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ESTIMATING THE MEAN COVER
TIME OF A SEMI-MARKOV
PROCESS VIA SIMULATION
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An efficient simulation estimator of the expected time until all states of a finite
state semi-Markov process have been visited is determined.

1. INTRODUCTION

Consider a semi-Markov process that, after entering state /, next goes to state
j with probability P/ y , and given that the next state isy, the time until the tran-
sition from / to j occurs is a random variable with distribution F/j having mean
m(i,j). Starting in state 0, suppose we are interested in estimating n = E[T],
where T, called the cover time, is the time until all of the states 1,2,..., m have
been visited. Let fi(i,j) denote the expected time, given that the process has just
entered state /, until it enters state j , and suppose that we are able to compute
all of the values of i*{i,j) for the pairs i,j of interest. In Section 2, we show how
\i can be efficiently estimated by a simulation of the embedded Markov chain
with transition probabilities P,j. We then consider the problem of using sim-
ulation to estimate E[Tn], the mean time until n of the states 1, . . . ,m have
been visited, where 1 < n < m. In Section 3, we present an estimator of E[Tn]
that is recommended when n is not too small. A different simulation estimator,
which involves a conditional expectation and uses random hazards as control
variates, and which is preferable to the estimator of Section 3 when n is small,
is presented in Section 4.
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2. THE SIMULATION ESTIMATOR

Suppose that the semi-Markov process has been simulated up to the point that
all the states 1 , . . . , m have been visited. Let ix,..., im be any permutation of
1 , . . . , m. Let A, denote the time at which the process first enters state /,; let A2

denote the additional time after Ai until the process has visited both /, and /2;
and, in general, let Aj denote the additional time after the process has visited
/ ' i , . . . , //_i until it has also visited /,. (Thus, if /, is not the last of iu..., ij to be
visited, then Aj = 0.) With these definitions, we have T = 2/=i Aj and so

Letting / - ( / , , . . . ,ik) denote the last one of the states i u . . . ,ik to be visited,
and letting T(i,j) denote the time it takes to go from state /' to state,/, we have
that

Aj = /{/ ,( / ' , , . . . , /}) = ij}T(LU\ ij-\),ij).

Hence,

E[Aj\L(i / , _ , ) , ! ( / , , . . . , / , • ) ] = / { £ , ( / , , . . . , ij) = iJ}lJL(L(i ,/}_,),/,),

and so Ej=i I[L(i ,/,-) = ij]n{L{ilt... ,(,-_i),/,•) is an unbiased estimator
of ii.

As the preceding is true for all permutations, it follows that

A = — E
ml J=l

is an unbiased estimator of n, where the leftmost summation is over all the m\
permutations.

Now, let Vk denote the Arth new state to be visited, k = 1 , . . . ,m, and con-
sider the coefficient of \>.{Vr, Vk) in the expression /L As it is 0 forr> k, suppose
that r < k. The coefficient of p~{Vr, Vk) will be the number of permutations
of the form / , , . . . , ( , •_ , , Vk,iJ+l im such that L ( / , , . . . , / , _ , , Vk) - Vk and
L ( / | , . . . , /,_!) = Vr. Because for this to be true i{,..., /}_i must include Vr and
must all be among the first r states visited, it follows that, for fixed j , there
are ( y - \)(r - 1) • • • ( r - y + 2)(m -j)\ = (m- 1)! (rjZ\)l(mjl}) such per-
mutations. Hence, including the coefficients of /x(0, Vk) [all equal to (m — 1)! ]
we obtain that

where we use the convention that (") = 0 when n < i.
Because the only quantity needed from each simulation run is the ordering

in which the states are visited, it is only necessary to simulate the embedded
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Markov chain to obtain this quantity. Once all the states 1 , . . . ,m have been vis-
ited, the data Vk,k=\,... ,m, should be collected and £ computed. This should
then be repeated over many simulation runs and the average of the values of (t
is the estimator of p. Because the terms of the form £ /=2(> l2 ) / (7 - i ' ) o n ' v

need be computed once and saved, the computation of /i only involves a dou-
ble summation.

Let

'nt = mm ix{i,j), n2 = max n(i,j).
U u

It is known (see Matthews [1]) that

i m m i m m

- £,1(0,/) + p, £ i/i s M < - £ ii(o,n + M2 E i/'-
m 1=1 1=2 m 1=1 /=2

We now show that the estimator ft also falls within these bounds.

THEOREM 1:

i m m i m m

S ( 0 i ) + p, £ 1// s; £ < -
OT ; = 1 ,=2 ™ / = 1 (=2

The theorem follows immediately from the following lemma.

LEMMA 1:

PROOF: Consider the Markov chain for which Pu = \/m, ij = 1 , . . . ,m. In
this case, n(i,j) = m and so /I is a constant. Because £ is an unbiased estima-
tor, it must thus equal n — TiT=i m^1 (for this is just the coupon collector's
problem with equal probabilities). •

3. ESTIMATING THE MEAN TIME UNTIL n DISTINCT STATES HAVE
BEEN VISITED

For n < m, let Tn denote the time until n of the states 1 , . . . , m have been vis-
ited (and so Tm is equal to Tof the previous section), and suppose that we are
interested in using simulation to estimate E[Tn]. For n small, we propose using
the raw simulation estimator in conjunction with the n hazards as controls. Now
suppose n is not small. In this case, we propose estimating E[Tn] by using jx,
the estimator of E[Tm] of Section 2, minus an estimator of E[Tm - Tn].

To estimate E[Tm - Tn], let / , , . . . ,im be any permutation of 1 , . . . ,m.
Now, suppose that the process has been simulated until all the states 1 , . . . ,m
have been visited. Let, as before, V{ be the z'th state visited, and let R, be such
that state / is the i?,th state visited. That is, if Vt =j, then Rj = i.
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Let 50 denote the first time that n distinct states have been visited, and for
j = 1 m let Sj denote the first time at which the process has visited at least
n states including all of the states i\,...,/}. Let Lj be the state that is entered
at time SJt j = 0 , . . . , m. Then, we may write

Now, fory = 1 , . . . , m.

E[(Sj-Sj.t)
+1 / ? , , , . . . , Rljt £,_,]

= I\R(J > n}I{R,. = maxCR, /

Hence, ~ZJL\ /{/?/, > n]I{Rij = max(/?,-,,... ,Rjj)}ii(Lj-\,ij) is an unbiased esti-
mator of E[Tm — Tn]. As this is true for all the m\ permutations, we see that

Km = —7 2 T,I{Rij >n]I[Rh = max(/?,,,... ,#,.))/*(£,_,,/,)
m. j=i

is also an unbiased estimator, where the first sum is over all ml permutations.
To simplify the preceding, consider the coefficient of \i(Vr, Vk), which will

only be positive when n <r < k. The coefficient of n(Vn, Vk) is the number of
permutations of the form it,..., /,_|, Vk, ij+1,... ,im for which /, /}_, are
all among the first n states visited. As such a permutation can either have or not
have Vn as one of its first j — 1 components, we see that there are

_ n\(m-j)\
~ (n-j+\)\

such permutations. For r> n, the coefficient of /*( Vr, Vk) is the number of per-
mutations of the form / j , . . . , / , - _ , , Vk, / , • + , , . . . , im for which ^ is one of / , , . . . ,
;}_i and / ] , . . . , / } _ | are all among the first r states visited. Hence, there are

<y— l ) ( r — 1) ••• (r-j + 2){m-j)l = (m - 1)!( r~

\j-
such permutations. Hence,

j m m

Km = ~ S /*(K,.^*)S"«(m-y)!/(n-y+l)!

/" *=n+2 r=n+i y=2 \y - 2 / / \ y - 1 /

is an unbiased estimator of E[Tm — Tn]. Hence, when n is not small, we rec-
ommend simulating the embedded Markov chain until all the states 1 , . . . , m
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have been visited and then evaluating £ — /*„_„,. Its average over many simula-
tion runs is the simulation estimator of E[Tn].

4. ESTIMATING THE MEAN TIME UNTIL n DISTINCT STATES HAVE
BEEN VISITED: n SMALL

When n is small, we recommend simulating the embedded Markov chain until
n of the states 1 , . . . ,m have been visited. Let Ndenote the number of transi-
tions needed, and let 0 = Xo,Xu... ,XN be the sequence of states visited by
the embedded chain. Then,

£„ = E[Tn \N,XU . ..,XN] = E « « - i . f l

is an unbiased estimator of E[Tn], where m(i,j) is the conditional expected
time it takes the process to make a transition from state / to state j given that
it has just entered / and will next go to j . This estimator can, however, be
improved by the use of control variates (see Ross [2]). Let / , , . . . , / „ denote the
n distinct states visited, in the order of visit; let Tt,..., Tn denote the transition
numbers of the first time these states are visited (so, e.g., XT. — Ij). Also, let
Do = (0) and Dj = \0,I\,...,/,-].The random hazards HJt j = 1 , . . . ,n, are
defined by

i=Tj.x j

These random hazards all have mean 1, and as they would appear to be nega-
tively correlated with fin an estimator of the form

should be quite efficient. The values of the control variate constants C, should
be obtained from the simulation by standard techniques.
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