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Abstract. We consider a random knockout tournament among players 1, . . . , n, in which
each match involves two players. The match format is specified by the number of matches
played in each round, where the constitution of the matches in a round is random. Sup-
posing that there are numbers v1 , . . . , vn such that a match between i and j will be won by
i with probability vi/(vi + v j), we obtain a lower bound on the tournament win probability
for the best player, as well as upper and lower bounds for all of the players. We also obtain
additional bounds by considering the best and worst formats for player 1 in the special
case v1 > v2 � v3 � · · · � vn .
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1. Introduction
We consider a tournament among players 1, . . . , n, in
which each match involves two players. The tourna-
ment is assumed to be of knockout type in that the
losers of matches are eliminated and do not move on
to the next round, and the tournament continues until
all but one player is eliminated, with that player being
declared the winner of the tournament. The match
format is specified by the set of positive integers r,
m1 , . . . ,mr with the interpretation that there are a total
of r rounds, with round i consisting of mi matches,∑r

i�1 mi � n−1. Because∑i−1
j�1 m j players have been elim-

inated by the end of round i − 1, we must have that
mi 6 (n −

∑i−1
j�1 m j)/2.

We suppose that the constitution of the matches in
a round is totally random—that is, for instance, the
2m1 players that play in round 1 are randomly chosen
from all n players and then randomly arranged into m1
match pairs. The winners of these m1 matches, along
with the n − 2m1 players that did not play a match in
round 1, then move to round 2, and so on.

We suppose that the players have respective values
v1 , . . . , vn and that a match involving players i and j is
won by player i with probability vi/(vi + v j).We let Pi
be the probability that player i wins the tournament,
i � 1, . . . , n. In Section 3, we derive a lower bound on
the probability that the strongest player (e.g., the one
with the largest v) wins the tournament and an upper
bound on the probability that the weakest player wins
the tournament. In Section 4, we derive upper and
lower bounds on the win probabilities Pi , i > 1, and

also show that if v1 > v2 > · · · > vn , then P1 > P2 > · · ·
> Pn . In Section 5, we consider the special case where
v1 > v2 � · · · � vn and show that when n � 2s + k , 0 6
k < 2s , the best format for the strongest player is the
so-called balanced format that has k matches in the first
round and then has all remaining players competing
in each subsequent round. We also show that when-
ever the number of remaining players( say, t) is even,
there is an optimal (from the point of view of the best
remaining player) format that calls for t/2 matches in
the next round. We also show, for the section’s special
case, that the worst format for the best player is to have
exactly one match each round. Analogous results for
the worst player are also shown. Although we do not
have a proof, we conjecture that, among all possible
formats, the balanced format maximizes and the one-
match-per-round format minimizes the best player’s
probability of winning the tournament even in the case
of general vi . (We show by a counterexample that the
format that calls for t/2 matches when an even number
t of players remain is not optimal for the best player in
the general case.)

2. Literature Review
Most papers in the literature on randomknockout tour-
naments consider more structured formats than the
ones we are considering, which suppose that the num-
ber of matches in each round is fixed and that the
game participants in each round are randomly chosen
from those that remain. In these papers, the structure
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Figure 1. Two Balanced Structures with Six Players
(a) First balanced structure (b) Second balanced structure

1 2 3 4

5 6

1 2 3 4

5 6

of the tournament is fixed, and players are randomly
assigned to positions of the structure. For example, a
structure with six players having a balanced format
(meaning two matches in round 1, two matches in
round 2, and one match in round 3) might in round 1
have a match between those in positions 1 and 2 and
one between those in positions 3 and 4, with the win-
ners then playing each other in round 2 and five play-
ing six in round 2. Another possibility would be to have
the winners of round 1 each play in round 2 one of
those that did not play in round 1. Panels (a) and (b),
respectively, in Figure 1 indicate these two structures.
An example of a nonbalanced structure with six

players is one where there is a single match in each
round, with the winner of a match playing in the fol-
lowing round someone who has not yet played.

Maurer (1975) proved for random structured for-
mats, when v1 > v � v2 � v3 � · · · � vn , that the win
probability of player 1 is maximized under the bal-
anced structures. Because, as noted by Maurer, a ran-
dom format can be expressed as a mixture of random
structured formats, this also establishes the result for
random formats. In Section 5, we give another proof
of this result, which is both quite elementary and also
shows, under the same condition, that when there are
n � 2s + k remaining players, the optimal random for-
mat can schedule either k or n/2 games if n is even
and k games if n is odd. We also prove, when v1 > v �

v2 � v3 � · · · � vn , that the win probability of player 1
is uniquely minimized by the random format that has
exactly one match in each round.
Chung and Hwang (1978) proved that for any struc-

tured format, if vi is decreasing in i, then so is the
winning probability, which also proves the result for
any randomunstructured format. In Corollary 1 of Sec-
tion 4, we give a proof of this result that also proves,
when vi is decreasing in i , that the probability player i
reaches round s is decreasing in i for all s.

There are other papers studying knockout tour-
naments—for example, David (1959), Glenn (1960),
Hennessy and Glickman (2016), Horen and Riezman
(1985), Hwang (1982), Marchand (2002), Khatibi et al.
(2015), and JacobsonandKing (2009). ThepaperbyRoss
and Ghamami (2008) discusses efficient ways of simu-
latingwin probabilities for such tournaments.

3. Lower Bound on the Strongest Player’s
Win Probability

In this section, we establish a lower bound on the prob-
ability that the strongest player wins the tournament
and an upper bound on the probability that the weak-
est player wins.
Theorem 1. If vi is decreasing in i, then

P1 >
v1∑n
j�1 v j

, Pn 6
vn∑n
j�1 v j

.

Preliminary to proving the theorem, we define the
weight of a player as follows. Say that a player is alive if
that player has not been eliminated. If S is the current
set of alive players, then, for i ∈ S, the weight of player
i is defined to equal vi/

∑
j∈S v j . If i is no longer alive,

its weight is defined to be 0.
The following lemma is needed to prove the

theorem.
Lemma 1. Suppose at the start of a round that players A
and B are alive and have respective weights x and y, where
x > y. If X and Y are random variables denoting the respec-
tive weights of A and B after the round, then yE[X] >
xE[Y].
Proof. The result is immediate if y � 0, so suppose that
x > y > 0. Define a random variable Z whose value is
determined by the results of the following round, as
follows:

• Z � 0 if A and B both lose,
• Z � 1 if A and B both advance,
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• Z � 2 if A and B play each other,
• Z � (i , j) if one of the players A or B defeats i

whereas the other loses to j, and
• Z � (0, j) if one of the players A or B advances by

not being selected to play whereas the other loses to j.
By considering the possible values of Z, we now show
that yE[X |Z] > xE[Y |Z].

1. E[X |Z � 0]� E[Y |Z � 0]� 0.
2. Conditional on Z � 1, let R represent the sum of

the weights of those aside from A and B that advance.
Then,

E[X |Z�1]�E
[

x
x + y +R

]
, E[Y |Z�1]�E

[
y

x + y +R

]
,

showing that yE[X |Z � 1]� xE[Y |Z � 1].
3. Conditional on Z � 2, let R represent the sum of

the weights of those aside from A and B that advance
(and note that R is independent of who wins the game
between A and B). Then,

E[X |Z � 2]� x
x + y

E
[

x
x +R

]
,

E[Y |Z � 2]�
y

x + y
E
[

y
y +R

]
.

Hence,

yE[X |Z�2]−xE[Y |Z�2]�
x y

x + y
E
[

x
x +R

−
y

y +R

]
>0,

where the inequality follows because x > y implies that
x/(x + r) > y/(y + r) for any r > 0.
4. With w and v representing, respectively, the

weights of i and j before the round, and using the fact
that A is equally likely to play i or j, we have

P(A advances |Z � (i , j))� c
(

x
x + w

) (
v

v + y

)
,

where 1/c � (x/(x + w))(v/(v + y)) + (y/(y + w)) ·
(v/(v + x)). Let R represent the sum of the weights of
those, aside from A, B, and j, that advance, and note
that R is independent of which of A or B loses. Then,

E[X |Z � (i , j)]� c
(

x
x + w

) (
v

v + y

)
E
[

x
R + x + v

]
,

and similarly,

E[Y |Z � (i , j)]� c
(

y
y + w

) (
v

v + x

)
E
[

y
R + y + v

]
.

Hence, letting D � yE[X |Z � (i , j)] − xE[Y |Z � (i , j)],
we see that

D � cx yvE
[

x
(x + w)(y + v)(R + x + v)

−
y

(y + w)(x + v)(R + y + v)

]
.

As it is easy to check that for every R > 0 and x > y

x(y + w)(x + v)(R + y + v) > y(x + w)(y + v)(R + x + v),

it follows that yE[X |Z � (i , j)]− xE[Y |Z � (i , j)] > 0 for
x > y.
5. That yE[X |Z � (0, j)] − xE[Y |Z � (0, j)] > 0 fol-

lows from the preceding result by setting w � 0.
Hence, we have shown that yE[X |Z] > xE[Y |Z], and
the result follows on taking expectations of both sides
of this inequality. �

Proof of Theorem 1. We give the proof that P1 >
v1/

∑n
j�1 v j . The proof that Pn 6 vn/

∑n
j�1 v j is similar. Let

W j(k) be theweight of player j after k rounds have been
played. Also, let Hk be the history of all results through
the first k rounds. We claim that

E[W1(k + 1) |Hk] >W1(k).

Because the claim is true when W1(k) � 0, assume that
W1(k) > 0. Let Ak denote the set of alive players after
round k. Now, from Lemma 1, we have, for j ∈ Ak , that

W j(k)E[W1(k + 1) |Hk] >W1(k)E[W j(k + 1) |Hk].

Hence, if E[W1(k + 1) |Hk] <W1(k), then for any j ∈ Ak ,

W j(k) > E[W j(k + 1) |Hk],

which is a contradiction since 1 �
∑

j∈Ak
W j(k) �∑

j∈Ak
E[W j(k+1) |Hk]. Hence, E[W1(k+1) |Hk]>W1(k),

and taking expectations of both sides gives

E[W1(k + 1)] > E[W1(k)], k > 0.

If the tournament has r rounds, then the preceding
yields that E[W1(r)] > E[W1(0)], which gives the result
since E[W1(r)]� P1, whereas W1(0)� v1/

∑n
j�1 v j . �

Remark 1. The preceding argument shows that W1(k),
k > 0 is a submartingale, and that Wn(k), k > 0 is a
supermartingale.

4. Bounds on Win Probabilities
Let

pi �
1

n − 1
∑
j,i

vi

vi + v j

be the probability that i would win a match against a
randomly chosen opponent. In this section, we prove
that Pi is smaller than it would be if it were the case
that i wouldwin each game it playswith probability pi .
That is, we will prove the following.

Theorem 2. If the tournament format is (r,m1 , . . . ,mr),
then

Pi 6
r∏

s�1

(
2ms

rs
pi + 1− 2ms

rs

)
,

where rs � n−∑s−1
j�1 m j is the number of players that advance

to round s.
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To prove the preceding theorem, we will need a cou-
ple of lemmas. Before giving these lemmas, we intro-
duce the following notation. We let Ri , s be the event
that player i reaches round s, s � 1, . . . , r, and we let
Ri , r+1 be the event that i wins the tournament. If a
player receives a bye in a round (that is, if it reaches
that round but is not chosen to play a match), say that
it plays player 0 in that round. Also, let pi j � vi/(vi +v j),
i , j, be the probability that i beats j in a game.
Lemma 2 is easily proven by a coupling argument.

Lemma 2. For all s � 1, . . . , r+1, P(Ri , s R j, s) is an increas-
ing function of v j . (When i � j, this states that P(Ri , s) is an
increasing function of vi .)

Lemma 3. Assume v1 > v2 > · · · > vn . For fixed i,
P(Ri , s R j, s) decreases in j for j , i.

Proof. Fix i, j, k, where j < k and j, k , i. The proof
is by induction on n. For n � 3, the only format is to
play one game each round. The result holds in this case
because v j > vk implies that

3P(Ri , 2R j, 2)�
vi

vi + vk
+

v j

v j + vk
>

vi

vi + v j
+

vk

v j + vk

� 3P(Ri , 2Rk , 2).

Assume the results holds for up to n − 1 players and
for all formats. We now consider the n player case. Let
π be an arbitrary format. Define a random vector Z
whose value is determined by the results of the first
round of the tournament under π, as follows:

• Z � (1, u) if i plays against j and k plays against u,
or i plays against k and j plays against u;

• Z � (2, u) if i plays against u, and j plays against k;
• Z � (3, u , v ,w) if i plays against u, j beats v, and k

beats w;
• Z � (4, u , v ,w) if i plays against u, j loses to v, and

k loses to w;
• Z � (5, u , v ,w) if either (a) i plays against u, j

beats v , and k loses to w or (b) i plays against u, k
beats v, and j loses to w.
By considering the possible values of Z, we now

show that P(Ri , s R j, s |Z) > P(Ri , s Rk , s |Z).
1. Let pz y � vz/(vz + vy). Because pik > pi j and p ju >

pku , it follows that

P(Ri , 2R j, 2 |Z � (1, u))� pik p ju/2 > pi j pku/2
� P(Ri , 2Rk , 2 |Z � (1, u)).

Let T denote the set of players other than i, j, and k ,
that reach round 2. Given that i and j have reached
round 2, the probability of i and j reaching round s > 2
is equal to the probability that i and j reaches round
s − 1 in a new tournament that begins with players i, j,
and T and follows the same format as π after round 1.
Let Pi , j,T(s − 1) denote the probability that i and j
reach round s − 1 in the new tournament. Similarly, let

Pi , k ,T(s − 1) denote the probability that i and k reach
round s − 1 in a tournament that begins with play-
ers i, k, and T, and follows the same format as π after
round 1. Then, by Lemma 2, Pi , j,T(s − 1) > Pi , k ,T(s − 1).
Therefore, for s > 2,

P(Ri , s R j, s |Z � (1, u))
� P(Ri , 2R j, 2 |Z � (1, u))E[Pi , j,T(s − 1)]
> P(Ri , 2Rk , 2 |Z � (1, u))E[Pi , k ,T(s − 1)]
� P(Ri , s Rk , s |Z � (1, u)),

where the preceding used that T is independent of the
event Ri , s R j, s and of the event Ri , s Rk , s .

2. Since v j > vk , we have that

P(Ri , 2R j, 2 |Z � (2, u))� piu p jk > piu pk j

� P(Ri , 2Rk , 2 |Z � (2, u)).

Let T denote the set of players other than i, j, and k that
reach round 2. With the same definition and argument
as when Z � (1, u), it can be shown that for s > 2,

Pi , j,T(s) > Pi , k ,T(s),

which implies that

P(Ri , s R j, s |Z � (2, u)) > P(Ri , s Rk , s |Z � (2, u)).

3. In this case,

P(Ri , 2R j, 2 |Z � (3, u , v ,w))� piu

� P(Ri , 2Rk , 2 |Z � (3, u , v ,w)).

Now, given that i, j, and k have reached round 2, the
induction hypothesis implies that the probability of i
and j reaching round s is greater than or equal to the
probability of i and k reaching round s for s > 2. There-
fore, for s > 2,

P(Ri , s R j, s |Z� (3, u , v ,w))>P(Ri , s Rk , s |Z� (3, u , v ,w)).

4. In this case,

P(Ri , s R j, s |Z � (4, u , v ,w))
� P(Ri , s Rk , s |Z � (4, u , v ,w))� 0.

5. In this case,

P(Ri , 2R j, 2 |Z � (5, u , v ,w))� cpiu p jv pwk ,

P(Ri , 2Rk , 2 |Z � (5, u , v ,w))� cpiu pkv pw j ,

where 1/c � p jv pwk + pkv pw j .
Since p jv > pkv and pwk > pw j , we have that

P(Ri , 2R j, 2 |Z� (5, u , v ,w))>P(Ri , 2Rk , 2 |Z� (5, u , v ,w)).

Let T denote the set of players other than i, j, and k
that reach round 2, and note that T has the same dis-
tribution whether (a) or (b) resulted. With the same
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definition and argument as when Z � (1, u), it can be
shown that for s > 2,

Pi , j,T(s) > Pi , k ,T(s),

which implies that

P(Ri , s R j, s |Z� (5, u , v ,w))>P(Ri , s Rk , s |Z� (5, u , v ,w)).

Hence, we have shown that

P(Ri , s R j,s |Z)>P(Ri , s Rk , s |Z),

and the result follows on taking expectations of both
sides of this inequality. �
Proof of Theorem 2. Assume that v j is decreasing in j.
Now, given that i reaches round s, the conditional
probability that j also reaches round s is

P(R j, s |Ri , s)�
P(R j, s Ri , s)

P(Ri , s)
.

Hence, from Lemma 3, it follows that P(R j, s |Ri , s) is a
decreasing function of j, j , i. Now,

Pi(v1 , . . . , vn)� P(Ri , 2 . . .Ri , r+1)�
r∏

s�1
P(Ri , s+1 |Ri , s).

Let Ci , s be the event that i competes in round s (that
is, it is the event that i reaches round s and then plays
a match in that round). With Q j � P(i plays j in round
s |Ci , s), j , i, we have that

Q j � P(i plays j in round s |Ci , s R j, s)P(R j, s |Ci , s)
� P(i plays j in round s |Ci , s R j, s)P(R j, s |Ri , s)

�
1

rs − 1P(R j, s |Ri , s),

where rs � n −∑s−1
j�1 m j . Hence, Q j , j , i is a decreas-

ing function of j. Letting Y be a random variable such
that P(Y � j) � Q j , j , i, it thus follows that Y is
stochastically smaller than the random variable X hav-
ing P(X � j)� 1/(n − 1), j , i. Therefore,

P(Ri , s+1 |Ri , s)� 1− 2ms

rs
+

2ms

rs
,P(Ri , s+1 |Ci , s)

� 1− 2ms

rs
+

2ms

rs

∑
j,i

vi

vi + v j
Q j

� 1− 2ms

rs
+

2ms

rs
E
[

vi

vi + vY

]
6 1− 2ms

rs
+

2ms

rs
E
[

vi

vi + vX

]
� 1− 2ms

rs
+

2ms

rs

1
n − 1

∑
j,i

vi

vi + v j
,

where the preceding used that vi/(vi + v j) is an increas-
ing functionof j andthatX is stochastically larger thanY
to conclude that E[vi/(vi + vY)] 6 E[vi/(vi + vX)]. �

Remark 2. Remark 2. It follows from Lemma 2 that for
all random formats, Pi �P(Ri , r+1) is an increasing func-
tion of vi . On the other hand, it seems intuitive that Pi
is a decreasing function of v j for j , i. However, while
this is true for n � 3, it is not true for n > 4. The argu-
ment, when n � 3, uses that

P1 �
1
3

(
v2

v2 + v3

v1

v1 + v2
+

v3

v2 + v3

v1

v1 + v3

)
+

2
3

v1

v1 + v2

v1

v1 + v3
.

This gives

∂P1

∂v2
�

1
3 v1

∂
∂v2

v2

(v2 + v3)(v1 + v2)
+

1
3

v1v3

v1 + v3

∂
∂v2

1
v2 + v3

+
2
3

v2
1

v1 + v3

∂
∂v2

1
v1 + v2

�
1
3

v1

(v1 + v2)2(v2 + v3)2(v1 + v3)
· (−v1v2

3 − 2v2
2v3 − 3v1v2

2 − 6v1v2v3)
6 0.

For n � 4, a counterexample can be constructed
as follows. Consider the balanced format, and let
Pi(v1 , v2 , v3 , v4) denote the probability that i wins the
tournament when player j has value v j , j � 1, 2, 3, 4.
Conditioning on whether or not player 1 first plays
against player 4, we have

P1(2, 1, 1, x)�
1
3

(
2

2+ x
· 23

)
+

2
3

· 23

(
1

1+ x
· 23 +

x
(1+ x)

2
(2+ x)

)
and thus

P1

(
2, 1, 1, 1

100

)
�

31,600
60,903 ≈ 0.518858 · · · < 0.518861 · · ·

≈ 7,744
14,925 � P1

(
2, 1, 1, 1

99

)
. �

Using Lemma 3, it is easy to show that if vi is
decreasing in i, then so is P(Ri , s).

Corollary 1. If v1 > · · · > vn , then P(R1, s) > P(R2, s) >
· · · > P(Rn , s), s � 1, . . . , r + 1.

Proof. Suppose i < j. Because rs is the number of play-
ers that are still alive at the start of round s, it follows
that given i reaches round s, the expected number of
others that also reach round s is rs − 1. Consequently,

rs − 1�
∑
k,i

P(Rk , s |Ri , s).
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Hence,

(rs − 1)P(Ri , s)�
∑
k,i , j

P(Ri , s Rk , s)+P(Ri , s R j,s),

(rs − 1)P(R j, s)�
∑
k, j, i

P(R j, s Rk , s)+P(R j, s Ri , s),

which by Lemma 3 shows the desired result for s 6 r.
In addition, we have

P(Ri , r+1)�
∑
k, j, i

P(Ri , r Rk , r)
vi

vi + vk
+P(R j, r Ri , r)

vi

vi + v j
,

P(R j, r+1)�
∑
k, j, i

P(R j, r Rk , r)
v j

v j + vk
+P(Ri , r R j, r)

v j

v j + vi
,

which by Lemma 3, and by the assumption that vi > v j ,
completes the proof. �

We now give lower bounds on the win probabilities.

Theorem 3. Suppose v1 > v2 > · · · > vn . Let X1 , . . . ,Xr
be independent with P(X j � 1) � 2m j/r j � 1 − P(X j � 0),
j � 1, . . . , r, and let N �

∑r
j�1 X j . Then

Pi >
i−1∑
g�1

P(N � g)
g∏

k�1

vi

vi + vk

+

r∑
g�i

P(N � g)
i−1∏
k�1

vi

vi + vk

g+1∏
k�i+1

vi

vi + vk
.

Proof. Define the surrogate of i as follows: The initial
surrogate of i is i itself; anyone who beats a surrogate
of i becomes the current surrogate of i. Note that at
any time there is exactly one player who is the cur-
rent surrogate of i. If we let X j be the indicator of
whether the surrogate of i plays a match in round j, it
follows that X1 , . . . ,Xr are independent with P(X j � 1)
� 2m j/r j � 1 − P(X j � 0). Also, let N �

∑r
j�1 X j be the

number of games played by surrogates of i (while
they are the current surrogate), and let O � { J1 , . . . JN}
be their set of opponents in these games. Because
P(i wins the tournament |N,O)�∏N

k�1(vi/(vi +v Jk
)), it

follows that

Pi � E
[ N∏

k�1

vi

vi + v Jk

]
> E

[min(N, i−1)∏
k�1

vi

vi + vk

N+1∏
k�i+1

vi

vi + vk

]
,

where ∏N+1
k�i+1(vi/(vi + vk)) is equal to 1 when N < i.

Hence,

Pi >
i−1∑
g�1

P(N � g)
g∏

k�1

vi

vi + vk

+

r∑
g�i

P(N � g)
i−1∏
k�1

vi

vi + vk

g+1∏
k�i+1

vi

vi + vk
. �

Remark 3. Remark 3. The probability mass function
of N , which does not depend on i, is easily obtained by
solving recursive equations (see example 3.24 of Ross
2014). In the special casewhere n �2s +k, 06 k < 2s , and
where there are k matches in round 1 and afterwards
all remaining players have matches in each subsequent
round, we have

P(N � s + 1)� 2k
n

� 1−P(N � s).

Remark 4. Remark 4. A weaker bound than the one
provided in Theorem 3 is obtained by noting that, for
i > 1, vi/(vi + v Jk

) > vi/(vi + v1), and so for i > 1,

Pi > E
[(

vi

vi + v1

)N ]
� E

[(
vi

vi + v1

)X1+···Xr
]

�

r∏
j�1

E
[(

vi

vi + v1

)X j
]

�

r∏
j�1

(2m j

r j

vi

vi + v1
+ 1−

2m j

r j
.

)
5. Special Case Best and Worst Formats

for the Strongest and Weakest Players
Theorem 4. Suppose v1 > v � v2 � v3 � · · · � vn . If n �

2s + k, 0 6 k < 2s , then the balanced format that schedules
k matches in round 1 and then has all remaining players
competing in each subsequent round leads to the maximal
possible value of P1.

Proof. Let p � v1/(v1 + v) > 0.5 be the probability that
player 1 wins in a match against another player. The
proof is by induction. As there is nothing to prove
when n � 2, let n � 2s + k, 1 6 k 6 2s , and suppose that
the result is true for all smaller values of n. Consider
a format that calls for j matches in the first round,
where j < k. Then, by the induction hypothesis, the
format of this type that is best for player 1 will call
for k − j matches in the second round. The probability
that player 1 is among the final 2s players under these
conditions is

f1(p) ≡
[
2 j
n

p + 1−
2 j
n

] [
2(k − j)

n − j
p + 1−

2(k − j)
n − j

]
.

However, the probability that player 1 is among the
final 2s players if the first round has k matches is

f2(p) ≡
2k
n

p + 1− 2k
n
.

Now, f1(p)− f2(p)� 0 when p is either 1/2 or 1. Because
f1(p) − f2(p) is easily seen to be strictly convex, this
implies that f1(p)− f2(p) < 0 when 1/2 < p < 1. Thus, in
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searching for the best format for player 1, we need not
consider any format that calls for less than k matches
in round 1.
Now consider any format that calls for k + i matches

in round 1 where i > 0. By the induction hypothesis,
it will call for 2s−1 − i matches in round 2. This will
result in player 1 being among the final 2s−1 players
with probability

g1(p) ≡
[
2k + 2i

n
p + 1− 2k + 2i

n

] [
2s − 2i
2s − i

p + 1− 2s − 2i
2s − i

]
.

However, the format that calls for k matches in round
1 and 2s−1 matches in round 2 leads to player 1 being
among the final 2s−1 players with probability

g2(p) ≡
(
2k
n

p + 1− 2k
n

)
p.

Now, g1(p)− g2(p)� 0 when p is either 1/2 or 1. Because

g′′1 (p)� 22k + 2i
n

2s − 2i
2s − i

, g′′2 (p)� 22k
n
,

it follows that g′′1 (p) > g′′2 (p) is equivalent to

(k + i)(2s − 2i) > k(2s − i),

which is easily seen to be equivalent to

2s > k + 2i ,

which holds because having k + i two-person matches
implies that 2s + k > 2(i + k). Hence, g1(p) − g2(p) is
convex, which shows that there is an optimal format
that initially has k matches in round 1. The induction
hypothesis then proves the result. �

Remark 5. Remark 5. Because g1(p) − g2(p) is strictly
convex unless 2s + k � 2(i+ k), it follows that the format
specified in Theorem 4 is uniquely optimal (in the sense
of maximizing P1) when n is odd, whereas when n is
even, there is also an optimal format that schedules n/2
matches in round 1.

Remark 6. Remark 6. In the case of general vi , the for-
mat that calls for n/2 matches when an even number n
of players remain is not optimal for the best player. For
a counterexample, consider a knockout tournament
with six players having values v1 � 6, v2 � 4, v3 � 3,
v4 � v5 � v6 � 1. Under the balanced format, the proba-
bility of player 1winning the tournament is P1 �0.4422.
Under a format that plays three games in round 1
and then one game in each round, the probability of
player 1 winning the tournament is P′1 � 0.4412 < P1.

Theorem 5. Suppose v1 > v � v2 � v3 � · · · � vn . The
unique format that minimizes P1 is the one that has exactly
one match in each round.

Proof. The proof is by induction. Suppose it is true for
all tournaments with fewer than n players, and now
suppose there are n players. Consider any format that
calls for s matches in the first round, where s > 1. The
probability that player 1 is still alive when there are
only n − s alive players is

f1(p)�
2s
n

p + 1− 2s
n
.

On the other hand, the probability that player 1 is still
alive when there are only n − s alive players when the
format is one match per round is

f2(p)�
s−1∏
j�0

(
2

n − j
p + 1− 2

n − j

)
.

Because f2(p) is a polynomial whose coefficients are
all positive, it follows that f ′′2 (p) > 0. As f ′′1 (p) � 0,
this implies that f1(p) − f2(p) is strictly concave, which,
since f1(p) − f2(p) � 0 when p � 1/2 or p � 1, enables
us to conclude that f1(p) − f2(p) > 0 when 1/2 < p < 1.
Hence, by the induction hypothesis, the format that
calls for one match in each round results in a win prob-
ability for player 1 that is strictly smaller than what
it is under any format that calls for s > 1 matches in
round 1. �

The following theorem gives the analogous results
for the weakest player. The proofs are similar and thus
omitted.

Theorem 6. Suppose v1 � v2 � v3 � · · · � vn−1 > vn . The
format that results in the highest win probability for player
n is the one that has one match in each round. If n � 2s + k,
1 6 k 6 2s , then the format that minimizes Pn is the one that
schedules k matches in round 1 and then has all remaining
players competing in each subsequent round.

We now use the preceding results to obtain universal
(that is, they hold for all formats) upper bounds on Pi .
Recall that pi � (1/(n − 1))∑ j,i vi/(vi + v j).
Lemma 4. Suppose n � 2s + k, 0 6 k < 2s .
(i) If p > 1

2 , then
∏r

j�1((2m j/r j)p + 1− 2m j/r j) is max-
imized by the balanced format, and its value is ((2k/n)p +

1− 2k/n)ps .
(ii) If p �

1
2 , then

∏r
j�1((2m j/r j)p + 1 − 2m j/r j) � 1/n

for all eligible formats.
(iii) If p < 1

2 ,
∏r

j�1((2m j/r j)p+1−2m j/r j) is maximized
by the format where at each round there is exactly one match,
and its value is ∏n−1

j�1 ((2/(n − j + 1))p + 1− 2/(n − j + 1)).
Proof. Note that for a tournament where the players
have respective values (v1 , v . . . , v), P1 �

∏r
j�1((2m j/r j) ·

p1 + 1 − 2m j/r j). Now, (i) and (iii) are direct corollar-
ies of Theorems 2 and 4, respectively, while (ii) is true
because if v1 � v, then all players have equal prob-
ability of winning the tournament regardless of the
format. �
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Theorem 7. Suppose n � 2s + k, 0 6 k < 2s . Then

Pi 6



(
2k
n

pi + 1− 2k
n

)
ps

i if pi >
1
2 ,

1
n

if pi �
1
2 ,

n−1∏
j�1

(
2

n − j + 1 pi + 1− 2
n − j + 1

)
if pi <

1
2 .

Proof. The proof follows directly from Theorem 2 and
the preceding lemma. �
Corollary 2. For a player with pi <

1
2 , the probability of

winning the tournament under any format is less than 1/n.
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