frac{1}{2}(75)(1.5)=43.75 \\
\triangle C S=\int_{10}^{13.5} \frac{1000}{p} d p=\left.1000 \ln p\right|_{10} ^{13.5}=300.10
\end{gathered}
$$

Thus the total gain from this cost reduction is $43.75+300.10=343.85$, which is less than the cost of dissemination of 400 . The government should not distribute the information.

If we treated the line segment $E_{0} E_{1}$ as linear, we could measure the change in consumers' surplus as follows:

$$
\triangle C S=(75)(3.5)+\frac{1}{2}(25)(3.5)=306.25
$$

This would not change our answer.

