1 Consider the two radical mechanisms shown below:

Mechanism # 1

Mechanism # 2

- (a) Write the overall balanced reaction that results when mechanism # 1 is followed.
- **(b)** Write the overall balanced reaction that results when mechanism # 2 is followed.
- (c) Using the data in the table, calculate ΔH° of each step of both mechanisms.
- (d) Indicate which mechanism is the more likely.
- (e) Explain the reasoning on which you base your selection in (1d).

Bond	DH°
	[kcal/mol]
Br–Br	53
Br-CH ₂ CH ₃	3 71
Br-CH ₃	71
H–Br	88
H ₃ C-CH ₃	90
H-CH ₂ CH ₃	101

2 Name these compounds; use stereochemical descriptors where appropriate.

b

d

$$\mathbf{a}$$
 $\mathbf{H}_{3}\mathbf{C}$
 $\mathbf{C}=\mathbf{C}=\mathbf{C}$

c

3 Rank these alkenes in order of stability (1 = most stable).

3-methyl-1-heptene

3-ethyl-3-hexene

2,3-dimethyl-2-hexene

trans-2,5-dimethyl-3-hexene

4 Assign stereochemical designation (E, Z) to the following alkenes (do not name the molecule)

5 Write a detailed electron-pushing mechanism using the curved-arrow convention.

$$CH_2$$
 + HCl CH_3

6 Predict the major organic product of these reactions, showing the major product's stereochemistry where appropriate. No carbocation rearrangements occur.

$$\mathbf{a}$$
 CH₃ HBr

$$CH_3$$
 Br_2
 CH_3 dark

b

 \mathbf{c}

d

e

 \mathbf{f}

g

$$\frac{\text{(1) } OsO_4}{\text{(2) } NaHSO_3(aq)}$$

$$\begin{array}{c|c} \text{CH}_3 & & \text{(1) BH}_3, \text{ THF} \\ \hline \\ \hline \text{(2) H}_2\text{O}_2 \\ \text{NaOH} \\ \text{H}_2\text{O} \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ \hline \\ \hline \\ H \end{array} \qquad \begin{array}{c} H_2 \\ \hline \\ cat. \end{array}$$

h

i

j

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \\ & & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

7 Deduce the structure of C₉H₁₄ from the following information.

$$C_9H_{14}$$

$$(2) Zn, CH_3CO_2H$$

$$H_2$$

$$Pd$$

$$CHO$$

$$H_2$$

$$Pd$$

8 Write a detailed electron-pushing mechanism using the curved-arrow convention.

$$H-N$$
 + Br_2 + $H\oplus$ + $Br\ominus$