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We give a probabilistic proof of an identity concerning the expectation of an arbi-
trary function of a compound random variable and then use this identity to obtain
recursive formulas for the probability mass function of compound random vari-
ables when the compounding distribution is Poisson, binomial, negative binomial
random, hypergeometric, logarithmic, or negative hypergeometric+We then show
how to use simulation to efficiently estimate both the probability that a positive
compound random variable is greater than a specified constant and the expected
amount by which it exceeds that constant+

1. INTRODUCTION AND SUMMARY

Let X1,X2, + + + be a sequence of independent and identically distributed~i+i+d+! pos-
itive random variables that are independent of the nonnegative integer-valued ran-
dom variableN+ The random variableSN 5 (i51

N Xi is called a compound random
variable+ In Section 2, we give a simple probabilistic proof of an identity concern-
ing the expected value of a function of a compound random variable; when theXi

are positive integer-valued, an identity concerning the probability mass function of
SN is obtained as a corollary+ In Section 3, we use the latter identity to provide new
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derivations of the recursive formulas for the probability mass function ofSN when
X1 is a positive integer-valued random variable, and N has a variety of possible
distributions+ For other derivations of the applications of Section 3, the reader should
see the references+

Sections 4 and 5 are concerned with finding efficient simulation techniques to
estimate

p 5 P$S# c% and u 5 E @~S2 c!1# ,

wherec is a specified constant and theXi need not be discrete+ Because

E @~S2 c!1# 5 E @S2 c6S. c# ~12 p!

and

E @N#E @X # 2 c 5 E @S2 c#

5 E @S2 c6S. c# ~12 p! 1 E @S2 c6S# c# p,

it follows that estimatingp andu will also give us estimates ofE @S2 c6S. c# and
E @c 2 S6S# c# + Although our major interest is when theXi are positive, in Sec-
tion 5 we show how an effective simulation can be performed when this restriction
is removed+

2. THE COMPOUND IDENTITY

Consider the compound random variable

SN 5 (
i51

N

Xi +

Let M be independent ofX1,X2, + + + and such that

P$M 5 n% 5
nP$N 5 n%

E @N#
, n $ 0+

The random variableM is called the sized bias version ofN+ ~If the interarrival
times of a renewal process were distributed according toN, then the average length
of a renewal interval containing a fixed point would be distributed according toM+!

Theorem 2.1 ~The Compound Identity!: For any function h,

E @SN h~SN !# 5 E @N#E @X1h~SM !# +
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Proof:

E @SN h~SN !# 5 EF(
i51

N

Xi h~SN !G
5 (

n50

`

(
i51

N

E @Xi h~SN !6N 5 n#P$N 5 n%

5 (
n50

`

(
i51

n

E @Xi h~Sn!#P$N 5 n%

5 (
n50

`

nE@X1h~Sn!#P$N 5 n%

5 E @N# (
n50

`

E @X1h~Sn!#P$M 5 n%

5 E @N#E @X1h~SM !# n

Corollary 2.1: If X1 is a positive integer-valued random variable withai 5
P$X1 5 i %, then

P$SN 5 k% 5
1

k
E @N# (

i51

k

iai P$SM21 5 k 2 i %+

Proof: For an eventA, let I ~A! equal one ifA occurs and let it equal zero other-
wise+ Then, with h~x! 5 I ~x 5 k!, the compound identity yields that

P$SN 5 k% 5
1

k
E @SN I ~SN 5 k!#

5
1

k
E @N#E @X1 I ~SM 5 k!#

5
1

k
E @N# (

i

E @X1 I ~SM 5 k!6X1 5 i #ai

5
1

k
E @N# (

i

iP $SM 5 k6X1 5 i %ai

5
1

k
E @N# (

i

iP $SM21 5 k 2 i %ai +

3. SPECIAL CASES

Suppose thatX1 is a positive integer-valued random variable withai 5 P$X1 5 i %+
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3.1. Poisson Case

If

P$N 5 n% 5
e2lln

n!
, n $ 0,

then

P$M 2 1 5 n% 5 P$N 5 n%, n $ 0+

Therefore, the corollary yields the well-known recursion

P$SN 5 k% 5
1

k
l (

i51

k

iai P$SN 5 k 2 i %+

3.2. Negative Binomial Case

For a fixed value ofp, we say thatN is anNB~r ! random variable if

P$N 5 n% 5Sn 1 r 2 1

n Dpr ~12 p!n, n $ 0+

Such a random variable can be thought of as being the number of failures that occur
before a total ofr successes have been amassed when each trial is independently a
success with probabilityp+

If M is the size-biased version of anNB~r ! random variableN, then

P$M 2 1 5 n% 5
n 1 1

r ~12 p!0pSn 1 r

n 1 1Dpr ~12 p!n11 5Sn 1 r

n Dpr11~12 p!n;

that is, M 2 1 is anNB~r 1 1! random variable+
Now, for N anNB~r ! random variable, let

Pr ~k! 5 P$SN 5 k%+

The corollary now yields the recursion

Pr ~k! 5
r ~12 p!

kp (
i51

k

iai Pr11~k 2 i !+

For instance, starting with

Pr ~0! 5 pr,
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the recursion yields

Pr ~1! 5
r ~12 p!

p
a1 Pr11~0!

5 rpr ~12 p!a1,

Pr ~2! 5
r ~12 p!

2p
@a1 Pr11~1! 1 2a2 Pr11~0!#

5
r ~12 p!

2p
@a1

2~r 1 1!pr11~12 p! 1 2a2 pr11# ,

Pr ~3! 5
r ~12 p!

3p
@a1 Pr11~2! 1 2a2 Pr11~1! 1 3a3 Pr11~0!# ,

and so on+

3.3. Binomial Case

If N is a binomial random variable with parametersr andp, then

P$M 2 1 5 n% 5
n 1 1

rp S r

n 1 1Dpn11~12 p!r2n21

5 Sr 2 1

n Dpn~12 p!r212n, 0 # n # r 2 1;

that is, M 2 1 is a binomial random variable with parametersr 2 1 andp+
For a fixedp, let

Pr ~k! 5 P$SN 5 k%+

The corollary then yields the recursion

Pr ~k! 5
rp

k (
i51

k

iai Pr21~k 2 i !+

3.4. Hypergeometric Case

Let N5 N~w, r ! be a hypergeometric random variable having the distribution of the
number of white balls chosen when a random sample ofr is chosen from a set ofw
white andb blue balls; that is,

P$N 5 n% 5
Sw

nDS b
r 2 nD

Sw 1 b
r D +
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Then, it is straightforward to check that

P$M 2 1 5 n% 5
Sw 2 1

n DS b
r 2 n 2 1D

Sw 1 b 2 1
r 2 1 D ;

that is, M 2 1 has the same distribution asN with the modification thatw becomes
w 2 1 andr becomesr 2 1+ Letting

Pw, r ~k! 5 P$SN~w, r ! 5 k%,

then

Pw, r ~k! 5
rw

k~w 1 b! (
i51

k

iai Pw21, r21~k 2 i !+

This yields

Pw, r ~1! 5
rw

w 1 b
a1 Pw21, r21~0! 5

rw

w 1 b
a1

S b
r 2 1D

Sw 1 b 2 1
r 2 1 D ,

and so on+ ~We are using the convention thatSn
kD 5 0 if eitherk , 0 or k . n+!

3.5. The Logarithmic Count Distribution

Suppose that for 0, b , 1,

P$N 5 n% 5 C
bn

n
, n 5 1,2, + + + ,

whereC 5 210 ln~12 b!+ Then,

P$M 2 1 5 n% 5 bn~12 b!, n $ 0;

that is, M 2 1 has the negative binomial distribution of Subsection 3+2 with r 5 1
andp 5 1 2 b+ Thus, the recursion of Subsection 3+2 and the corollary yield the
probabilitiesP$SN 5 k%+

3.6. The Negative Hypergeometric Distribution

Suppose thatN has the distribution of the number of blue balls chosen before a total
of r white balls have been amassed when balls are randomly removed from an urn
containingw white andb blue balls; that is,

P$N 5 n% 5
Sb

nDS w
r 2 1D

S w 1 b
n 1 r 2 1D

w 2 r 1 1

w 1 b 2 n 2 r 1 1
+
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UsingE @N# 5 rb0~w 1 1!, we obtain

P$M 2 1 5 n% 5
Ssb2 1

n DSw 1 1
r D

Sw 1 b
n 1 r D

;

that is, M 2 1 has a hypergeometric distribution, implying that the probabilities
P$SM21 5 j % can be obtained from the recursion of Subsection 3+4+ Applying the
corollary then gives the probabilitiesP$SN 5 k%+

4. ESTIMATING P {S ### c}

The raw simulation approach to estimatep 5 P$S # c% would first generate the
value ofN, sayN 5 n, then generate the values ofX1, + + + ,Xn and use them to deter-
mine the value of the raw simulation estimator:

I 5 51 if (
i51

N

Xi # c

0 otherwise+

(1)

The average value ofI over many such runs would then be the estimator ofp+
We can improve upon the preceding by a conditional expectation approach that

starts by generating the values of theXi in sequence, stopping when the sum of the
generated values exceedsc+ Let M denote the number that are needed; that is,

M 5 minSn :(
i51

n

Xi . cD+
If the generated value ofM is m, then we useP$N , m% as the estimate ofp from
this run+ To see that this results in an estimator having a smaller variance than does
the raw simulation estimatorI, note that because theXi are positive,

I 5 1 m N , M+

Hence,

E @I 6M # 5 P$N , M 6M %+ (2)

Now,

P$N , M 6M 5 m% 5 P$N , m6M 5 m%

5 P$N , m%,

where the final equality used the independence ofN andM+ Consequently, if the
value ofM obtained from the simulation isM 5m, then the value ofE @I 6M # obtained
is P$N , m%+
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The preceding conditional expectation estimator can be further improved by
using a control variable+ Let µ5 E @Xi # , and define the zero mean random variable

Y 5 (
i51

M

~Xi 2 µ!+ (3)

BecauseY and the conditional expectation estimatorP$N , M 6M % are~strongly!
negatively correlated, Y should make an effective control variable+

4.1. Improving the Conditional Expectation Estimator

Let M be defined as earlier and write

P$S# c% 5 (
j

P$M . j %P$N 5 j %+

The conditional expectation estimator is obtained from the preceding by generating
M and usingI $M . j % as the estimator ofP$M . j %+

We now show how to obtain a more efficient simulation estimator ofP$M . j %+
Let F denote the distribution function ofXi and write

P$M . j % 5 P$M . j 6X1 # c%F~c!+

If we now simulateX1 conditional on the event that it is less than or equal toc, then
for this value ofX1, the estimator

P$M . j 6X1%F~c!

is an unbiased estimator ofP$M . j % having a smaller variance thanI $M . j %+ Let
x1 # c be the generated value+ For j . 1, we have

P$M . j 6X1 5 x1%F~c! 5 P$M . j 6X1 5 x1,X2 # c 2 x1%F~c 2 x1!F~c!+

Hence, generatingX2 conditional on the event thatX2 # c 2 x1 gives, when this
generated value isx2, the estimate

P$M . j 6X1 5 x1,X2 5 x2%F~c 2 x1!F~c!+

By continuing in this manner it follows that we can obtain, for any desired valuen,
estimates ofP$M . j %, j 5 1, + + + , n+We can then obtain estimators of the probabil-
ities P$M . j %, j . n, by switching to an ordinary simulation+With ej denoting the
estimator ofP$M . j % , we obtain their values as follows+

1+ e0 5 1, s5 0+
2+ I 5 1+
3+ eI 5 F~c 2 s!eI21+
4+ GenerateX conditional onX # c 2 s+ Let its value beX 5 x+
5+ sr s1 x, I r I 1 1+
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6+ If I # n, go to 3+
7+ GenerateX1, + + + until their sum exceedsc 2 s+ Let R denote the number

needed; that is,

R 5 min$k :X1 1 {{{ 1 Xk . c 2 s%+

8+ en1k 5 enI $R . k%, k $ 1+

The estimator ofP$S# c% from this run is

EST5 (
j

ej P$N 5 j % (4)

and its average over many runs is the overall estimate+

4.2. A Simulation Experiment

In this subsection, we give the numerical results of a simulation study done to eval-
uate the performance of the techniques 1–4+ We letXi be independent and identi-
cally distributed~i+i+d+! uniform ~0,1! random variables and letN be Poisson, having
mean 10+ Table 1 summarizes the standard deviations of the estimators for different
values ofc+ Ten thousand replications were done for each value ofc to estimate
P~(i51

N Xi # c!+ Technique 1 is the raw simulation method; technique 2 is the con-
ditional expectation method; technique 3 is the conditional expectation method along
with the control variable~3!; technique 4 uses the estimator~4!+ The raw estimator
~technique 1!, as expected, performs poorly and the other estimators perform much
better+

Next, we letXi be i+i+d+ exponential random variables with mean 1, and, again,
let N be Poisson, having mean 10+ Table 2 summarizes the standard deviations of
the estimators for different values ofc+ Ten thousand replications were done for
each value ofc to estimateP~(i51

N Xi # c!+

Table 1. Mean and Standard Deviations of the Estimators
for Different Values ofc

c Technique 1 Technique 2 Technique 3 Technique 4

5 Mean 0+5293 0+6333901 0+6332048 0+6332126
SD 0+4991657 0+1828919 0+06064626 0+1654034

7 Mean 0+8575 0+9096527 0+909443 0+9094954
SD 0+3495797 0+08442904 0+04381291 0+07792921

10 Mean 0+9924 0+9960367 0+9960445 0+9960576
SD 0+08685041 0+007884455 0+006071804 0+007213068

15 Mean 0+99999 0+9999976 0+9999977 0+9999977
SD 0+01 0+00001479114 0+00001409331 0+00001230383
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Thus, based on this small experiment, it appears that the reduction in variance
effected by technique 4 over technique 2 is not worth the additional time that it
takes to do a simulation run+ Moreover technique 3, which does not require much
more additional time than either technique 1 or technique 2, usually gives an even
smaller variance than technique 4+

5. ESTIMATING u 5 E [(S − c)1]

Start by lettingSj 5 (i51
j Xi and note that

u 5 EF(
j

~Sj 2 c!1P$N 5 j %G+
To estimateu, follow the procedure of~2! and generate the sequenceX1, + + + , stop-
ping at

M 5 min~ j :Sj . c!+

Let

A 5 SM 2 c

and use the estimator

EF(
j

~Sj 2 c!1P$N 5 j %6M,AG5 (
j$M

~A 1 ~ j 2 M !E @X # !P$N 5 j %

5 ~A 2 ME @X # ! (
j$M

P$N 5 j %

1 E @X #SE @N# 2 (
j,M

jP $N 5 j %D;

Table 2. Mean and Standard Deviations of the Estimators
for Different Values ofc

c Technique 1 Technique 2 Technique 4

15 Mean 0+8638 0+9052721 0+9054672
SD 0+343018 0+1489983 0+1284144

20 Mean 0+9739 0+983253 0+9832735
SD 0+1594407 0+05296109 0+04602155

25 Mean 0+9976 0+9977583 0+9977649
SD 0+04893342 0+01600277 0+01322325

30 Mean 0+9996 0+999749 0+9997479
SD 0+019997 0+003714619 0+003133148
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that is, if the generated values ofM andA arem anda, then the estimate ofu from
that run is

~a 2 mE@X # !P$N $ m% 1 E @X #SE @N# 2 (
j,m

jP $N 5 j %D+
6. WHEN THE Xi ARE UNCONSTRAINED IN SIGN

When theXi are not required to be positive, our previous methods no longer apply+
We now present an approach in the general case+ To estimatep, note that for a
specified integerr,

P$S# c% 5 (
j50

r

P$Sj # c%P$N 5 j % 1 P$S# c6N . r %P$N . r %+

Our approach is to choose a valuer and generate the value ofN conditional on it
exceedingr; if this generated value isg, then simulate the values ofS1, + + + ,Sr and
Sg+ The estimate ofp from this run is

[p 5 (
j50

r

I ~Sj # c!P$N 5 j % 1 I ~Sg # c!P$N . r %+

The larger the value ofr chosen, the smaller the variance of this estimator+ ~When
r 5 0, it reduces to the raw simulation estimator+!

Similarly, we can estimateu by using

u 5 (
j50

r

E @~Sj 2 c!1#P$N 5 j % 1 E @~Sj 2 c!1 6N . r #P$N . r %+

Hence, using the same data generated to estimatep, the estimate ofu is

Zu 5 (
j50

r

~Sj 2 c!1P$N 5 j % 1 ~Sg 2 c!1P$N . r %+
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