EC 501: Problem Set 1, Solutions

1. (a) The equation of the line is

$$
\frac{F-32}{C-0}=\frac{212-32}{100-0}
$$

This simplifies as follows:

$$
\frac{F-32}{C}=\frac{180}{100} \quad \rightarrow \quad F-32=\frac{9}{5} C \quad \rightarrow \quad F=32+\frac{9}{5} C .
$$

(b) $F=C$ when

$$
F=32+\frac{9}{5} F \quad \rightarrow \quad \frac{4}{5} F=-32=\quad \rightarrow \quad F=-40
$$

2. Differentiating $u(y)=y^{\frac{1}{2}}$:

$$
u^{\prime}(y)=\frac{1}{2} y^{-\frac{1}{2}} \quad \text { and } \quad u "(y)=-\frac{1}{4} y^{-\frac{3}{2}} .
$$

Then

$$
R=\frac{-y u^{\prime \prime}}{u^{\prime}}=\frac{-y\left(-\frac{1}{4} y^{-\frac{3}{2}}\right)}{\frac{1}{2} y^{-\frac{1}{2}}}=\frac{1}{2}
$$

3. Differentiating implicitly:

$$
\begin{equation*}
4 x+6 y+6 x y^{\prime}+2 y y^{\prime}=0 \tag{1}
\end{equation*}
$$

Substituting $x=1, y=2$, we get

$$
4+12+6 y^{\prime}+4 y^{\prime}=0 \quad \rightarrow \quad y^{\prime}=-\frac{8}{5}
$$

Differentiating (1) implicitly:

$$
4+6 y^{\prime}+6 y^{\prime}+6 x y "+2 y^{\prime} y^{\prime}+2 y^{\prime} y^{\prime}=0 .
$$

Substituting $x=1, y=2$, and $y^{\prime}=-\frac{8}{5}$, we get

$$
4+12\left(-\frac{8}{5}\right)+6 y "+2 \cdot \frac{64}{25}+4 y "=0 \quad \rightarrow \quad y "=\frac{126}{125}
$$

4. Differentiating:

$$
f^{\prime}(x)=\frac{e^{x-3}}{2+e^{x-3}}>0 \text { for all } x
$$

Thus there are no values of x for which $f^{\prime}(x)<0$.
5. Note that

$$
f(1)=\frac{1-1}{1+1}=0
$$

Now

$$
f^{\prime}(x)=\frac{\left(x^{p}+x^{q}\right)\left(p x^{p-1}-q x^{q-1}\right)-\left(x^{p}-x^{q}\right)\left(p x^{p-1}+q x^{q-1}\right)}{\left(x^{p}+x^{q}\right)^{2}}
$$

and therefore

$$
f^{\prime}(1)=\frac{2(p-q)-0}{2^{2}}=\frac{p-q}{2}>0 .
$$

The first-order Taylor approximation is then

$$
f(x) \approx f(1)+f^{\prime}(1)(x-1)=\frac{p-q}{2}(x-1)
$$

6. (a)

$$
N(10)=\frac{1000}{1+999 e^{-3.9}}=47.12
$$

(b) We need to solve for t the following equation:

$$
500=\frac{1000}{1+999 e^{-0.39 t}}
$$

This yields

$$
t=-\frac{1}{0.39} \ln \left(\frac{1}{999}\right)=17.71 \text { days }
$$

7. (a) To test for homogeneity, note that:

$$
Q(t K, t L)=A\left[a(t K)^{-v}+b(t L)^{-v}\right]^{-\frac{1}{v}}
$$

This simplifies to

$$
Q(t K, t L)=t A\left[a K^{-v}+b L^{-v}\right]^{-\frac{1}{v}}=t Q(K, L)
$$

Thus $Q(K, L)$ is homogeneous of degree 1 .
(b)

$$
\frac{Q}{L}=A\left[\frac{a K^{-v}+b L^{-v}}{L^{-v}}\right]^{-\frac{1}{v}}=A\left[\frac{a K^{-v}}{L^{-v}}+b\right]^{-\frac{1}{v}}=A\left[a\left(\frac{K}{L}\right)^{-v}+b\right]^{-\frac{1}{v}}
$$

8. (a) To maximize profits:

$$
\begin{align*}
& \frac{\partial \pi}{\partial x}=-0.2 x-0.2 y+47=0 \tag{2}\\
& \frac{\partial \pi}{\partial y}=-0.2 x-0.4 y+48=0 \tag{3}
\end{align*}
$$

Subtracting (3) from (2) and simplifying yields:

$$
0.2 y=1 \quad \rightarrow \quad y=5
$$

Then, from (2):

$$
0.2 x=46 \quad \rightarrow \quad x=230
$$

To check that this yields a maximum, check the second-order conditions:

$$
\begin{aligned}
& \frac{\partial^{2} \pi}{\partial x^{2}}=-0.2<0 \\
& \frac{\partial^{2} \pi}{\partial y^{2}}=-0.4<0
\end{aligned}
$$

Further, note that

$$
\frac{\partial^{2} \pi}{\partial x \partial y}=-0.2
$$

Therefore

$$
\frac{\partial^{2} \pi}{\partial x^{2}}-\frac{\partial^{2} \pi}{\partial y^{2}}-\left(\frac{\partial^{2} \pi}{\partial x \partial y}\right)^{2}=(-0.2)(-0.4)-(0.2)^{2}=0.04>0 \quad \sqrt{ }
$$

Thus we have confirmed that the solution at $x=230, y=5$ does indeed yield a maximum.
(b) If $x+y=200$, the problem becomes a constrained optimization problem:

$$
\operatorname{Max} \quad \pi(x, y) \quad \text { subject to } \quad x+y=200 \text {. }
$$

To solve this problem, write down the Lagrangian for it:

$$
\mathcal{L}=-0.1 x^{2}-0.2 x y-0.2 y^{2}+47 x+48 y-600+\lambda(200-x-y)
$$

and consider the first-order conditions:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x}=-0.2 x-0.2 y+47-\lambda=0 \tag{4}\\
& \frac{\partial \mathcal{L}}{\partial y}=-0.2 x-0.4 y+48-\lambda=0 \tag{5}
\end{align*}
$$

Combining (4) and (5) yields:

$$
x=195, y=5 .
$$

9. (a) The firm wants to maximize its profit:

$$
\pi=10 Q-\frac{Q^{2}}{2}-Q^{2}-8 Q-5
$$

It should choose Q to satisfy

$$
\frac{\partial \pi}{\partial Q}=10-Q-2 Q-8=0 \quad \rightarrow \quad Q=\frac{2}{3}
$$

Checking the second-order condition:

$$
\frac{\partial^{2} \pi}{\partial Q^{2}}=-3<0 \quad \sqrt{ }
$$

(b) The new cost curve is

$$
C(Q)=Q^{2}+(8+t) Q+5
$$

and profit would be given by

$$
\pi=10 Q-\frac{Q^{2}}{2}-Q^{2}-(8+t) Q-5
$$

(c) Profit would now be maximized where

$$
\frac{\partial \pi}{\partial Q}=10-Q-2 Q-8-t=0 \quad \rightarrow \quad Q=\frac{2-t}{3}
$$

Checking the second-order condition:

$$
\frac{\partial^{2} \pi}{\partial Q^{2}}=-3<0 \quad \sqrt{ }
$$

(d) Government's tax revenue would be given by

$$
T=t\left(\frac{2-t}{3}\right)=\frac{2}{3} t-\frac{t^{2}}{3}
$$

This is maximized where

$$
\frac{d T}{d t}=\frac{2}{3}-\frac{2 t}{3}=0 \quad \rightarrow \quad t=1
$$

Checking the second-order condition:

$$
\frac{\partial^{2} T}{\partial t^{2}}=-\frac{2}{3}<0
$$

10. Since MR is just the derivative of total revenue with respect to Q, we may find $T R$ by integrating $M R$ with respect to Q :

$$
T R=\int M R d Q=\int(25-2 Q) d Q=25 Q-Q^{2}+k
$$

But $T R(q=0)=0$; therefore $k=0$ and $T R=25 Q-Q^{2}$.

