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Preface

This book is intended to be a second course in probability for un-
dergraduate and graduate students in statistics, mathematics, engi-
neering, finance, and actuarial science. It is a guided tour aimed
at instructors who want to give their students a familiarity with
some advanced topics in probability, without having to wade through
the exhaustive coverage contained in the classic advanced probabil-
ity theory books (books by Billingsley, Chung, Durrett, Breiman,
etc.). The topics covered here include measure theory, limit the-
orems, bounding probabilities and expectations, coupling, Stein’s
method, martingales, Markov chains, renewal theory, and Brownian
motion.

One noteworthy feature is that this text covers these advanced
topics rigorously but without the need of much background in real
analysis; other than calculus and material from a first undergraduate
course in probability (at the level of A First Course in Probability,
by Sheldon Ross), any other concepts required, such as the definition
of convergence, the Lebesgue integral, and of countable and uncount-
able sets, are introduced as needed.

The treatment is highly selective, and one focus is on giving al-
ternative or non-standard approaches for familiar topics to improve
intuition. For example we introduce measure theory with an exam-
ple of a non-measurable set, prove the law of large numbers using
the ergodic theorem in the very first chapter, and later give two al-
ternative (but beautiful) proofs of the central limit theorem using
Stein’s method and Brownian motion embeddings. The coverage of
martingales, probability bounds, Markov chains, and renewal theory
focuses on applications in applied probability, where a number of
recently developed results from the literature are given.

The book can be used in a flexible fashion: starting with chapter
1, the remaining chapters can be covered in almost any order, with
a few caveats. We hope you enjoy this book.

About notation

Here we assume the reader is familiar with the mathematical notation
used in an elementary probability course. For example we write
X ∼ U(a, b) or X =d U(a, b) to mean that X is a random variable
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Preface 7

having a uniform distribution between the numbers a and b. We use
common abbreviations like N(μ, σ2) and Poisson(λ) to respectively
mean a normal distribution with mean μ and variance σ2, and a
Poisson distribution with parameter λ. We also write IA or I{A} to
denote a random variable which equals 1 if A is true and equals 0
otherwise, and use the abbreviation “iid” for random variables to
mean independent and identically distributed random variables.
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Industrial and Systems Engineering at the University of Southern
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Chapter 1

Measure Theory and Laws
of Large Numbers

1.1 Introduction

If you’re reading this you’ve probably already seen many different
types of random variables, and have applied the usual theorems and
laws of probability to them. We will, however, show you there are
some seemingly innocent random variables for which none of the laws
of probability apply. Measure theory, as it applies to probability, is
a theory which carefully describes the types of random variables the
laws of probability apply to. This puts the whole field of probability
and statistics on a mathematically rigorous foundation.

You are probably familiar with some proof of the famous strong
law of large numbers, which asserts that the long-run average of iid
random variables converges to the expected value. One goal of this
chapter is to show you a beautiful and more general alternative proof
of this result using the powerful ergodic theorem. In order to do this,
we will first take you on a brief tour of measure theory and introduce
you to the dominated convergence theorem, one of measure theory’s
most famous results and the key ingredient we need.

In section 2 we construct an event, called a non-measurable event,
to which the laws of probability don’t apply. In section 3 we introduce
the notions of countably and uncountably infinite sets, and show
you how the elements of some infinite sets cannot be listed in a
sequence. In section 4 we define a probability space, and the laws
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10 Chapter 1 Measure Theory and Laws of Large Numbers

of probability which apply to them. In section 5 we introduce the
concept of a measurable random variable, and in section 6 we define
the expected value in terms of the Lebesgue integral. In section 7 we
illustrate and prove the dominated convergence theorem, in section 8
we discuss convergence in probability and distribution, and in section
9 we prove 0-1 laws, the ergodic theorem, and use these to obtain
the strong law of large numbers.

1.2 A Non-Measurable Event

Consider a circle having radius equal to one. We say that two points
on the edge of the circle are in the same family if you can go from one
point to the other point by taking steps of length one unit around
the edge of the circle. By this we mean each step you take moves
you an angle of exactly one radian degree around the circle, and you
are allowed to keep looping around the circle in either direction.

Suppose each family elects one of its members to be the head of
the family. Here is the question: what is the probability a point X
selected uniformly at random along the edge of the circle is the head
of its family? It turns out this question has no answer.

The first thing to notice is that each family has an infinite number
of family members. Since the circumference of the circle is 2π, you
can never get back to your starting point by looping around the circle
with steps of length one. If it were possible to start at the top of the
circle and get back to the top going a steps clockwise and looping
around b times, then you would have a = b2π for some integers a, b,
and hence π = a/(2b). This is impossible because it’s well-known
that π is an irrational number and can’t be written as a ratio of
integers.

It may seem to you like the probability should either be zero or
one, but we will show you why neither answer could be correct. It
doesn’t even depend on how the family heads are elected. Define
the events A = {X is the head of its family}, and Ai = {X is i
steps clockwise from the head of its family}, and Bi = {X is i steps
counter-clockwise from the head of its family}.

Since X was uniformly chosen, we must have P (A) = P (Ai) =
P (Bi). But since every family has a head, the sum of these proba-
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bilities should equal 1, or in other words

1 = P (A) +
∞∑
i=1

(P (Ai) + P (Bi)).

Thus if x = P (A) we get 1 = x +
∑∞

i=1 2x, which has no solution
where 0≤ x ≤ 1. This means it’s impossible to compute P (A), and
the answer is neither 0 nor 1, nor any other possible number. The
event A is called a non-measurable event, because you can’t measure
its probability in a consistent way.

What’s going on here? It turns out that allowing only one head
per family, or any finite number of heads, is what makes this event
non-measurable. If we allowed more than one head per family and
gave everyone a 50% chance, independent of all else, of being a head
of the family, then we would have no trouble measuring the proba-
bility of this event. Or if we let everyone in the top half of the circle
be a family head, and again let families have more than one head,
the answer would be easy. Later we will give a careful description of
what types of events we can actually compute probabilities for.

Being allowed to choose exactly one family head from each fam-
ily requires a special mathematical assumption called the axiom of
choice. This axiom famously can create all sorts of other logical
mayhem, such as allowing you to break a sphere into a finite number
of pieces and rearrange them into two spheres of the same size (the
“Banach-Tarski paradox”). For this reason the axiom is controversial
and has been the subject of much study by mathematicians.

1.3 Countable and Uncountable Sets

You may now be asking yourself if the existence of a uniform random
variable X ∼ U(0, 1) also contradicts the laws of probability. We
know that for all x, P (X = x) = 0, but also P (0 ≤ X ≤ 1) = 1.
Doesn’t this give a contradiction because

P (0 ≤ X ≤ 1) =
∑

x∈[0,1]

P (X = x) = 0?

Actually, this is not a contradiction because a summation over an
interval of real numbers does not make any sense. Which values of x
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would you use for the first few terms in the sum? The first term in
the sum could use x = 0, but it’s difficult to decide on which value
of x to use next.

In fact, infinite sums are defined in terms of a sequence of finite
sums: ∞∑

i=1

xi ≡ lim
n→∞

n∑
i=1

xi,

and so to have an infinite sum it must be possible to arrange the
terms in a sequence. If an infinite set of items can be arranged in a
sequence it is called countable, otherwise it is called uncountable.

Obviously the integers are countable, using the sequence 0,-1,+1,-
2,+2,.... The positive rational numbers are also countable if you
express them as a ratio of integers and list them in order by the sum
of these integers:

1
1
,
2
1
,
1
2
,
3
1
,
2
2
,
1
3
,
4
1
,
3
2
,
2
3
,
1
4
, ...

The real numbers between zero and one, however, are not count-
able. Here we will explain why. Suppose somebody thinks they have
a method of arranging them into a sequence x1, x2, ..., where we ex-
press them as xj =

∑∞
i=1 dij10−i, so that dij ∈ {0, 1, 2, ..., 9} is the

ith digit after the decimal place of the jth number in their sequence.
Then you can clearly see that the number

y =
∞∑
i=1

(1 + I{dii = 1})10−i,

where I{A} equals 1 if A is true and 0 otherwise, is nowhere to be
found in their sequence. This is because y differs from xi in at least
the ith decimal place, and so it is different from every number in their
sequence. Whenever someone tries to arrange the real numbers into
a sequence, this shows that they will always be omitting some of
the numbers. This proves that the real numbers in any interval are
uncountable, and that you can’t take a sum over all of them.

So it’s true with X ∼ U(0, 1) that for any countable set A we
have P (X ∈ A) =

∑
x∈A P (X = x) = 0, but we can’t simply sum

up the probabilities like this for an uncountable set. There are,
however, some examples of uncountable sets A (the Cantor set, for
example) which have P (X ∈ A) = 0.
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1.4 Probability Spaces

Let Ω be the set of points in a sample space, and let F be the
collection of subsets of Ω for which we can calculate a probability.
These subsets are called events, and can be viewed as possible things
which could happen. If we let P be the function which gives the
probability for any event in F , then the triple (Ω,F , P ) is called a
probability space. The collection F is usually what is called a sigma
field (also called a sigma algebra), which we define next.

Definition 1.1 The collection of sets F is a sigma field, or a σ-field,
if it has the following three properties:

1. Ω ∈ F

2. A ∈ F → Ac ∈ F

3. A1, A2, ... ∈ F → ∪∞
i=1Ai ∈ F

These properties say you can calculate the probability of the
whole sample space (property 1), the complement of any event (prop-
erty 2), and the countable union of any sequence of events (property
3). These also imply that you can calculate the probability of the
countable intersection of any sequence of events, since ∩∞

i=1Ai =
(∪∞

i=1A
c
i )

c .

To specify a σ−field, people typically start with a collection of
events A and write σ(A) to represent the smallest σ-field containing
the collection of events A. Thus σ(A) is called the σ-field “generated”
by A. It is uniquely defined as the intersection of all possible sigma
fields which contain A, and in exercise 2 below you will show such
an intersection is always a sigma field.

Example 1.2 Let Ω = {a, b, c} be the sample space and let A =
{{a, b}, {c}}. Then A is not a σ−field because {a, b, c} /∈ A, but
σ(A) = {{a, b, c}, {a, b}, {c}, φ}, where φ = Ωc is the empty set.

Definition 1.3 A probability measure P is a function, defined on the
sets in a sigma field, which has the following three properties:

1. P (Ω) = 1, and
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2. P (A) ≥ 0, and

3. P (∪∞
i=1Ai) =

∑∞
i=1 P (Ai) if ∀i �= j we have Ai ∩ Aj = φ.

These imply that probabilities must be between zero and one, and
say that the probability of a countable union of mutually exclusive
events is the sum of the probabilities.

Example 1.4 Dice. If you roll a pair of dice, the 36 points in the
sample space are Ω = {(1, 1), (1, 2), ..., (5, 6), (6, 6)}. We can let F be
the collection of all possible subsets of Ω, and it’s easy to see that it
is a sigma field. Then we can define

P (A) =
|A|
36

,

where |A| is the number of sample space points in A. Thus if A =
{(1, 1), (3, 2)}, then P (A) = 2/36, and it’s easy to see that P is a
probability measure.

Example 1.5 The unit interval. Suppose we want to pick a uniform
random number between zero and one. Then the sample space equals
Ω = [0, 1], the set of all real numbers between zero and one. We can
let F be the collection of all possible subsets of Ω, and it’s easy to
see that it is a sigma field. But it turns out that it’s not possible
to put a probability measure on this sigma field. Since one of the
sets in F would be similar to the set of heads of the family (from
the non- measurable event example), this event cannot have a prob-
ability assigned to it. So this sigma field is not a good one to use in
probability.

Example 1.6 The unit interval again. Again with Ω = [0, 1], sup-
pose we use the sigma field F =σ({x}x∈Ω), the smallest sigma field
generated by all possible sets containing a single real number. This
is a nice enough sigma field, but it would never be possible to find
the probability for some interval, such as [0.2,0.4]. You can’t take
a countable union of single real numbers and expect to get an un-
countable interval somehow. So this is not a good sigma field to
use.
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So if we want to put a probability measure on the real numbers
between zero and one, what sigma field can we use? The answer is
the Borel sigma field B, the smallest sigma field generated by all
intervals of the form [x, y) of real numbers between zero and one:
B =σ([x, y)x<y∈Ω).The sets in this sigma field are called Borel sets.
We will see that most reasonable sets you would be interested in are
Borel sets, though sets similar to the one in the “heads of the family”
example are not Borel sets.

We can then use the special probability measure, which is called
Lebesgue measure (named after the French mathematician Henri
Lebesgue), defined by P ([x, y)) = y − x, for 0 ≤ x ≤ y ≤ 1, to
give us a uniform distribution. Defining it for just these intervals is
enough to uniquely specify the probability of every set in B (This
fact can be shown to follow from the extension theorem – Theorem
1.62, which is discussed later). And actually, you can do almost all
of probability starting from just a uniform(0,1) random variable, so
this probability measure is pretty much all you need.

Example 1.7 If B is the Borel sigma field on [0,1], is {.5} ∈ B? Yes
because {.5} = ∩∞

i=1[.5, .5 + 1/i). Also note that {1} = [0, 1)c ∈ B.

Example 1.8 If B is the Borel sigma field on [0,1], is the set of ra-
tional numbers between zero and one Q ∈ B? The argument from
the previous example shows {x} ∈ B for all x, so that each number
by itself is a Borel set, and we then get Q ∈ B since Q is countable
union of such numbers. Also note that this then means Qc ∈ B, so
that the set of irrational numbers is also a Borel set.

Actually there are some Borel sets which can’t directly be written
as a countable intersection or union of intervals like the preceding,
but you usually don’t run into them.

From the definition of probability we can derive many of the
famous formulas you may have seen before such as

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
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and, extending this by induction,

P (∪n
i=1Ai) =

∑
i

P (Ai) −
∑
i<j

P (Ai ∩ Aj)

+
∑

i<j<k

P (Ai ∩ Aj ∩ Ak) · · ·

· · · + (−1)n+1P (A1 ∩ A2 · · · ∩ An),

where the last formula is usually called the inclusion-exclusion for-
mula. Next we next give a couple of examples applying these. In
these examples the sample space is finite, and in such cases unless
otherwise specified we assume the corresponding sigma field is the
set of all possible subsets of the sample space.

Example 1.9 Cards. A deck of n cards is well shuffled many times.
(a) What’s the probability the cards all get back to their initial po-
sitions? (b) What’s the probability at least one card is back in its
initial position?

Solution. Since there are n! different ordering for the cards and
all are approximately equally likely after shuffling, the answer to
part (a) is approximately 1/n!. For the answer to part (b), let
Ai = {card i is back in its initial position} and let A = ∪∞

i=1Ai

be the event at least one card back in its initial position. Because
P (Ai1 ∩ Ai2 ∩ ... ∩ Aik) = (n − k)!/n!, and because the number of
terms in the kth sum of the inclusion-exclusion formula is

(
n
k

)
, we

have

P (A) =
n∑

k=1

(−1)k+1

(
n

k

)
(n − k)

n!

=
n∑

k=1

(−1)k+1

k!

≈ 1 − 1/e

for large n.

Example 1.10 Coins. If a fair coin is flipped n times, what is the
chance of seeing at least k heads in row?
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Solution. We will show you that the answer is

(n+1)/(k+1)∑
m=1

(−1)m+1
[(n−mk

m

)
2−m(k+1) +

(n−mk
m−1

)
2−m(k+1)+1

]
.

When we define the event Ai = {a run of a tail immediately followed
by k heads in a row starts at flip i}, and A0 = {the first k flips are
heads}, we can use the inclusion-exclusion formula to get the answer
above because

P (at least k heads in row) = P (∪n−k−1
i=0 Ai)

and

P (Ai1Ai2 · · ·Aim) =

⎧⎨⎩
0 if flips for any events overlap

2−m(k+1) otherwise and i1 > 0
2−m(k+1)+1 otherwise and i1 = 0

and the number of sets of indices i1 < i2 < · · · < im where the runs
do not overlap equals

(n−mk
m

)
if i1 > 0 (imagine the k heads in each

of the m runs are invisible, so this is the number of ways to arrange
m tails in n − mk visible flips) and

(n−mk
m−1

)
if i1 = 0.

An important property of the probability function is that it is a
continuous function on the events of the sample space Ω. To make
this precise let An, n ≥ 1, be a sequence of events, and define the
event lim inf An as

lim inf An ≡ ∪∞
n=1 ∩∞

i=n Ai

Because lim inf An consists of all outcomes of the sample space that
are contained in ∩∞

i=nAi for some n, it follows that lim inf An consists
of all outcomes that are contained in all but a finite number of the
events An, n ≥ 1.

Similarly, the event lim supAn is defined by

lim supAn = ∩∞
n=1 ∪∞

i=n Ai

Because lim sup An consists of all outcomes of the sample space that
are contained in ∪∞

i=nAi for all n, it follows that lim supAn consists of



18 Chapter 1 Measure Theory and Laws of Large Numbers

all outcomes that are contained in an infinite number of the events
An, n ≥ 1. Sometimes the notation {An i.o.} is used to represent
lim supAn, where the “i.o.” stands for “infinitely often” and it means
that an infinite number of the events An occur.

Note that by their definitions

lim inf An ⊂ lim sup An

Definition 1.11 If lim supAn = lim inf An, we say that lim An ex-
ists and define it by

lim
n

An = lim supAn = lim inf An

Example 1.12 (a) Suppose that An, n ≥ 1 is an increasing sequence
of events, in that An ⊂ An+1, n ≥ 1. Then ∩∞

i=nAi = An, showing
that

lim inf An = ∪∞
n=1An

Also, ∪∞
i=nAi = ∪∞

i=1Ai, showing that

lim supAn = ∪∞
n=1An

Hence,
lim
n

An = ∪∞
i=1Ai

(b) If An, n ≥ 1 is a decreasing sequence of events, in that An+1 ⊂
An, n ≥ 1, then it similarly follows that

lim
n

An = ∩∞
i=1Ai

The following result is known as the continuity property of prob-
abilities.

Proposition 1.13 If limn An = A, then limn P (An) = P (A)

Proof: We prove it first for when An is either an increasing or de-
creasing sequence of events. Suppose An ⊂ An+1, n ≥ 1. Then, with



1.4 Probability Spaces 19

A0 defined to be the empty set,

P (lim An) = P (∪∞
i=1Ai)

= P (∪∞
i=1Ai(∪i−1

j=1Aj)c)
= P (∪∞

i=1AiA
c
i−1)

=
∞∑
i=1

P (AiA
c
i−1)

= lim
n→∞

n∑
i=1

P (AiA
c
i−1)

= lim
n→∞P (∪n

i=1AiA
c
i−1)

= lim
n→∞P (∪n

i=1Ai)

= lim
n→∞P (An)

Now, suppose that An+1 ⊂ An, n ≥ 1. Because Ac
n is an increasing

sequence of events, the preceding implies that

P (∪∞
i=1A

c
i ) = lim

n→∞P (Ac
n)

or, equivalently

P ((∩∞
i=1Ai)c) = 1 − lim

n→∞P (An)

or
P (∩∞

i=1Ai) = lim
n→∞P (An)

which completes the proof whenever An is a monotone sequence.
Now, consider the general case, and let Bn = ∪∞

i=nAi. Noting that
Bn+1 ⊂ Bn, and applying the preceding yields

P (lim sup An) = P (∩∞
n=1Bn)

= lim
n→∞P (Bn) (1.1)

Also, with Cn = ∩∞
i=nAi,

P (lim inf An) = P (∪∞
n=1Cn)

= lim
n→∞P (Cn) (1.2)
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because Cn ⊂ Cn+1 . But

Cn = ∩∞
i=nAi ⊂ An ⊂ ∪∞

i=nAi = Bn

showing that
P (Cn) ≤ P (An) ≤ P (Bn). (1.3)

Thus, if lim inf An = lim supAn = lim An, then we obtain from (1.1)
and (1.2) that the upper and lower bounds of (1.3) converge to each
other in the limit, and this proves the result.

1.5 Random Variables

Suppose you have a function X which assigns a real number to each
point in the sample space Ω, and you also have a sigma field F . We
say that X is an F−measurable random variable if you can com-
pute its entire cumulative distribution function using probabilities of
events in F or, equivalently, that you would know the value of X if
you were told which events in F actually happen. We define the no-
tation {X ≤ x} ≡ {ω ∈ Ω : X(ω) ≤ x}, so that X is F−measurable
if {X ≤ x} ∈ F for all x. This is often written in shorthand notation
as X ∈ F .

Example 1.14 Ω = {a, b, c}, A = {{a, b, c}, {a, b}, {c}, φ}, and we
define three random variables X,Y,Z as follows:

ω X Y Z
a 1 1 1
b 1 2 7
c 2 2 4

Which of the random variables X,Y, and Z are A - measurable?
Well since {Y ≤ 1} = {a} /∈ A, then Y is not A−measurable. For
the same reason, Z is not A−measurable. The variable X is A
- measurable because {X ≤ 1} = {a, b} ∈ A, and {X ≤ 2} =
{a, b, c} ∈ A. In other words, you can always figure out the value of
X using just the events in A, but you can’t always figure out the
values of Y and Z.
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Definition 1.15 For a random variable X we define σ(X) to be the
smallest sigma field which makes X measurable with respect to σ(X).
We read it as “the sigma field generated by X.”

Definition 1.16 For random variables X,Y we say that X is Y -
measurable if X ∈ σ(Y ).

Example 1.17 In the previous example, is Y ∈ σ(Z)? Yes, because
σ(Z) = {{a, b, c}, {a}, {a, b}, {b}, {b, c}, {c}, {c, a}, φ}, the set of all
possible subsets of Ω. Is X ∈ σ(Y )? No, since {X ≤ 1} = {a, b} /∈
σ(Y ) = {{a, b, c}, {b, c}, {a},φ}.

To see why σ(Z) is as given, note that {Z ≤ 1} = {a}, {Z ≤ 4} =
{a, c}, {Z ≤ 7} = {a, b, c}, {a}c = {b, c}, {a, b}c = {c}, {a} ∪ {c} =
{a, c}, {a, b, c}c = φ, and {a, c}c = {b}.

Example 1.18 Suppose X and Y are random variables taking values
between zero and one, and are measurable with respect to the Borel
sigma field B. Is Z = X + Y also measurable with respect to B?
Well, we must show that {Z ≤ z} ∈ B for all z. We can write

{X + Y > z} = ∪q∈Q({X > q} ∩ {Y > z − q}),

where Q is the set of rational numbers. Since {X > q} ∈ B, {Y >
z − q} ∈ B, and Q is countable, this means that {X + Y ≤ z} =
{X + Y > z}c ∈ B and thus Z is measurable with respect to B.

Example 1.19 The function F (x) = P (X ≤ x) is called the distribu-
tion function of the random variable X. If xn ↓ x then the sequence
of events An = {X ≤ xn}, n ≥ 1, is a decreasing sequence whose
limit is

lim
n

An = ∩nAn = {X ≤ x}

Consequently, the continuity property of probabilities yields that

F (x) = lim
n→∞F (xn)

showing that a distribution function is always right continuous. On
the other hand, if xn ↑ x, then the sequence of events An = {X ≤
xn}, n ≥ 1, is an increasing sequence, implying that

lim
n→∞F (xn) = P (∪nAn) = P (X < x) = F (x) − P (X = x)
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Two events are independent if knowing that one occurs does not
change the chance that the other occurs. This is formalized in the
following definition.

Definition 1.20 Sigma fields F1, . . . ,Fn are independent if whenever
Ai ∈ Fi for i = 1, . . . , n, we have P (∩n

i=1Ai) =
∏n

i=1 P (Ai).

Using this we say that random variables X1, . . . ,Xn are independent
if the sigma fields σ(X1), . . . , σ(Xn) are independent, and we say
events A1, . . . , An are independent if IA1 , . . . , IAn are independent
random variables.

Remark 1.21 One interesting property of independence is that it’s
possible that events A,B,C are not independent even if each pair of
the events are independent. For example if we make three indepen-
dent flips of a fair coin and let A represent the event exactly 1 head
comes up in the first two flips, let B represent the event exactly 1
head comes up in the last two flips, and let C represent the event
exactly 1 head comes up among the first and last flip. Then each
event has probability 1/2, the intersection of each pair of events has
probability 1/4, but we have P (ABC) = 0.

In our next example we derive a formula for the distribution of
the convolution of geometric random variables.

Example 1.22 Suppose we have n coins that we toss in sequence,
moving from one coin to the next in line each time a head appears.
That is we continue using a coin until it lands heads, and then we
switch to the next one. Let Xi denote the number of flips made
with coin i. Assuming that all coin flips are independent and that
each lands heads with probability p, we know from our first course in
probability that Xi is a geometric random variable with parameter p,
and also that the total number of flips made has a negative binomial
distribution with probability mass function

P (X1 + . . . + Xn = m) =
(

m − 1
n − 1

)
pn(1 − p)m−n, m ≥ n
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The probability mass function of the total number of flips when each
coin has a different probability of landing heads is easily obtained
using the following proposition.

Proposition 1.23 If X1, . . . ,Xn are independent geometric random
variables with parameters p1, . . . , pn, where pi �= pj if i �= j, then,
with qi = 1 − pi, for k ≥ n − 1

P (X1 + · · · + Xn > k) =
n∑

i=1

qk
i

∏
j �=i

pj

pj − pi
.

Proof. We will prove Ak,n = P (X1 + · · · + Xn > k) is as given
above using induction on k + n. Since clearly A1,1 = q1, we will
assume as our induction hypothesis that Ai,j is as given above for
all i + j < k + n. Then by conditioning on whether or not the event
{Xn > 1} occurs we get

Ak,n = qnAk−1,n + pnAk−1,n−1

= qn

n∑
i=1

qk−1
i

∏
j �=i

pj

pj − pi
+ pn

n−1∑
i=1

qk−1
i

pn − pi

pn

∏
j �=i

pj

pj − pi

=
n∑

i=1

qk
i

∏
j �=i

pj

pj − pi
,

which completes the proof by induction.

1.6 Expected Value

A random variable X is continuous if there is a function f , called
its density function, so that P (X ≤ x) =

∫ x
−∞ f(t)dt for all x. A

random variable is discrete if it can only take a countable number
of different values. In elementary textbooks you usually see two
separate definitions for expected value:

E[X] =
{∑

i xiP (X = xi) if X is discrete∫
xf(x)dx if X is continuous with density f.

But it’s possible to have a random variable which is neither con-
tinuous nor discrete. For example, with U ∼ U(0, 1), the variable
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X = UIU>.5 is neither continuous nor discrete. It’s also possible to
have a sequence of continuous random variables which converges to a
discrete random variable – or vice versa. For example, if Xn = U/n,
then each Xn is a continuous random variable but limn→∞ Xn is a
discrete random variable (which equals zero). This means it would
be better to have a single more general definition which covers all
types of random variables. We introduce this next.

A simple random variable is one which can take on only a finite
number of different possible values, and its expected value is defined
as above for discrete random variables. Using these, we next define
the expected value of a more general non-negative random variable.
We will later define it for general random variables X by expressing it
as the difference of two nonnegative random variables X = X+−X−,
where x+ = max(0, x) and x− = max(−x, 0).

Definition 1.24 If X ≥ 0, then we define

E[X] ≡ sup
all simple variables Y ≤X

E[Y ].

We write Y ≤ X for random variables X,Y to mean P (Y ≤
X) = 1, and this is sometimes written as “Y ≤ X almost surely”
and abbreviated “Y ≤ X a.s.”. For example if X is nonnegative
and a ≥ 0 then Y = aIX≥a is a simple random variable such that
Y ≤ X. And by taking a supremum over “all simple variables”
we of course mean the simple random variables must be measurable
with respect to some given sigma field. Given a nonnegative random
variable X, one concrete choice of simple variables is the sequence
Yn = min(�2nX�/2n, n), where �x� denotes the integer portion of x.
We ask you in exercise 17 at the end of the chapter to show that
Yn ↑ X and E[X] = limn E[Yn].

Another consequence of the definition of expected value is that if
Y ≤ X, then E[Y ] ≤ E[X].

Example 1.25 Markov’s inequality. Suppose X ≥ 0. Then, for any
a > 0 we have that a IX≥a ≤ X. Therefore, E[a IX≥a] ≤ E[X] or,
equivalently,

P (X ≥ a) ≤ E[X]/a

which is known as Markov’s inequality.
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Example 1.26 Chebyshev’s inequality. A consequence of Markov’s
inequality is that for a > 0

P (|X| ≥ a) = P (X2 ≥ a2) ≤ E[X2]/a2

a result known as Chebyshev’s inequality.

Given any random variable X ≥ 0 with E[X] < ∞, and any
ε > 0, we can find a simple random variable Y with E[X] − ε ≤
E[Y ] ≤ E[X]. Our definition of the expected value also gives what
is called the Lebesgue integral of X with respect to the probability
measure P , and is sometimes denoted E[X] =

∫
XdP .

So far we have only defined the expected value of a nonnegative
random variable. For the general case we first define X+ = XIX≥0

and X− = −XIX<0 so that we can define E[X] = E[X+] − E[X−],
with the convention that E[X] is undefined if E[X+] = E[X−] = ∞.

Remark 1.27 The definition of expected value covers random vari-
ables which are neither continuous nor discrete, but if X is continu-
ous with density function f it is equivalent to the familiar definition
E[X] =

∫
xf(x)dx. For example when 0 ≤ X ≤ 1 the definition of

the Riemann integral in terms of Riemann sums implies, with �x�
denoting the integer portion of x,

∫ 1

0
xf(x)dx = lim

n→∞

n−1∑
i=0

∫ (i+1)/n

i/n
xf(x)dx

≤ lim
n→∞

n−1∑
i=0

i + 1
n

P (i/n ≤ X ≤ i + 1
n

)

= lim
n→∞

n−1∑
i=0

i/nP (i/n ≤ X ≤ i + 1
n

)

= lim
n→∞E[�nX�/n]

≤ E[X],

where the last line follows because �nX�/n ≤ X is a simple random
variable.
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Using that the density function g of 1−X is g(x) = f(1−x), we
obtain

1 − E[X] = E[1 − X]

≥
∫ 1

0
xf(1 − x)dx

=
∫ 1

0
(1 − x)f(x)dx

= 1 −
∫ 1

0
xf(x)dx.

Remark 1.28 At this point you may think it might be possible to
express any random variable as sums or mixtures of discrete and
continuous random variables, but this is not true. Let X ∼ U(0, 1)
be a uniform random variable, and let di ∈ {0, 1, 2, ..., 9} be the ith
digit in its decimal expansion so that X =

∑∞
i=1 di10−i. The random

variable Y =
∑∞

i=1 min(1, di)10−i is not discrete and has no intervals
over which it is continuous. This variable Y can take any value
(between zero and one) having a decimal expansion which uses only
the digits 0 and 1 – a set of values C called a Cantor set. Since
C contains no intervals, Y is not continuous. And Y is not discrete
because C is uncountable – every real number between zero and
one, using its base two expansion, corresponds to a distinct infinite
sequence of binary digits.

Another interesting fact about a Cantor set is, although C is
uncountable, that P (X ∈ C) = 0. Let Ci be the set of real numbers
between 0 and 1 which have a decimal expansion using only the
digits 0 and 1 up to the ith decimal place. Then it’s easy to see that
P (X ∈ Ci) = .2i and since P (X ∈ C) ≤ P (X ∈ Ci) = .2i for any i,
we must have P (X ∈ C) = 0. The set C is called an uncountable set
having measure zero.

Proposition 1.29 If E|X|, E|Y | < ∞ then
(a) E [aX + b] = aE[X] + b for constants a, b,
(b) E [X + Y ] = E [X] + E [Y ].

Proof. In this proof we assume X,Y ≥ 0, a > 0, and b = 0. The
general cases will follow using E[X+Y ] = E[X++Y +]−E[X−+Y −],

E[b+X] = sup
Y ≤b+X

E[Y ] = sup
Y ≤X

E[b+Y ] = b+ sup
Y ≤X

E[Y ] = b+E[X],
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and −aX + b = a(−X) + b.

For part (a) if X is simple we have

E[aX] =
∑

x

axP (X = x) = aE[X],

and since for every simple variable Z ≤ X there corresponds another
simple variable aZ ≤ aX, and vice versa, we get

E[aX] = sup
aZ≤aX

E[aZ] = sup
Z≤X

aE[Z] = aE[X]

where the supremums are over simple random variables.
For part (b) if X,Y are simple we have

E[X + Y ] =
∑

z

zP (X + Y = z)

=
∑

z

z
∑

x,y:x+y=z

P (X = x, Y = y)

=
∑

z

∑
x,y:x+y=z

(x + y)P (X = x, Y = y)

=
∑
x,y

(x + y)P (X = x, Y = y)

=
∑
x,y

xP (X = x, Y = y) +
∑
x,y

yP (X = x, Y = y)

=
∑

x

xP (X = x) +
∑

y

yP (Y = y)

= E[X] + E[Y ],

and applying this in the second line below we get

E[X] + E[Y ] = sup
A≤X,B≤Y

E[A] + E[B]

= sup
A≤X,B≤Y

E[A + B]

≤ sup
A≤X+Y

E[A]

= E[X + Y ],
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where the supremums are over simple random variables. We then
use this inequality in the third line below of

E[min(X + Y, n)] = 2n − E[2n − min(X + Y, n)]
≤ 2n − E[n − min(X,n) + n − min(Y, n)]
≤ 2n − E[n − min(X,n)] − E[n − min(Y, n)]
= E[min(X,n)] + E[min(Y, n)]
≤ E[X] + E[Y ],

and we use (a) in the first and fourth lines and min(X + Y, n) ≤
min(X,n) + min(Y, n) in the second line.

This means for any given simple Z ≤ X +Y we can pick n larger
than the maximum value of Z so that E[Z] ≤ E[min(X + Y, n)] ≤
E[X] + E[Y ], and taking the supremum over all simple Z ≤ X + Y
gives E[X + Y ] ≤ E[X] + E[Y ] and the result is proved.

Proposition 1.30 If X is a non-negative integer valued random vari-
able, then

E [X] =
∞∑

n=0

P (X > n).

Proof. Since E[X] = p1 + 2p2 + 3p3 + 4p4 . . . (see problem 6), we
re-write this as

E[X] = p1 + p2 + p3 + p4 . . .
+ p2 + p3 + p4 . . .

+ p3 + p4 . . .
+ p4 . . . ,

and notice that the columns respectively equal p1, 2p2, 3p3 . . . while
the rows respectively equal P (X > 0), P (X > 1), P (X > 2) . . ..

Example 1.31 With X1,X2 . . . independent U(0, 1) random variables,
compute the expected value of

N = min

{
n :

n∑
i=1

Xi > 1

}
.
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Solution. Using E[N ] =
∑∞

n=0 P (N > n), and noting that

P (N > 0) = P (N > 1) = 1,

and

P (N > n) =
∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0
· · ·
∫ 1−x1−x2−···−xn−1

0
dxn · · · dx1

= 1/n!,

we get E[N ] = e.

1.7 Almost Sure Convergence and the Dominated
Convergence Theorem

For a sequence of non-random real numbers we write xn → x or
limn→∞ xn = x if for any ε > 0 there exists a value n such that
|xm − x| < ε for all m > n. Intuitively this means eventually the
sequence never leaves an arbitrarily small neighborhood around x. It
doesn’t simply mean that you can always find terms in the sequence
which are arbitrarily close to x, but rather it means that eventually
all terms in the sequence become arbitrarily close to x. When xn →
∞, it means that for any k > 0 there exists a value n such that
xm > k for all m > n.

The sequence of random variables Xn, n ≥ 1, is said to converge
almost surely to the random variable X, written Xn −→as X, or
limn→∞ Xn = X a.s., if with probability 1

lim
n

Xn = X

The following proposition presents an alternative characterization
of almost sure convergence.

Proposition 1.32 Xn −→as X if and only if for any ε > 0

P (|Xn − X| < ε for all n ≥ m) → 1 as m → ∞

Proof. Suppose first that Xn −→as X. Fix ε > 0, and for m ≥ 1,
define the event

Am = {|Xn − X| < ε for all n ≥ m}
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Because Am,m ≥ 1, is an increasing sequence of events, the continu-
ity property of probabilities yields that

lim
m

P (Am) = P (lim
m

Am)

= P (|Xn − X| < ε for all n sufficiently large)
≥ P (lim

n
Xn = X)

= 1

To go the other way, assume that for any ε > 0

P (|Xn − X| < ε for all n ≥ m) → 1 as m → ∞

Let εi, i ≥ 1, be a decreasing sequence of positive numbers that
converge to 0, and let

Am.i = {|Xn − X| < εi for all n ≥ m}

Because Am.i ⊂ Am+1.i and, by assumption, limm P (Am,i) = 1, it
follows from the continuity property that

1 = P ( lim
m→∞Am.i) = P (Bi)

where Bi = {|Xn − X| < εi for all n sufficiently large}. But
Bi, i ≥ 1, is a decreasing sequence of events, so invoking the con-
tinuity property once again yields that

1 = lim
i→∞

P (Bi) = P (lim
i

Bi)

which proves the result since

lim
i

Bi = {for all i, |Xn − X| < εi for all n sufficiently large}

= {lim
n

Xn = X}

Remark 1.33 The reason for the word “almost” in “almost surely”
is that P (A) = 1 doesn’t necessarily mean that Ac is the empty set.
For example if X ∼ U(0, 1) we know that P (X �= 1/3) = 1 even
though {X = 1/3} is a possible outcome.
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The dominated convergence theorem is one of the fundamental
building blocks of all limit theorems in probability. It tells you some-
thing about what happens to the expected value of random variables
in a sequence, if the random variables are converging almost surely.
Many limit theorems in probability involve an almost surely converg-
ing sequence, and being able to accurately say something about the
expected value of the limiting random variable is important.

Given a sequence of random variables X1,X2, . . ., it may seem to
you at first thought that Xn → X a.s. should imply limn→∞ E[Xn] =
E[X]. This is sometimes called “interchanging limit and expecta-
tion,” since E[X] = E[limn→∞ Xn]. But this interchange is not al-
ways valid, and the next example illustrates this.

Example 1.34 Suppose U ∼ U(0, 1) and Xn = nIn<1/U . Since re-
gardless of what U turns out to be, as soon as n gets larger than
1/U we see that the terms Xn in the sequence will all equal zero.
This means Xn → 0 a.s., but at the same time we have E[Xn] =
nP (U < 1/n) = n/n = 1 for all n, and thus limn→∞ E[Xn] = 1.
Interchanging limit and expectation is not valid in this case.

What’s going wrong here? In this case Xn can increase beyond
any level as n gets larger and larger, and this can cause problems
with the expected value. The dominated convergence theorem says
that if Xn is always bounded in absolute value by some other random
variable with finite mean, then we can interchange limit and expec-
tation. We will first state the theorem, give some examples, and
then give a proof. The proof is a nice illustration of the definition of
expected value.

Proposition 1.35 The dominated convergence theorem. Suppose Xn →
X a.s., and there is a random variable Y with E[Y ] < ∞ such that
|Xn| < Y for all n. Then

E[ lim
n→∞Xn] = lim

n→∞E[Xn].

This is often used in the form where Y is a nonrandom constant,
and then it’s called the bounded convergence theorem. Before we
prove it, we first give a couple of examples and illustrations.
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Example 1.36 Suppose U ∼ U(0, 1) and Xn = U/n. It’s easy to see
that Xn → 0 a.s., and the theorem would tell us that E[Xn] → 0.
In fact in this case we can easily calculate E[Xn] = 1

2n → 0. The
theorem applies using Y = 1 since |Xn| < 1.

Example 1.37 With X ∼ N(0, 1) let Xn = min(X,n), and notice
Xn → X almost surely. Since Xn < |X| we can apply the theorem
using Y = |X| to tell us E[Xn] → E[X].

Example 1.38 Suppose X ∼ N(0, 1) and let Xn = XIX≥−n−nIX<−n.
Again Xn → X, so using Y = |X| the theorem tells us E[Xn] →
E[X].

Proof. Proof of the dominated convergence theorem.
To be able to directly apply the definition of expected value, in

this proof we assume Xn ≥ 0. To prove the general result, we can
apply the same argument to Xn +Y ≥ 0 with the bound |Xn +Y | <
2Y.

Our approach will be to show that for any ε > 0 we have, for all
sufficiently large n, both (a) E[Xn] ≥ E[X] − 3ε, and (b) E[Xn] ≤
E[X] + 3ε. Since ε is arbitrary, this will prove the theorem.

First let Nε = min{n : |Xi −X| < ε for all i ≥ n}, and note that
Xn −→as X implies that P (Nε < ∞) = 1. To prove (a), note first
that for any m

Xn + ε ≥ min(X,m) − mINε>n.

The preceding is true when Nε > n because in this case the right
hand side is nonpositive; it is also true when Nε ≤ n because in this
case Xn + ε ≥ X. Thus,

E[Xn] + ε ≥ E[min(X,m)] − mP (Nε > n).

Now, |X| ≤ Y implies that E[X] ≤ E[Y ] < ∞. Consequently, using
the definition of E[X], we can find a simple random variable Z ≤ X
with E[Z] ≥ E[X] − ε. Since Z is simple, we can then pick m large
enough so Z ≤ min(X,m), and thus

E[min(X,m)] ≥ E[Z] ≥ E[X] − ε.
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Then Nε < ∞ implies, by the continuity property, that mP (Nε >
n) < ε for sufficiently large n. Combining this with the preceding
shows that for sufficiently large n

E[Xn] + ε ≥ E[X] − 2ε,

which is part (a) above.
For part (b), apply part (a) to the sequence of nonnegative ran-

dom variables Y −Xn which converges almost surely to Y −X with
a bound |Y − Xn| < 2Y . We get E[Y − Xn] ≥ E[Y − X] − 3ε, and
re-arranging and subtracting E[Y ] from both sides gives (b).

Remark 1.39 Part (a) in the proof holds for non-negative random
variables even without the upper bound Y and under the weaker
assumption that infm>n Xm → X as n → ∞. This result is usually
referred to as Fatou’s lemma. That is, Fatou’s lemma states that for
any ε > 0 we have E[Xn] ≥ E[X]−ε for sufficiently large n, or equiv-
alently that infm>n E[Xm] ≥ E[X] − ε for sufficiently large n. This
result is usually denoted as lim infn→∞ E[Xn] ≥ E[lim infn→∞ Xn].

A result called the monotone convergence theorem can also be
proved.

Proposition 1.40 The monotone convergence theorem. If

0 ≤ Xn ↑ X

then E[Xn] ↑ E[X].

Proof. If E[X] < ∞, we can apply the dominated convergence the-
orem using the bound |Xn| < X.

Consider now the case where E[X] = ∞. For any m, we have
min(Xn,m) → min(X,m). Because E[min(X,m)] < ∞, it follows by
the dominated convergence theorem that

lim
n

E[min(Xn,m)] = E[min(X,m)].

But since E[Xn] ≥ E[min(Xn,m)], this implies

lim
n

E[Xn] ≥ lim
m→∞E[min(X,m)].
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Because E[X] = ∞, it follows that for any K there is a simple
random variable A ≤ X such that E[A] > K. Because A is simple,
A ≤ min(X,m) for sufficiently large m. Thus, for any K

lim
m→∞E[min(X,m)] ≥ E[A] > K

proving that limm→∞ E[min(X,m)] = ∞, and completing the proof.

We now present a couple of corollaries of the monotone conver-
gence theorem.

Corollary 1.41 If Xi ≥ 0, then E[
∑∞

i=1 Xi] =
∑∞

i=1 E[Xi]

Proof.

∞∑
i=1

E[Xi] = lim
n

n∑
i=1

E[Xi]

= lim
n

E[
n∑

i=1

Xi]

= E[
∞∑
i=1

Xi]

where the final equality follows from the monotone convergence the-
orem since

∑n
i=1 Xi ↑

∑∞
i=1 Xi.

Corollary 1.42 If X and Y are independent, then

E[XY ] = E[X]E[Y ].

Proof. Suppose first that X and Y are simple. Then we can write

X =
n∑

i=1

xiI{X=xi}, Y =
m∑

j=1

yjI{Y =yj}
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Thus,

E[XY ] = E[
∑

i

∑
j

xiyjI{X=xi,Y =yj}]

=
∑

i

∑
j

xiyjE[I{X=xi,Y =yj}]

=
∑

i

∑
j

xiyjP (X = xi, Y = yj)

=
∑

i

∑
j

xiyjP (X = xi)P (Y = yj)

= E[X]E[Y ]

Next, suppose X,Y are general non-negative random variables. For
any n define the simple random variables

Xn =
{

k/2n, if k
2n < X ≤ k+1

2n , k = 0, . . . , n2n − 1
n, if X > n

Define random variables Yn in a similar fashion, and note that

Xn ↑ X, Yn ↑ Y, XnYn ↑ XY

Hence, by the monotone convergence theorem,

E[XnYn] → E[XY ]

But Xn and Yn are simple, and so

E[XnYn] = E[Xn]E[Yn] → E[X]E[Y ],

with the convergence again following by the monotone convergence
theorem. Thus, E[XY ] = E[X]E[Y ] when X and Y are nonnegative.
The general case follows by writing X = X+ − X−, Y = Y + − Y −,
using that

E[XY ] = E[X+Y +] − E[X+Y −] − E[X−Y +] + E[X−Y −]

and applying the result to each of the four preceding expectations.



36 Chapter 1 Measure Theory and Laws of Large Numbers

1.8 Convergence in Probability and in Distribu-
tion

In this section we introduce two forms of convergence that are weaker
than almost sure convergence. However, before giving their defini-
tions, we will start with a useful result, known as the Borel-Cantelli
lemma.

Proposition 1.43 If
∑

j P (Aj) < ∞, then P (lim sup Ak) = 0.

Proof: Suppose
∑

j P (Aj) < ∞. Now,

P (lim sup Ak) = P (∩∞
n=1 ∪∞

i=n Ai)

Hence, for any n

P (lim sup Ak) ≤ P (∪∞
i=nAi)

≤
∞∑

i=n

P (Ai)

and the result follows by letting n → ∞.

Remark: Because
∑

n IAn is the number of the events An, n ≥ 1,
that occur, the Borel-Cantelli theorem states that if the expected
number of the events An, n ≥ 1, that occur is finite, then the prob-
ability that an infinite number of them occur is 0. Thus the Borel-
Cantelli lemma is equivalent to the rather intuitive result that if
there is a positive probability that an infinite number of the events
An occur, then the expected number of them that occur is infinite.

The converse of the Borel-Cantelli lemma requires that the indi-
cator variables for each pair of events be negatively correlated.

Proposition 1.44 Let the events Ai, i ≥ 1, be such that

Cov(IAi , IAj ) = E[IAiIAj ] − E[IAi ]E[IAj ] ≤ 0, i �= j

If
∑∞

i=1 P (Ai) = ∞, then P (lim sup Ai) = 1.

Proof. Let Nn =
∑n

i=1 IAi be the number of the events A1, . . . , An

that occur, and let N =
∑∞

i=1 IAi be the total number of events that
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occur. Let mn = E[Nn] =
∑n

i=1 P (Ai), and note that limn mn = ∞.
Using the formula for the variance of a sum of random variables
learned in your first course in probability, we have

Var(Nn) =
n∑

i=1

Var(IAi) + 2
∑
i<j

Cov(IAi , IAj )

≤
n∑

i=1

Var(IAi)

=
n∑

i=1

P (Ai)[1 − P (Ai)]

≤ mn

Now, by Chebyshev’s inequality, for any x < mn

P (Nn < x) = P (mn − Nn > mn − x)
≤ P (|Nn − mn| > mn − x)

≤ Var(Nn)
(mn − x)2

≤ mn

(mn − x)2

Hence, for any x, limn→∞ P (Nn < x) = 0. Because
P (N < x) ≤ P (Nn < x), this implies that

P (N < x) = 0.

Consequently, by the continuity property of probabilities,

0 = lim
k→∞

P (N < k)

= P (lim
k
{N < k})

= P (∪k{N < k})
= P (N < ∞)

Hence, with probability 1, an infinite number of the events Ai occur.
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Example 1.45 Consider independent flips of a coin that lands heads
with probability p > 0. For fixed k, let Bn be the event that flips
n, n + 1, . . . , n + k − 1 all land heads. Because the events Bn, n ≥ 1,
are positively correlated, we cannot directly apply the converse to
the Borel-Cantelli lemma to obtain that, with probability 1, an infi-
nite number of them occur. However, by letting An be the event that
flips nk + 1, . . . , nk + k all land heads, then because the set of flips
these events refer to are nonoverlapping, it follows that they are inde-
pendent. Because

∑
n P (An) =

∑
n pk = ∞, we obtain from Borel-

Cantelli that P (lim sup An) = 1. But lim supAn ⊂ lim supBn, so
the preceding yields the result P (lim sup Bn) = 1.

Remark 1.46 The converse of the Borel-Cantelli lemma is usually
stated as requiring the events Ai, i ≥ 1, to be independent. Our
weakening of this condition can be quite useful, as is indicated by
our next example.

Example 1.47 Consider an infinite collection of balls that are num-
bered 0, 1, . . . , and an infinite collection of boxes also numbered
0, 1, . . . . Suppose that ball i, i ≥ 0, is to be put in box i + Xi where
Xi, i ≥ 0, are iid with probability mass function

P (Xi = j) = pj

∑
j≥0

pj = 1

Suppose also that the Xi are not deterministic, so that pj < 1 for all
j ≥ 0. If Aj denotes the event that box j remains empty, then

P (Aj) = P (Xj �= 0,Xj−1 �= 1, . . . ,X0 �= j)
= P (X0 �= 0,X1 �= 1, . . . ,Xj �= j)
≥ P (Xi �= i, for all i ≥ 0)

But

P (Xi �= i, for all i ≥ 0)
= 1 − P (∪i≥0{Xi = i})
= 1 − p0 −

∑
i≥1

P (X0 �= 0, . . . ,Xi−1 �= i − 1,Xi = i)

= 1 − p0 −
∑
i≥1

pi

i−1∏
j=0

(1 − pj)
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Now, there is at least one pair k < i such that pipk ≡ p > 0. Hence,
for that pair

pi

i−1∏
j=0

(1 − pj) ≤ pi(1 − pk) = pi − p

implying that

P (Aj) ≥ P (Xi �= i, for all i ≥ 0) ≥ p > 0

Hence,
∑

j P (Aj) = ∞. Conditional on box j being empty, each ball
becomes more likely to be put in box i, i �= j, so, for i < j,

P (Ai|Aj) =
i∏

k=0

P (Xk �= i − k|Aj)

=
i∏

k=0

P (Xk �= i − k|Xk �= j − k)

≤
i∏

k=0

P (Xk �= i − k)

= P (Ai)

which is equivalent to Cov(IAi , IAj ) ≤ 0. Hence, by the converse of
the Borel-Cantelli lemma we can conclude that, with probability 1,
there will be an infinite number of empty boxes.

We say that the sequence of random variables Xn, n ≥ 1, con-
verges in probability to the random variable X, written Xn −→p X,
if for any ε > 0

P (|Xn − X| > ε) → 0 as n → ∞

An immediate corollary of Proposition 1.32 is that almost sure con-
vergence implies convergence in probability. The following example
shows that the converse is not true.

Example 1.48 Let Xn, n ≥ 1 be independent random variables such
that

P (Xn = 1) = 1/n = 1 − P (Xn = 0)
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For any ε > 0, P (|Xn| > ε) = 1/n → 0; hence, Xn −→p 0. However,
because

∑∞
n=1 P (Xn = 1) = ∞, it follows from the converse to the

Borel-Cantelli lemma that Xn = 1 for infinitely many values of n,
showing that the sequence does not converge almost surely to 0.

Let Fn be the distribution function of Xn, and let F be the dis-
tribution function of X. We say that Xn converges in distribution
to X if

lim
n→∞Fn(x) = F (x)

for all x at which F is continuous. (That is, convergence is required
at all x for which P (X = x) = 0.)

To understand why convergence in distribution only requires that
Fn(x) → F (x) at points of continuity of F , rather than at all values x,
let Xn be uniformly distributed on (0, 1/n). Then, it seems reasonable
to suppose that Xn converges in distribution to the random variable
X that is identically 0. However,

Fn(x) =

⎧⎨⎩
0, if x < 0
nx, if 0 ≤ x ≤ 1/n
1, if x > 1/n

while the distribution function of X is

F (x) =
{

0, if x < 0
1, if x ≥ 0

and so limn Fn(0) = 0 �= F (0) = 1. On the other hand, for all
points of continuity of F - that is, for all x �= 0 - we have that
limn Fn(x) = F (x), and so with the definition given it is indeed true
that Xn −→d X.

We now show that convergence in probability implies convergence
in distribution.

Proposition 1.49

Xn −→p X ⇒ Xn −→d X
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Proof: Suppose that Xn −→p X. Let Fn be the distribution
function of Xn, n ≥ 1, and let F be the distribution function of X.
Now, for any ε > 0

Fn(x) = P (Xn ≤ x, X ≤ x + ε) + P (Xn ≤ x, X > x + ε)
≤ F (x + ε) + P (|Xn − X| > ε)

where the preceding used that

Xn ≤ x, X > x + ε ⇒ |Xn − X| > ε

Letting n go to infinity yields, upon using that Xn −→p X,

lim sup
n→∞

Fn(x) ≤ F (x + ε) (1.4)

Similarly,

F (x − ε) = P (X ≤ x − ε, Xn ≤ x) + P (X ≤ x − ε, Xn > x)
≤ Fn(x) + P (|Xn − X| > ε)

Letting n → ∞ gives

F (x − ε) ≤ lim inf
n→∞ Fn(x) (1.5)

Combining equations (1.4) and (1.5) shows that

F (x − ε) ≤ lim inf
n→∞ Fn(x) ≤ lim sup

n→∞
Fn(x) ≤ F (x + ε)

Letting ε → 0 shows that if x is a continuity point of F then

F (x) ≤ lim inf
n→∞ Fn(x) ≤ lim sup

n→∞
Fn(x) ≤ F (x)

and the result is proved.

Proposition 1.50 If Xn −→d X, then

E[g(Xn)] → E[g(X)]

for any bounded continuous function g.
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To focus on the essentials, we will present a proof of Proposition
1.50 when all the random variables Xn and X are continuous. Before
doing so, we will prove a couple of lemmas.

Lemma 1.51 Let G be the distribution function of a continuous
random variable, and let G−1 (x) ≡ inf {t : G(t) ≥ x} , be its inverse
function. If U is a uniform (0, 1) random variable, then G−1(U) has
distribution function G.

Proof. Since

inf {t : G(t) ≥ U} ≤ x ⇔ G(x) ≥ U

implies

P (G−1(U) ≤ x) = P (G(x) ≥ U) = G(x),

we get the result.

Lemma 1.52 Let Xn −→d X, where Xn is continuous with dis-
tribution function Fn, n ≥ 1, and X is continuous with distribution
function F . If

Fn(xn) → F (x), where 0 < F (x) < 1

then xn → x.

Proof. Suppose there is an ε > 0 such that xn ≤ x− ε for infinitely
many n. If so, then Fn(xn) ≤ Fn(x − ε) for infinitely many n,
implying that

F (x) = lim inf
n

Fn(xn) ≤ lim
n

Fn(x − ε) = F (x − ε)

which is a contradiction. We arrive at a similar contradiction upon
assuming there is an ε > 0 such that xn ≥ x + ε for infinitely many
n. Consequently, we can conclude that for any ε > 0, |xn − x| > ε
for only a finite number of n, thus proving the lemma.

Proof of Proposition 1.50: Let U be a uniform (0, 1) random
variable, and set Yn = F−1

n (U), n ≥ 1, and Y = F−1(U). Note that
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from Lemma 1.51 it follows that Yn has distribution Fn and Y has
distribution F . Because

Fn(F−1
n (u)) = u = F (F−1(u))

it follows from Lemma 1.52 that F−1
n (u) → F−1(u) for all u. Thus,

Yn −→as Y. By continuity, this implies that g(Yn) −→as g(Y ), and,
because g is bounded, the dominated convergence theorem yields
that E[g(Yn)] → E[g(Y )]. But Xn and Yn both have distribution
Fn, while X and Y both have distribution F , and so E[g(Yn)] =
E[g(Xn)] and E[g(Y )] = E[g(X)].

Remark 1.53 The key to our proof of Proposition 1.50 was showing
that if Xn −→d X, then we can define random variables Yn, n ≥ 1,
and Y such that Yn has the same distribution as Xn for each n, and Y
has the same distribution as X, and are such that Yn −→as Y. This
result (which is true without the continuity assumptions we made)
is known as Skorokhod’s representation theorem.

Skorokhod’s representation and the dominated convergence the-
orem immediately yield the following.

Corollary 1.54 If Xn −→d X and there exists a constant M < ∞
such that |Xn| < M for all n, then

lim
n→∞E[Xn] = E[X]

Proof. Let Fn denote the distribution of Xn, n ≥ 1, and F that of X.
Let U be a uniform (0, 1) random variable and, for n ≥ 1, set Yn =
F−1

n (U), and Y = F−1(U). Note that the hypotheses of the corollary
imply that Yn −→as Y, and, because Fn(M) = 1 = 1−Fn(−M), also
that |Yn| ≤ M. Thus, by the dominated convergence theorem

E[Yn] → E[Y ]

which proves the result because Yn has distribution Fn, and Y has
distribution F .

Proposition 1.50 can also be used to give a simple proof of Weier-
strass’ approximation theorem.
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Corollary 1.55 Weierstrass’ Approximation Theorem Any con-
tinuous function f defined on the interval [0, 1] can be expressed as
a limit of polynomial functions. Specifically, if

Bn(t) =
n∑

i=0

f(i/n)
(

n

i

)
ti(1 − t)n−i

then f(t) = limn→∞ Bn(t).

Proof. Let Xi, i ≥ 1, be a sequence of iid random variables such that

P (Xi = 1) = t = 1 − P (Xi = 0)

Because E[X1+...+Xn
n ] = t, it follows from Chebyshev’s inequality

that for any ε > 0

P (|X1 + . . . + Xn

n
− t| > ε) ≤ Var([X1 + . . . + Xn]/n)

ε2
=

p(1 − p)
nε2

Thus, X1+...+Xn
n →p t, implying that X1+...+Xn

n →d t. Because f
is a continuous function on a closed interval, it is bounded and so
Proposition 1.50 yields that

E[f(
X1 + . . . + Xn

n
)] → f(t)

But X1 + . . . + Xn is a binomial (n, t) random variable; thus,

E[f(
X1 + . . . + Xn

n
)] = Bn(t),

and the proof is complete.

1.9 The Law of Large Numbers and Ergodic The-
orem

Definition 1.56 For a sequence of random variables X1,X2, ... the
tail sigma field T is defined as

T = ∩∞
n=1σ(Xn,Xn+1, ...).

Events A ∈ T are called tail events.
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Though it may seem as though there are no events remaining in
the above intersection, there are lots of examples of very interesting
tail events. Intuitively, with a tail event you can ignore any finite
number of the variables and still be able to tell whether or not the
event occurs. Next are some examples.

Example 1.57 Consider a sequence of random variables X1,X2, ...
having tail sigma field T and satisfying |Xi| < ∞ for all i. For the
event Ax = {limn→∞ 1

n

∑n
i=1 Xi = x}, it’s easy to see that Ax ∈

T because to determine if Ax happens you can ignore any finite
number of the random variables; their contributions end up becoming
negligible in the limit.

For the event Bx = {supi Xi = x}, it’s easy to see that B∞ ∈ T
because it depends on the long run behavior of the sequence. Note
that B7 /∈ T because it depends, for example, on whether or not
X1 ≤ 7.

Example 1.58 Consider a sequence of random variables X1,X2, ...
having tail sigma field T , but this time let it be possible for Xi =
∞ for some i. For the event Ax = {limn→∞ 1

n

∑n
i=1 Xi = x} we

now have Ax /∈ T , because any variable along the way which equals
infinity will affect the limit.

Remark 1.59 The previous two examples also motivate the subtle
difference between Xi < ∞ and Xi < ∞ almost surely. The former
means it’s impossible to see X5 = ∞ and the latter only says it has
probability zero. An event which has probability zero could still be a
possible occurrence. For example if X is a uniform random variable
between zero and one, we can write X �= .2 almost surely even though
it is possible to see X = .2.

One approach for proving an event always happens is to first
prove that its probability must either be zero or one, and then rule
out zero as a possibility. This first type of result is called a zero-one
law, since we are proving the chance must either be zero or one. A
nice way to do this is to show an event A is independent of itself,
and hence P (A) = P (A

⋂
A) = P (A)P (A), and thus P (A) = 0 or

1. We use this approach next to prove a famous zero-one law for
independent random variables, and we will use this in our proof of
the law of large numbers.
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First we need the following definition. Events with probability
either zero or one are called trivial events, and a sigma field is called
trivial if every event in it is trivial.

Theorem 1.60 Kolmogorov’s Zero-One Law. A sequence of indepen-
dent random variables has a trivial tail sigma field.

Before we give a proof we need the following result. To show that
a random variable Y is independent of an infinite sequence of ran-
dom variables X1,X2, ..., it suffices to show that Y is independent
of X1,X2, ...,Xn for every finite n < ∞. In elementary courses this
result is often given as a definition, but it can be justified using
measure theory in the next proposition. We define σ(Xi, i ∈ A) ≡
σ(∪i∈Aσ(Xi)) to be the smallest sigma field generated by the collec-
tion of random variables Xi, i ∈ A.

Proposition 1.61 Consider the random variables Y and X1,X2, ...
where σ(Y ) is independent of σ(X1,X2, ...,Xn) for every n < ∞.
Then σ(Y ) is independent of σ(X1,X2, ...).

Before we prove this proposition, we show how this implies Kol-
mogorov’s Zero-One Law.
Proof. Proof of Kolmogorov’s Zero-One Law. We will argue that
any event A ∈ T is independent of itself, and thus P (A) = P (A ∩
A) = P (A)P (A) and so P (A) = 0 or 1. Note that the tail sigma
field T is independent of σ(X1,X2, ...,Xn) for every n < ∞ (since
T ⊆ σ(Xn+1,Xn+2, ...)), and so by the previous proposition is also
independent of σ(X1,X2, ...) and thus, since T ⊆ σ(X1,X2, ...), also
is independent of T .

Now we prove the proposition.

Proof. Proof of Proposition 1.61. Pick any A ∈ σ(Y ). You might
at first think that H ≡ ∪∞

n=1σ(X1,X2, ...,Xn) is the same as F ≡
σ(X1,X2, ...), and then the theorem would follow immediately since
by assumption A is independent of any event in H. But it is not
true that H and F are the same – H may not even be a sigma field.
Also, the tail sigma field T is a subset of F but not necessarily of
H. It is, however, true that F ⊆ σ(H) (in fact it turns out that
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σ(H) = F) which follows because σ(X1,X2, ...) ≡ σ(∪∞
n=1σ(Xn))

and ∪∞
n=1σ(Xn) ⊆ H. We will use F ⊆ σ(H) later below.

Define the collection of events G to contain any B ∈ F where
for every ε > 0 we can find a corresponding “approximating” event
C ∈ H where P (B ∩ Cc) + P (Bc ∩ C) ≤ ε. Since A is independent
of any event C ∈ H, we can see that A must also be independent of
any event B ∈ G because, using the corresponding “approximating”
event C for any desired ε > 0,

P (A ∩ B) = P (A ∩ B ∩ C) + P (A ∩ B ∩ Cc)
≤ P (A ∩ C) + P (B ∩ Cc)
≤ P (A)P (C) + ε

= P (A)(P (C ∩ B) + P (C ∩ Bc)) + ε

≤ P (A)P (B) + 2ε

and

1 − P (A ∩ B) = P (Ac ∪ Bc)
= P (Ac) + P (A ∩ Bc)
= P (Ac) + P (A ∩ Bc ∩ C) + P (A ∩ Bc ∩ Cc)
≤ P (Ac) + P (Bc ∩ C) + P (A ∩ Cc)
≤ P (Ac) + ε + P (A)P (Cc)
= P (Ac) + ε + P (A)(P (Cc ∩ B) + P (Cc ∩ Bc))
≤ P (Ac) + 2ε + P (A)P (Bc)
= 1 + 2ε − P (A)P (B),

which when combined gives

P (A)P (B) − 2ε ≤ P (A ∩ B) ≤ P (A)P (B) + 2ε.

Since ε is arbitrary, this shows σ(Y ) is independent of G. We
obtain the proposition by showing F ⊆ σ(H) ⊆ G, and thus that
σ(Y ) is independent of F , as follows. First note we immediately
have H ⊆ G, and thus σ(H) ⊆ σ(G), and we will be finished if we
can show σ(G) = G.

To show that G is a sigma field, clearly Ω ∈ G and Bc ∈ G
whenever B ∈ G. Next let B1, B2, ... be events in G. To show that
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∪∞
i=1Bi ∈ G, pick any ε > 0 and let Ci be the corresponding “approx-

imating” events that satisfy P (Bi ∩Cc
i )+P (Bc

i ∩Ci) < ε/2i+1. Then
pick n so that∑

i>n

P (Bi ∩ Bc
i−1 ∩ Bc

i−2 ∩ · · · ∩ Bc
1) < ε/2

and below we use the approximating event C ≡ ∪n
i=1Ci ∈ H to get

P (∪iBi ∩ Cc) + P ((∪iBi)c ∩ C)
≤ P (∪n

i=1Bi ∩ Cc) + ε/2 + P ((∪n
i=1Bi)c ∩ C)

≤
∑

i

P (Bi ∩ Cc
i ) + P (Bc

i ∩ Ci) + ε/2

≤
∑

i

ε/2i+1 + ε/2

= ε,

and thus ∪∞
i=1Bi ∈ G.

A more powerful theorem, called the extension theorem, can be
used to prove Kolmogorov’s Zero-One Law. We state it without
proof.

Theorem 1.62 The extension theorem. Suppose you have random
variables X1,X2, ... and you consistently define probabilities for all
events in σ(X1,X2, ...,Xn) for every n. This implies a unique value
of the probability of any event in σ(X1,X2, ...).

Remark 1.63 To see how this implies Kolmogorov’s Zero-One Law,
specify probabilities under the assumption that A is independent of
any event B ∈ ∪∞

n=1Fn. The extension theorem will say that A is
independent of σ(∪∞

n=1Fn).

We will prove the law of large numbers using the more powerful
ergodic theorem. This means we will show that the long-run aver-
age for a sequence of random variables converges to the expected
value under more general conditions then just for independent ran-
dom variables. We will define these more general conditions next.

Given a sequence of random variables X1,X2, . . ., suppose (for
simplicity and without loss of generality) that there is a one-to-one
correspondence between events of the form {X1 = x1,X2 = x2,X3 =
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x3...} and elements of the sample space Ω. An event A is called an
invariant event if the occurrence of

{X1 = x1,X2 = x2,X3 = x3...} ∈ A

implies both

{X1 = x2,X2 = x3,X3 = x4...} ∈ A

and
{X1 = x0,X2 = x1,X3 = x2...} ∈ A.

In other words, an invariant event is not affected by shifting the
sequence of random variables to the left or right. For example, A =
{supn≥1 Xn = ∞} is an invariant event if Xn < ∞ for all n because
supn≥1 Xn = ∞ implies both supn≥1 Xn+1 = ∞ and supn≥1 Xn−1 =
∞.

On the other hand, the event A = {limn X2n = 0} is not invariant
because if a sequence x2, x4, ... converges to 0 it doesn’t necessarily
mean that x1, x3, ... converges to 0. Consider the example where
P (X1 = 1) = 1/2 = 1−P (X1 = 0) and Xn = 1−Xn−1 for n > 1. In
this case either X2n = 0 and X2n−1 = 1 for all n ≥ 1 or X2n = 1 and
X2n−1 = 0 for all n ≥ 1, so {limn X2n = 0} and A = {limn X2n−1 =
0} cannot occur together.

It can be shown (see Problem 21 below) that the set of in-
variant events makes up a sigma field, called the invariant sigma
field, and is a subset of the tail sigma field. A sequence of ran-
dom variables X1,X2, ... is called ergodic if it has a trivial invari-
ant sigma field, and is called stationary if the random variables
(X1,X2, ...,Xn) have the same joint distribution as the random vari-
ables (Xk,Xk+1, . . . ,Xn+k−1) for every n, k.

We are now ready to state the ergodic theorem, and an immediate
corollary will be the strong law of large numbers.

Theorem 1.64 The ergodic theorem. If the sequence X1,X2, ... is
stationary and ergodic with E|X1| < ∞, then 1

n

∑n
i=1 Xi → E[X1]

almost surely.

Since a sequence of independent and identically distributed ran-
dom variables is clearly stationary and, by Kolmogorov’s zero-one
law, ergodic, we get the strong law of large numbers as an immedi-
ate corollary.
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Corollary 1.65 The strong law of large numbers. If X1,X2, ... are iid
with E|X1| < ∞, then 1

n

∑n
i=1 Xi → E[X1] almost surely.

Proof. Proof of the ergodic theorem. Given ε > 0 let Yi = Xi −
E[X1]− ε and Mn = max(0, Y1, Y1 + Y2, ..., Y1 + Y2 + · · ·+ Yn). Since
1
n

∑n
i=1 Yi ≤ 1

nMn we will first show that Mn/n → 0 almost surely,
and then the theorem will follow after repeating the whole argument
applied instead to Yi = −Xi + E[X1] − ε.

Letting M ′
n = max(0, Y2, Y2 + Y3, ..., Y2 + Y3 + · · · + Yn+1) and

using stationarity in the last equality below, we have

E[Mn+1] = E[max(0, Y1 + M ′
n)]

= E[M ′
n + max(−M ′

n, Y1)]
= E[Mn] + E[max(−M ′

n, Y1)]

and, since Mn ≤ Mn+1 implies E[Mn] ≤ E[Mn+1], we can conclude
E[max(−M ′

n, Y1)] ≥ 0 for all n.
Since {Mn/n → 0} is an invariant event, by ergodicity it must

have probability either 0 or 1. If we were to assume the prob-
ability is 0, then Mn+1 ≥ Mn would imply Mn → ∞ and also
M ′

n → ∞, and thus max(−M ′
n, Y1) → Y1. The dominated conver-

gence theorem using the bound |max(−M ′
n, Y1)| ≤ |Y1| would then

give E[max(−M ′
n, Y1)] → E[Y1] = −ε, which would then contradict

the previous conclusion that E[max(−M ′
n, Y1)] ≥ 0 for all n. This

contradiction means we must have Mn/n → 0 almost surely, and the
theorem is proved.
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1.10 Exercises

1. Given a sigma field F , if Ai ∈ F for all 1 ≤ i ≤ n, is ∩n
i=1Ai ∈

F?

2. Suppose Fi, i = 1, 2, 3... are sigma fields. (a) Is ∩∞
i=1Fi neces-

sarily always a sigma field? Explain. (b) Does your reasoning
in (a) also apply to the intersection of an uncountable number
of sigma fields? (c) Is ∪∞

i=1Fi necessarily always a σ - field?
Explain.

3. (a) Suppose Ω = {1, 2, ..., n}. How many different sets will
there be in the sigma field generated by starting with the indi-
vidual elements in Ω? (b) Is it possible for a sigma field to have
a countably infinite number of different sets in it? Explain.

4. Show that if X and Y are real-valued random variables mea-
surable with respect to some given sigma field, then so is XY
with respect to the same sigma field.

5. If X is a random variable, is it possible for the cdf F (x) =
P (X ≤ x) to be discontinuous at a countably infinite number
of values of x? Is it possible for it to be discontinuous at an
uncountably infinite number of values of x? Explain.

6. Show that E[X] =
∑

i xiP (X = xi) if X can only take a count-
ably infinite number of different possible values.

7. Prove that if X ≥ 0 and E[X] < ∞, then limn→∞ E[XIX>n] =
0.

8. Assume X ≥ 0 is a random variable, but don’t necessarily
assume that E[1/X] < ∞. Show that limn→∞ E[ n

X IX>n] = 0
and limn→∞ E[ 1

nX IX>n] = 0.

9. Use the definition of expected value in terms of simple variables
to prove that if X ≥ 0 and E[X] = 0 then X = 0 almost surely.

10. Show that if Xn −→d c then Xn −→p c.

11. Show that if E[g(Xn)] → E[g(X)] for all bounded, continuous
functions g, then Xn −→d X.
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12. If X1,X2, ... are non-negative random variables with the same
distribution (but the variables are not necessarily independent)
and E[X1] < ∞, prove that limn→∞ E[maxi<n Xi/n] = 0.

13. For random variables X1,X2,..., let T be the tail sigma field
and let Sn =

∑n
i=1 Xi. (a) Is {limn→∞ Sn/n > 0} ∈ T ? (b) Is

{limn→∞ Sn > 0} ∈ T ?

14. If X1,X2,... are non-negative iid rv’s with P (Xi > 0) > 0, show
that P (

∑∞
i=1 Xi = ∞) = 1.

15. Suppose X1,X2,... are continuous iid rv’s, and

Yn = I{Xn>maxi<n Xi}

(a) Argue that Yi is independent of Yj, for i �= j. (b) What is
P (
∑∞

i=1 Yi < ∞)? (c) What is P (
∑∞

i=1 YiYi+1 < ∞)?

16. Suppose there is a single server and the ith customer to ar-
rive requires the server spend Ui of time serving him, and
the time between his arrival and the next customer’s arrival
is Vi, and that Xi = Ui − Vi are iid with mean μ. (a) If
Qn+1 is the amount of time the (n + 1)st customer must wait
before being served, explain why Qn+1 = max(Qn + Xn, 0)
= max(0,Xn,Xn + Xn−1, ...,Xn + ... + X1). (b) Show P (Qn →
∞) = 1 if μ > 0.

17. Given a nonnegative random variable X define the sequence
of random variables Yn = min(�2nX�/2n, n), where �x� de-
notes the integer portion of x. Show that Yn ↑ X and E[X] =
limn E[Yn].

18. Show that for any monotone functions f and g if X,Y are
independent random variables then so are f(X), g(Y ).

19. Let X1,X2, . . . be random variables with Xi < ∞ and suppose∑
n P (Xn > 1) < ∞. Compute P (supn Xn < ∞).

20. Suppose Xn →p X and there is a random variable Y with
E[Y ] < ∞ such that |Xn| < Y for all n. Show E[limn→∞ Xn] =
limn→∞ E[Xn].
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21. For random variables X1,X2,..., let T and I respectively be the
set of tail events and the set of invariant events. Show that I
and T are both sigma fields.

22. A ring is hanging from the ceiling by a string. Someone will
cut the ring in two positions chosen uniformly at random on
the circumference, and this will break the ring into two pieces.
Player I gets the piece which falls to the floor, and player II
gets the piece which stays attached to the string. Whoever gets
the bigger piece wins. Does either player have a big advantage
here? Explain.

23. A box contains four marbles. One marble is red, and each
of the other three marbles is either yellow or green - but you
have no idea exactly how many of each color there are, or even
if the other three marbles are all the same color or not. (a)
Someone chooses one marble at random from the box and if
you can correctly guess the color you will win $1,000. What
color would you guess? Explain. (b) If this game is going to
be played four times using the same box of marbles (and in
between replacing the marble drawn each time), what guesses
would you make if you had to make all four guesses ahead of
time? Explain.





Chapter 2

Stein’s Method and Central
Limit Theorems

2.1 Introduction

You are probably familiar with the central limit theorem, saying that
the sum of a large number of independent random variables follows
roughly a normal distribution. Most proofs presented for this cele-
brated result generally involve properties of the characteristic func-
tion φ(t) = E[eitX ] for a random variable X, the proofs of which are
non-probabilistic and often somewhat mysterious to the uninitiated.

One goal of this chapter is to present a beautiful alternative proof
of a version of the central limit theorem using a powerful technique
called Stein’s method. This technique also amazingly can be applied
in settings with dependent variables, and gives an explicit bound on
the error of the normal approximation; such a bound is quite difficult
to derive using other methods. The technique also can be applied
to other distributions, the Poisson and geometric distributions in-
cluded. We first embark on a brief tour of Stein’s method applied in
the relatively simpler settings of the Poisson and geometric distribu-
tions, and then move to the normal distribution. As a first step we
introduce the concept of a coupling, one of the key ingredients we
need.

In section 2 we introduce the concept of coupling, and show how it
can be used to bound the error when approximating one distribution
with another distribution, and in section 3 we prove a theorem by

55
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Le Cam giving a bound on the error of the Poisson approximation
for independent events. In section 4 we introduce the Stein-Chen
method, which can give bounds on the error of the Poisson approx-
imation for events with dependencies, and in section 5 we illustrate
how the method can be adapted to the setting of the geometric dis-
tribution. In section 6, we demonstrate Stein’s method applied to
the normal distribution, obtain a bound on the error of the normal
approximation for the sum of independent variables, and use this to
prove a version of the central limit theorem.

2.2 Coupling

One of the most interesting properties of expected value is that E[X−
Y ] = E[X]−E[Y ] even if the variables X and Y are highly dependent
on each other. A useful strategy for estimating E[X] − E[Y ] is to
create a dependency between X and Y which simplifies estimating
E[X−Y ]. Such a dependency between two random variables is called
a coupling.

Definition 2.1 The pair (X̂, Ŷ ) is a “coupling” of the random vari-
ables (X,Y ) if X̂ =d X and Ŷ =d Y .

Example 2.2 Suppose X,Y and U are U(0, 1) random variables.
Then both (U,U) and (U, 1 − U) are couplings of (X,Y ).

A random variable X is said to be “stochastically smaller” than
Y , also written as X ≤st Y , if

P (X ≤ x) ≥ P (Y ≤ x) ,∀x,

and under this condition we can create a coupling where one variable
is always less than the other.

Proposition 2.3 If X ≤st Y it is possible to construct a coupling
(X̂, Ŷ ) of (X,Y ) with X̂ ≤ Ŷ almost surely.

Proof. With F (t) = P (X ≤ t), G(t) = P (Y ≤ t) and F−1 (x) ≡
inf {t : F (t) ≥ x} and G−1 (x) ≡ inf {t : G(t) ≥ x} , let U ∼ U(0, 1),
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X̂ = F−1 (U) , and Ŷ = G−1 (U) . Since F (t) ≥ G(t) implies F−1(x) ≤
G−1(x), we have X̂ ≤ Ŷ . And since

inf {t : F (t) ≥ U} ≤ x ⇔ F (x) ≥ U

implies

P (F−1(U) ≤ x) = P (F (x) ≥ U) = F (x),

we get X̂ =d X and Ŷ =d Y after applying the same argument to
G.

Example 2.4 If X ∼ N(0, 1) and Y ∼ N(1, 1), then X ≤st Y. To
show this, note that (X̂, Ŷ ) = (X, 1 + X) is a coupling of (X,Y ).
Since X̂ ≤ Ŷ we must have X̂ ≤st Ŷ and thus X ≤st Y.

Even though the probability two independent continuous random
variables exactly equal each other is always zero, it is possible to cou-
ple two variables with completely different density functions so that
they equal each other with very high probability. For the random
variables (X,Y ), the coupling (X̂, Ŷ ) is called a maximal coupling
if P (X̂ = Ŷ ) is as large as possible. We next show how large this
probability can be, and how to create a maximal coupling.

Proposition 2.5 Suppose X and Y are random variables with respec-
tive piecewise continuous density functions f and g. The maximal
coupling (X̂, Ŷ ) for (X,Y ) has

P (X̂ = Ŷ ) =
∫ ∞

−∞
min(f(x), g(x))dx

Proof. Letting p =
∫∞
−∞ min(f(x), g(x))dx and A = {x : f(x) <

g(x)}, note that any coupling (X̂, Ŷ ) of (X,Y ) must satisfy

P (X̂ = Ŷ ) = P (X̂ = Ŷ ∈ A) + P (X̂ = Ŷ ∈ Ac)
≤ P (X ∈ A) + P (Y ∈ Ac)

=
∫

A
f(x)dx +

∫
Ac

g(x)dx

= p.
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We use the fact that f, g are piecewise continuous to justify that
the integrals above (and in the next step below) are well defined.
Next we construct a coupling with P (X̂ = Ŷ ) ≥ p which, in light
of the previous inequality, must therefore be the maximal coupling.
Let B,C, and D be independent random variables with respective
density functions

b(x) =
min(f(x), g(x))

p

c(x) =
f(x) − min(f(x), g(x))

1 − p

and

d(x) =
g(x) − min(f(x), g(x))

1 − p
,

let
I ∼ Bernoulli(p),

and if I = 1 then let X̂ = Ŷ = B and otherwise let X̂ = C and
Ŷ = D. This clearly gives P (X̂ = Ŷ ) ≥ P (I = 1) = p, and

P (X̂ ≤ x) = P (X̂ ≤ x|I = 1)p + P (X̂ ≤ x|I = 0)(1 − p)

= p

∫ x

−∞
b(x)dx + (1 − p)

∫ x

−∞
c(x)dx

=
∫ x

−∞
f(x)dx,

and the same argument again gives P (Ŷ ≤ x) = P (Y ≤ x).

Using this result, it’s easy to see how to create a maximal cou-
pling for two discrete random variables.

Corollary 2.6 Suppose X and Y are discrete random variables each
taking values in a set A, and have respective probability mass func-
tions f(x) = P (X = x) and g(x) = P (Y = x). The maximal cou-
pling of (X,Y ) has

P (X̂ = Ŷ ) =
∑

x

min (g(x), f(x)) .
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Proof. First in a case where X and Y are integer valued, we can
apply the previous proposition to the continuous variables X+U and
Y + U , where U ∼ U(0, 1), to get the result. And since any discrete
random variable can be expressed as a function of an integer-valued
random variable, the result for general discrete random variables will
hold.

There is a relationship between how closely two variables can be
coupled and how close they are in distribution. One common measure
of distance between the distributions of two random variables X and
Y is called total variation distance, defined as

dTV (X,Y ) = sup
A

|P (X ∈ A) − P (Y ∈ A)| .

We next show the link between total variation distance and couplings.

Proposition 2.7 If (X̂, Ŷ ) is a maximal coupling for (X,Y ), then

dTV (X,Y ) = P (X̂ �= Ŷ ).

Proof. The result will be proven under the assumption that X,Y
are continuous with respective density functions f, g. Letting A =
{x : f(x) > g(x)}, we must have

dTV (X,Y )
= max{P (X ∈ A) − P (Y ∈ A), P (Y ∈ Ac) − P (X ∈ Ac)}
= max{P (X ∈ A) − P (Y ∈ A), 1 − P (Y ∈ A) − 1 + P (X ∈ A)}
= P (X ∈ A) − P (Y ∈ A)

and so

P (X̂ �= Ŷ ) = 1 −
∫ ∞

−∞
min(f(x), g(x))dx

= 1 −
∫

A
g(x)dx −

∫
Ac

f(x)dx

= 1 − P (Y ∈ A) − 1 + P (X ∈ A)
= dTV (X,Y ).



60 Chapter 2 Stein’s Method and Central Limit Theorems

2.3 Poisson Approximation and Le Cam’s Theo-
rem

It’s well-known that a binomial distribution converges to a Poisson
distribution when the number of trials is increased and the prob-
ability of success is decreased at the same time in such a way so
that the mean stays constant. This also motivates using a Poisson
distribution as an approximation for a binomial distribution if the
probability of success is small and the number of trials is large. If the
number of trials is very large, computing the distribution function
of a binomial distribution can be computationally difficult, whereas
the Poisson approximation may be much easier.

A fact which is not quite as well known is that the Poisson dis-
tribution can be a reasonable approximation even if the trials have
varying probabilities and even if the trials are not completely inde-
pendent of each other. This approximation is interesting because
dependent trials are notoriously difficult to analyze in general, and
the Poisson distribution is elementary.

It’s possible to assess how accurate such Poisson approximations
are, and we first give a bound on the error of the Poisson approxi-
mation for completely independent trials with different probabilities
of success.

Proposition 2.8 Let Xi be independent Bernoulli(pi), and let W =∑n
i=1 Xi, Z ∼Poisson(λ) and λ = E[W ] =

∑n
i=1 pi. Then

dTV (W,Z) ≤
n∑

i=1

p2
i .

Proof. We first write Z =
∑n

i=1 Zi, where the Zi are independent
and Zi ∼Poisson(pi). Then we create the maximal coupling (Ẑi, X̂i)
of (Zi,Xi) and use the previous corollary to get

P (Ẑi = X̂i) =
∞∑

k=0

min(P (Xi = k), P (Zi = k))

= min(1 − pi, e
−pi) + min(pi, pie

−pi)
= 1 − pi + pie

−pi

≥ 1 − p2
i ,
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where we use e−x ≥ 1 − x. Using that (
∑n

i=1 Ẑi,
∑n

i=1 X̂i) is a
coupling of (Z,W ) yields that

dTV (W,Z) ≤ P (
n∑

i=1

Ẑi �=
n∑

i=1

X̂i)

≤ P (∪i{Ẑi �= X̂i})
≤
∑

i

P (Ẑi �= X̂i)

≤
n∑

i=1

p2
i .

Remark 2.9 The drawback to this beautiful result is that when E[W ]
is large the upper bound could be much greater than 1 even if W
has approximately a Poisson distribution. For example if W is a
binomial (100,.1) random variable and Z ∼Poisson(10) we should
have W ≈d Z but the proposition tells gives us the trivial and useless
result dTV (W,Z) ≤ 100 × (.1)2 = 1.

2.4 The Stein-Chen Method

The Stein-Chen method is another approach for obtaining an upper
bound on dTV (W,Z), where Z is a Poisson random variable and W
is some other variable you are interested in. This approach covers
the distribution of the number of successes in dependent as well as
independent trials with varying probabilities of success.

In order for the bound to be good, it should be close to 0 when W
is close in distribution to Z. In order to achieve this, the Stein-Chen
method uses the interesting property of the Poisson distribution

kP (Z = k) = λP (Z = k − 1). (2.1)
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Thus, for any bounded function f with f(0) = 0,

E[Zf(Z)] =
∞∑

k=0

kf(k)P (Z = k)

= λ

∞∑
k=1

f(k)P (Z = k − 1)

= λ

∞∑
i=0

f(i + 1)P (Z = i)

= λE[f(Z + 1)].

The secret to using the preceding is in cleverly picking a function
f so that dTV (W,Z) ≤ E[Wf(W )] − λE[f(W + 1)], and so we are
likely to get a very small upper bound when W ≈d Z, (where we use
the notation W ≈d Z to mean that W and Z approximately have
the same distribution).

Suppose Z ∼ Poisson(λ) and A is any set of nonnegative integers.
Define the function fA(k), k = 0, 1, 2, ..., starting with fA(0) = 0 and
then using the following “Stein equation” for the Poisson distribu-
tion:

λfA(k + 1) − kfA(k) = Ik∈A − P (Z ∈ A). (2.2)

Notice that by plugging in any random variable W for k and
taking expected values we get

λE[fA(W + 1) − E[WfA(W )]] = P (W ∈ A) − P (Z ∈ A),

so that

dTV (W,Z) ≤ sup
A

|λE[fA(W + 1)] − E[WfA(W )]|.

Lemma 2.10 For any A and i, j, |fA(i)−fA(j)| ≤ min(1, 1/λ)|i−j|.

Proof. The solution to (2.2) is

fA(k + 1) =
∑
j∈A

Ij≤k − P (Z ≤ k)
λP (Z = k)/P (Z = j)
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because when we plug it in to the left hand side of (2.2) and use (2.1)
in the second line below, we get

λfA(k + 1) − kfA(k)

=
∑
j∈A

Ij≤k − P (Z ≤ k)
P (Z = k)/P (Z = j)

− k
Ij≤k−1 − P (Z ≤ k − 1)

λP (Z = k − 1)/P (Z = j)

=
∑
j∈A

Ij=k − P (Z = k)
P (Z = k)/P (Z = j)

= Ik∈A − P (Z ∈ A),

which is the right hand side of (2.2).
Since

P (Z ≤ k)
P (Z = k)

=
∑
i≤k

k!λi−k

i!
=
∑
i≤k

k!λ−i

(k − i)!

is increasing in k and

1 − P (Z ≤ k)
P (Z = k)

=
∑
i>k

k!λi−k

i!
=
∑
i>0

k!λi

(i + k)!

is decreasing in k, we see that f{j}(k + 1) ≤ f{j}(k) when j �= k and
thus

fA(k + 1) − fA(k) =
∑
j∈A

f{j}(k + 1) − f{j}(k)

≤
∑

j∈A,j=k

f{j}(k + 1) − f{j}(k)

≤ P (Z > k)
λ

+
P (Z ≤ k − 1)

λP (Z = k − 1)/P (Z = k)

=
P (Z > k)

λ
+

P (Z ≤ k − 1)
k

≤ P (Z > k)
λ

+
P (0 < Z ≤ k)

λ

≤ 1 − e−λ

λ
≤ min(1, 1/λ)

and

−fA(k + 1) + fA(k) = fAc(k + 1) − fAc(k) ≤ min(1, 1/λ),
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which together give

|fA(k + 1) − fA(k)| ≤ min(1, 1/λ).

The final result is proved using

|fA(i) − fA(j)| ≤
max(i,j)−1∑
k=min(i,j)

|fA(k + 1) − fA(k)| ≤ |j − i|min(1, 1/λ).

Theorem 2.11 Suppose W =
∑n

i=1 Xi, where Xi are indicator vari-
ables with P (Xi = 1) = λi and λ =

∑n
i=1 λi. Letting Z ∼Poisson(λ)

and Vi =d (W − 1|Xi = 1), we have

dTV (W,Z) ≤ min(1, 1/λ)
n∑

i=1

λiE|W − Vi|.

Proof.

dTV (W,Z) ≤ sup
A

|E[λE[fA(W + 1)] − WfA(W )]|

≤ sup
A

|
n∑

i=1

E[λifA(W + 1) − XifA(W )]|

≤ sup
A

n∑
i=1

λiE|fA(W + 1) − fA(Vi + 1)|

≤ min(1, 1/λ)
n∑

i=1

λiE|W − Vi|,

where Vi is any random variable having distribution Vi =d (W −
1|Xi = 1).

Proposition 2.12 With the above notation if W ≥ Vi for all i, then
we have

dTV (W,Z) ≤ 1 − V ar(W )/E[W ].
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Proof. Using W ≥ Vi we have

n∑
i=1

λiE|W − Vi| =
n∑

i=1

λiE[W − Vi]

= λ2 + λ −
n∑

i=1

λiE[1 + Vi]

= λ2 + λ −
n∑

i=1

λiE[W |Xi = 1]

= λ2 + λ −
n∑

i=1

E[XiW ]

= λ − V ar(W ),

and the preceding theorem along with λ = E[W ] gives

dTV (W,Z) ≤ min(1, 1/E[W ])(E[W ] − V ar(W ))
≤ 1 − V ar(W )/E[W ].

Example 2.13 Let Xi be independent Bernoulli(pi) random vari-
ables with λ =

∑n
i=1 pi. Let W =

∑n
i=1 Xi, and let Z ∼ Poisson(λ).

Using Vi =
∑

j �=i Xj , note that W ≥ Vi and E[W − Vi] = pi, so the
preceding theorem gives us

dTV (W,Z) ≤ min(1, 1/λ)
n∑

i=1

p2
i .

For instance, if X is a binomial random variable with parameters
n = 100, p = 1/10, then the upper bound on the total variation
distance between X and a Poisson random variable with mean 10
given by the Stein-Chen method is 1/10, as opposed to the upper
bound of 1 which results from the LeCam method of the preceding
section.

Example 2.14 A coin with probability p = 1− q of coming up heads
is flipped n + k times. We are interested in P (Rk), where Rk is the
event that a run of at least k heads in a row occurs. To approximate
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this probability, whose exact expression is given in Example 1.10, let
Xi = 1 if flip i lands tails and flips i+1, . . . , i+k all land heads, and
let Xi = 0 otherwise, i = 1, . . . , n. Let

W =
n∑

i=1

Xi

and note that there will be a run of k heads either if W > 0 or if the
first k flips all land heads. Consequently,

P (W > 0) < P (Rk) < P (W > 0) + pk.

Because the flips are independent and Xi = 1 implies Xj = 0 for all
j �= i where |i − j| ≤ k, it follows that if we let

Vi = W −
i+k∑

j=i−k

Xj

then Vi =d (W − 1|Xi = 1) and W ≥ Vi. Using that λ = E[W ] =
nqpk and E[W − Vi] = (2k + 1)qpk, we see that

dTV (W,Z) ≤ min(1, 1/λ)n(2k + 1)q2p2k.

where Z ∼ Poisson(λ). For instance, suppose we flip a fair coin 1034
times, and want to approximate the probability that we have a run
of 10 heads in a row. In this case, n = 1024, k = 10, p = 1/2, and so
λ = 1024/211 = .5. Consequently,

P (W > 0) ≈ 1 − e−.5

with the error in the above approximation being at most 21/212.
Consequently, we obtain that

1 − e−.5 − 21/212 < P (R10 > 0) < 1 − e−.5 + 21/212 + (1/2)10

or
0.388 < P (R10 > 0) < 0.4

Example 2.15 Birthday Problem. With m people and n days in the
year, let Yi = number of people born on day i. Let Xi = IYi=0,
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and W =
∑n

i=1 Xi equal the number of days on which nobody has a
birthday.

Next imagine n different hypothetical scenarios are constructed,
where in scenario i all the Yi people initially born on day i have their
birthdays reassigned randomly to other days. Let 1 + Vi equal the
number of days under scenario i on which nobody has a birthday.

Notice that W ≥ Vi and Vi =d (W − 1|Xi = 1). Also we have
λ = E[W ] = n(1 − 1/n)m and E[Vi] = (n − 1)(1 − 1/(n − 1))m, so
with Z ∼ Poisson(λ) we get

dTV (W,Z) ≤ min(1, 1/λ)n(n(1 − 1/n)m − (n − 1)(1 − 1/(n − 1))m).

2.5 Stein’s Method for the Geometric Distribu-
tion

In this section we will show how to obtain an upper bound on the
distance dTV (W,Z) where W is a given random variable and Z has
a geometric distribution with parameter p = 1 − q = P (W = 1) =
P (Z = 1). We will use a version of Stein’s method applied to the
geometric distribution. Define fA(1) = 0 and, for k = 1, 2, ..., using
the recursion

fA(k) − qfA(k + 1) = Ik∈A − P (Z ∈ A).

Lemma 2.16 We have |fA(i) − fA(j)| < 1/p

Proof. It’s easy to check that the solution is

fA(k) = P (Z ∈ A,Z ≥ k)/P (Z = k) − P (Z ∈ A)/p

and, since neither of the two terms in the difference above can be
larger than 1/p, the lemma follows.

Theorem 2.17 Given random variables W and V such that V =d

(W − 1|W > 1), let p = P (W = 1) and Z ∼geometric(p). Then

dTV (W,Z) ≤ qp−1P (W �= V ).
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Proof.

|P (W ∈ A) − P (Z ∈ A)| = |E[fA(W ) − qfA(W + 1)]|
= |qE[fA(W )|W > 1] − qE[fA(W + 1)]|
≤ qE|fA(1 + V ) − fA(1 + W )|
≤ qp−1P (W �= V ),

where the last inequality follows from the preceding lemma.

Example 2.18 Coin flipping. A coin has probability p = 1 − q of
coming up “heads” with each flip, and let Xi = 1 if the ith flip is
heads and Xi = 0 if it is tails. We are interested in the distribution of
the number of flips M required until the start of the first appearance
of a run of k heads in a row. Suppose in particular we are interested
in estimating P (M ∈ A) for some set of integers A.

To do this, instead let N be the number of flips required until the
start of the first appearance of a run of tails followed by k heads in
a row. For instance, if k = 3, and the flip sequence is HHTTHHH,
then M = 4 and N = 5. Note that in general we will have N +1 = M
if M > 1 so consequently,

dTV (M,N + 1) ≤ P (N + 1 = M) = pk.

We will first obtain a bound on the geometric approximation to N .
Letting Ai = {Xi = 0,Xi+1 = Xi+2 = · · · = Xi+k = 1} be the

event a run of a tail followed by k heads in a row appears starting
with flip number i, let W = min{i ≥ 2 : IAi = 1} − 1 and note that
N =d W .

Next generate V as follows using a new sequence of coin flips
Y1, Y2, ... defined so that Yi = Xi,∀i > k + 1 and the vector

(Y1, Y2, ..., Yk+1) =d (X1,X2, ...,Xk+1|IA1 = 0)

is generated to be independent of all else. Then let Bi = {Yi =
0, Yi+1 = Yi+2 = · · · = Yi+k = 1} be the event a run of tails followed
by k heads in a row appears in this new sequence starting with flip
number i. If IA1 = 0 then let V = W , and otherwise let V = min{i ≥
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2 : IBi = 1} − 1. Note that this gives V =d (W − 1|W > 1) and

P (W �= V ) ≤
k+1∑
i=2

P (A1 ∩ Bi)

= P (A1)
k+1∑
i=2

P (Ai|Ac
1)

= P (A1)
k+1∑
i=2

P (Ai)/P (Ac
1)

= kqp2k.

Thus if Z ∼geometric(qpk) then applying the previous theorem gives
dTV (N,Z) ≤ kpk. The triangle inequality applies to dTV so we get

dTV (M − 1, Z) ≤ dTV (M − 1, N) + dTV (N,Z) = (k + 1)pk.

and

P (Z ∈ A) − (k + 1)pk ≤ P (M ∈ A) ≤ P (Z ∈ A) + (k + 1)pk.

2.6 Stein’s Method for the Normal Distribution

Let Z ∼ N(0, 1) be a standard normal random variable. It can be
shown that for smooth functions f we have E [f ′(Z) − Zf(Z)] = 0,
and this inspires the following Stein equation.

Lemma 2.19 Given α > 0 and any value of z let

hα,z(x) ≡ h(x) =

⎧⎨⎩
1 if x ≤ z
0 if x ≥ z + α

(α + z − x)/α otherwise,

and define the function fα,z(x) ≡ f(x),−∞ < x < ∞, so it satisfies

f ′(x) − xf(x) = h(x) − E[h(Z)].

Then |f ′(x) − f ′(y)| ≤ 2
α |x − y|, ∀x, y.
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Proof. Letting φ(x) = e−x2/2/
√

2π be the standard normal density
function, we have the solution

f(x) =
E[h(Z)IZ≤x] − E[h(Z)]P (Z ≤ x)

φ(x)
,

which can be checked by differentiating using d
dx(φ(x)−1) = x/φ(x)

to get f ′(x) = xf(x) + h(x) − E[h(Z)]. Then this gives

|f ′′(x)| = |f(x) + xf ′(x) + h′(x)|
= |(1 + x2)f(x) + x(h(x) − E[h(Z)]) + h′(x)|.

Since

h(x) − E[h(Z)]

=
∫ ∞

−∞
(h(x) − h(s))φ(s)ds

=
∫ x

−∞

∫ x

s
h′(t)dtφ(s)ds −

∫ ∞

x

∫ s

x
h′(t)dtφ(s)ds

=
∫ x

−∞
h′(t)P (Z ≤ t)dt −

∫ ∞

x
h′(t)P (Z > t))dt,

and a similar argument gives

f(x) = − P (Z > x)
φ(x)

∫ x

−∞
h′(t)P (Z ≤ t)dt

− P (Z ≤ x)
φ(x)

∫ ∞

x
h′(t)P (Z > t)dt,

we get

|f ′′(x)| ≤ |h′(x)| + |(1 + x2)f(x) + x(h(x) − E[h(Z)]|

≤ 1
α

+
1
α

(−x + (1 + x2)P (Z > x)/φ(x))(xP (Z ≤ x) + φ(x))

+
1
α

(x + (1 + x2)P (Z ≤ x)/φ(x))(−xP (Z > x) + φ(x))

≤ 2/α.
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We finally use

|f ′(x) − f ′(y)| ≤
∫ max(x,y)

min(x,y)
|f ′′(x)|dx ≤ 2

α
|x − y|

to give the lemma.

Theorem 2.20 If Z ∼ N(0, 1) and W =
∑n

i=1 Xi where Xi are in-
dependent mean 0 and V ar(W ) = 1, then

sup
z

|P (W ≤ z) − P (Z ≤ z)| ≤ 2

√√√√3
n∑

i=1

E[|Xi|3].

Proof. Given any α > 0 and any z, define h, f as in the previous
lemma. Then

P (W ≤ z) − P (Z ≤ z)
≤ Eh(W ) − Eh(Z) + Eh(Z) − P (Z ≤ z)
≤ |E[h(W )] − E[h(Z)]| + P (z ≤ Z ≤ z + α)

≤ |E[h(W )] − E[h(Z)]| +
∫ z+α

z

1√
2π

e−x2/2dx

≤ |E[h(W )] − E[h(Z)]| + α.

To finish the proof of the theorem we will show

|E[h(W )] − E[h(Z)]| ≤
n∑

i=1

3E[|X3
i |]/α,

and then by choosing

α =

√√√√ n∑
i=1

3E[|X3
i |]

we get

P (W ≤ x) − P (Z ≤ x) ≤ 2

√√√√3
n∑

i=1

E[|Xi|3].
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Repeating the same argument starting with

P (Z ≤ z) − P (W ≤ z)
≤ P (Z ≤ z) − Eh(Z + α) + Eh(Z + α) − Eh(W + α)
≤ |E[h(W + α)] − E[h(Z + α)]| + P (z ≤ Z ≤ z + α),

the theorem will be proved.
To do this let Wi = W − Xi, and let Yi be a random variable

independent of all else and having the same distribution as Xi. Using
V ar(W ) =

∑n
i=1 E[Y 2

i ] = 1 and E[Xif(Wi)] = E[Xi]E[f(Wi)] = 0
in the second equality below, and the preceding lemma with |W −
Wi − t| ≤ |t| + |Xi| in the second inequality below, we have

|E[h(W )] − E[h(Z)]|
= |E[f ′(W ) − Wf(W )]|

= |
n∑

i=1

E[Y 2
i f ′(W ) − Xi(f(W ) − f(Wi))]|

= |
n∑

i=1

E[Yi

∫ Yi

0
(f ′(W ) − f ′(Wi + t))dt]|

≤
n∑

i=1

E[Yi

∫ Yi

0
|f ′(W ) − f ′(Wi + t)|dt]

≤
n∑

i=1

E[Yi

∫ Yi

0

2
α

(|t| + |Xi|)dt],

and continuing on from this we get

=
n∑

i=1

E[|X3
i |]/α + 2E[X2

i ]E[|Xi|]/α

≤
n∑

i=1

3E[|X3
i |]/α,

where in the last line we use E[|Xi|]E[X2
i ] ≤ E[|Xi|3] (which follows

since |Xi| and X2
i are both increasing functions of |Xi| and are, thus,

positively correlated (where the proof of this result is given in the
following lemma).
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Lemma 2.21 If f(x) and g(x) are nondecreasing functions, then for
any random variable X

E[f(X)g(X)] ≥ E[f(X)]E[g(X)]

Proof. Let X1 and X2 be independent random variables having the
same distribution as X. Because f(X1) − f(X2) and g(X1) − g(X2)
are either both nonnegative or are both nonpositive, their product is
nonnegative. Consequently,

E[(f(X1) − f(X2))(g(X1) − g(X2))] ≥ 0

or, equivalently,

E[f(X1)g(X1)]+ E[f(X2)g(X2)] ≥ E[f(X1)g(X2)]+ E[f(X2)g(X1)]

But, by independence,

E[f(X1)g(X2)] = E[f(X2)g(X1)] = E[f(X)]E[g(X)]

and the result follows.
The preceding results yield the following version of the central

limit theorem as an immediate corollary.

Corollary 2.22 If Z ∼ N(0, 1) and Y1, Y2, . . . are iid random vari-
ables with E[Yi] = μ, V ar(Yi) = σ2 and E[|Yi|3] < ∞, then as n → ∞
we have

P (
1√
n

n∑
i=1

Yi − μ

σ
≤ z) → P (Z ≤ z).

Proof. Letting Xi = Yi−μ
σ
√

n
, i ≥ 1, and Wn =

∑n
i=1 Xi then Wn

satisfies the conditions of Theorem 2.20. Because
n∑

i=1

E[|Xi|3] = nE[|X1|3] =
nE[|Y1 − μ|3]

σ3n3/2
→ 0

it follows from Theorem 2.20 that P (Wn ≤ x) → P (Z ≤ x).
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2.7 Exercises

1. If X ∼ Poisson(a) and Y ∼ Poisson(b), with b > a, use coupling
to show that Y ≥st X.

2. Suppose a particle starts at position 5 on a number line and at
each time period the particle moves one position to the right
with probability p and, if the particle is above position 0, moves
one position to left with probability 1 − p. Let Xn(p) be the
position of the particle at time n for the given value of p. Use
coupling to show that Xn(a) ≥st Xn(b) for any n if a ≥ b.

3. Let X,Y be indicator variables with E[X] = a and E[Y ] = b.
(a) Show how to construct a maximal coupling X̂, Ŷ for X and
Y, and then compute P (X̂ = Ŷ ) as a function of a, b. (b) Show
how to construct a minimal coupling to minimize P (X̂ = Ŷ ).

4. In a room full of n people, let X be the number of people who
share a birthday with at least one other person in the room.
Then let Y be the number of pairs of people in the room having
the same birthday. (a) Compute E[X] and V ar(X) and E[Y ]
and V ar(Y ). (b) Which of the two variables X or Y do you
believe will more closely follow a Poisson distribution? Why?
(c) In a room of 51 people, it turns out there are 3 pairs with
the same birthday and also a triplet (3 people) with the same
birthday. This is a total of 9 people and also 6 pairs. Use a
Poisson approximation to estimate P (X > 9) and P (Y > 6).
Which of these two approximations do you think will be better?
Have we observed a rare event here?

5. Compute a bound on the accuracy of the better approximation
in the previous exercise part (c) using the Stein-Chen method.

6. For discrete X,Y prove dTV (X,Y ) = 1
2

∑
x |P (X = x)−P (Y =

x)|

7. For discrete X,Y show that P (X �= Y ) ≥ dTV (X,Y ) and show
also that there exists a coupling that yields equality.

8. Compute a bound on the accuracy of a normal approximation
for a Poisson random variable with mean 100.
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9. If X ∼ Geometric(p), with q = 1 − p, then show that for any
bounded function f with f(0) = 0, we have E[f(X) − qf(X +
1)] = 0.

10. Suppose X1,X2, . . . are independent mean zero random vari-
ables with |Xn| < 1 for all n and

∑
i≤n V ar(Xi)/n → s < ∞.

If Sn =
∑

i≤n Xi and Z ∼ N(0, s), show that Sn/
√

n →p Z.

11. Suppose m balls are placed among n urns, with each ball inde-
pendently going in to urn i with probability pi. Assume m is
much larger than n. Approximate the chance none of the urns
are empty, and give a bound on the error of the approximation.

12. A ring with a circumference of c is cut into n pieces (where
n is large) by cutting at n places chosen uniformly at random
around the ring. Estimate the chance you get k pieces of length
at least a, and give a bound on the error of the approximation.

13. Suppose Xi, i = 1, 2, ..., 10 are iid U(0, 1). Give an approxima-
tion for P (

∑10
i=1 Xi > 7), and give a bound on the error of this

approximation.

14. Suppose Xi, i = 1, 2, ..., n are independent random variables
with E[Xi] = 0, and

∑n
i=1 V ar(Xi) = 1. Let W =

∑n
i=1 Xi

and show that ∣∣∣∣∣E|W | −
√

2
π

∣∣∣∣∣ ≤ 3
n∑

i=1

E|Xi|3.





Chapter 3

Conditional Expectation and
Martingales

3.1 Introduction

A generalization of a sequence of independent random variables oc-
curs when we allow the variables of the sequence to be dependent
on previous variables in the sequence. One example of this type of
dependence is called a martingale, and its definition formalizes the
concept of a fair gambling game. A number of results which hold for
independent random variables also hold, under certain conditions,
for martingales, and seemingly complex problems can be elegantly
solved by reframing them in terms of a martingale.

In section 2 we introduce the notion of conditional expectation, in
section 3 we formally define a martingale, in section 4 we introduce
the concept of stopping times and prove the martingale stopping
theorem, in section 5 we give an approach for finding tail probabilities
for martingale, and in section 6 we introduce supermartingales and
submartingales, and prove the martingale convergence theorem.

3.2 Conditional Expectation

Let X be such that E[|X|] < ∞. In a first course in probability,
E[X|Y ], the conditional expectation of X given Y , is defined to be

77
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that function of Y that when Y = y is equal to

E[X|Y = y] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
x xP (X = x|Y = y),

if X,Y are discrete∫
xfX|Y (x|y)dx,

if X,Y have joint density f

where

fX|Y (x|y) =
f(x, y)∫
f(x, y)dx

=
f(x, y)
fY (y)

(3.1)

The important result, often called the tower property, that

E[X] = E[E[X|Y ]]

is then proven. This result, which is often written as

E[X] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
y E[X|Y = y]P (Y = y)
if X,Y are discrete∫

E[X|Y = y]fY (y)dy,
if X,Y are jointly continuous.

is then gainfully employed in a variety of different calculations.
We now show how to give a more general definition of conditional

expectation, that reduces to the preceding cases when the random
variables are discrete or continuous. To motivate our definition, sup-
pose that whether or not A occurs is determined by the value of Y.
(That is, suppose that A ∈ σ(Y ).) Then, using material from our
first course in probability, we see that

E[XIA] = E[E[XIA|Y ]]
= E[IAE[X|Y ]]

where the final equality holds because, given Y , IA is a constant
random variable.

We are now ready for a general definition of conditional expecta-
tion.
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Definition For random variables X,Y , let E[X|Y ], called the condi-
tional expectation of X given Y, denote that function h(Y ) having
the property that for any A ∈ σ(Y )

E[XIA] = E[h(Y )IA].

By the Radon-Nikodym Theorem of measure theory, a function
h that makes h(Y ) a (measurable) random variable and satisfies the
preceding always exists, and, as we show in the following, is unique
in the sense that any two such functions of Y must, with probability
1, be equal. The function h is also referred to as a Radon-Nikodym
derivative.

Proposition 3.1 If h1 and h2 are functions such that

E[h1(Y )IA] = E[h2(Y )IA]

for any A ∈ σ(Y ), then

P (h1(Y ) = h2(Y )) = 1

Proof. Let An = {h1(Y ) − h2(Y ) > 1/n}. Then,

0 = E[h1(Y )IAn ] − E[h2(Y )IAn ]
= E[(h1(Y ) − h2(Y ))IAn ]

≥ 1
n

P (An)

showing that P (An) = 0. Because the events An are increasing in n,
this yields

0 = lim
n

P (An) = P (lim
n

An) = P (∪nAn) = P (h1(Y ) > h2(Y ))

Similarly, we can show that 0 = P (h1(Y ) < h2(Y )), which proves
the result.

We now show that the preceding general definition of conditional
expectation reduces to the usual ones when X,Y are either jointly
discrete or continuous.
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Proposition 3.2 If X and Y are both discrete, then

E[X|Y = y] =
∑

x

xP (X = x|Y = y)

whereas if they are jointly continuous with joint density f , then

E[X|Y = y] =
∫

xfX|Y (x|y)dx

where fX|Y (x|y) = f(x,y)�
f(x,y)dx

.

Proof Suppose X and Y are both discrete, and let

h(y) =
∑

x

xP (X = x|Y = y)

For A ∈ σ(Y ), define

B = {y : IA = 1 when Y = y}

Because B ∈ σ(Y ), it follows that IA = IB . Thus,

XIA =
{

x, if X = x, Y ∈ B
0, otherwise

and

h(Y )IA =
{∑

x xP (X = x|Y = y), if Y = y ∈ B
0, otherwise

Thus,

E[XIA] =
∑

x

xP (X = x, Y ∈ B)

=
∑

x

x
∑
y∈B

P (X = x, Y = y)

=
∑
y∈B

∑
x

xP (X = x|Y = y)P (Y = y)

= E[h(Y )IA]
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The result thus follows by uniqueness. The proof in the continuous
case is similar, and is left as an exercise.

For any sigma field F we can define E[X|F ] to be that random
variable in F having the property that for all A ∈ F

E[XIA] = E[E[X|F ]IA]

Intuitively, E[X|F ] represents the conditional expectation of X given
that we know all of the events in F that occur.

Remark 3.3 It follows from the preceding definition that E[X|Y ] =
E[X|σ(Y )].

For any random variables X,X1, . . . ,Xn, define E[X|X1, . . . ,Xn] by

E[X|X1, . . . ,Xn] = E[X|σ(X1, . . . ,Xn)]

In other words, E[X|X1, . . . ,Xn] is that function h(X1, . . . ,Xn) for
which

E[XIA] = E[h(X1, . . . ,Xn)IA], for all A ∈ σ(X1, . . . ,Xn)

We now establish some important properties of conditional ex-
pectation.

Proposition 3.4
(a) The Tower Property: For any sigma field F

E[X] = E[E[X|F ]]

(b) For any A ∈ F ,

E[XIA|F ] = IAE[X|F ]

(c) If X is independent of all Y ∈ F , then

E[X|F ] = E[X]

(d) If E [|Xi|] < ∞, i = 1, . . . , n, then

E[
n∑

i=1

Xi|F ] =
n∑

i=1

E[Xi|F ]
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(e) Jensen’s Inequality If f is a convex function, then

E[f(X)|F ] ≥ f(E[X|F ])

provided the expectations exist.

Proof Recall that E[X|F ] is the unique random variable in F such
that

E[XIA] = E[E[X|F ]IA] if A ∈ F
Letting A = Ω, IA = IΩ = 1, and part (a) follows.

To prove (b), fix A ∈ F and let X∗ = XIA. Because E[X∗|F ] is
the unique function of Y such that E[X∗IA′ ] = E[E[X∗|F ]IA′ ] for
all A′ ∈ F , to show that E[X∗|F ] = IAE[X|F ], it suffices to show
that for A′ ∈ F

E[X∗IA′ ] = E[IAE[X|F ]IA′ ]

That is, it suffices to show that

E[XIAIA′ ] = E[IAE[X|F ]IA′ ]

or, equivalently, that

E[XIAA′ ] = E[E[X|F ]IAA′ ]

which, since AA′ ∈ F , follows by the definition of conditional expec-
tation.

Part (c) will follow if we can show that, for A ∈ F

E[XIA] = E[E[X]IA]

which follows because

E[XIA] = E[X]E[IA] by independence
= E[E[X]IA]

We will leave the proofs of (d) and (e) as exercises.

Remark 3.5 It can be shown that E[X|F ] satisfies all the properties
of ordinary expectations, except that all probabilities are now com-
puted conditional on knowing which events in F have occurred. For
instance, applying the tower property to E[X|F ] yields that

E[X|F ] = E[E[X|F ∪ G]|F ].
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While the conditional expectation of X given the sigma field F
is defined to be that function satisfying

E[XIA] = E[E[X|F ]IA] for all A ∈ F

it can be shown, using the dominated convergence theorem, that

E[XW ] = E[E[X|F ]W ] for all W ∈ F (3.2)

The following proposition is quite useful.

Proposition 3.6 If W ∈ F , then

E[XW |F ] = WE[X|F ]

Before giving a proof, let us note that the result is quite intuitive.
Because W ∈ F , it follows that conditional on knowing which events
of F occur - that is, conditional on F - the random variable W
becomes a constant and the expected value of a constant times a
random variable is just the constant times the expected value of the
random variable. Next we formally prove the result.
Proof. Let

Y = E[XW |F ] − WE[X|F ]
= (X − E[X|F ])W − (XW − E[XW |F ])

and note that Y ∈ F . Now, for A ∈ F ,

E[Y IA] = E[(X − E[X|F ])WIA] − E[(XW − E[XW |F ])IA]

However, because WIA ∈ F , we use Equation (3.2) to get

E[(X − E[X|F ])WIA] = E[XWIA] − E[E[X|F ]WIA] = 0,

and by the definition of conditional expectation we have

E[(XW − E[XW |F ])IA)] = E[XWIA] − E[E[XW |F ]IA] = 0.

Thus, we see that for A ∈ F ,

E[Y IA] = 0

Setting first A = {Y > 0}, and then A = {Y < 0} (which are both
in F because Y ∈ F) shows that

P (Y > 0) = P (Y < 0) = 0

Hence, Y = 0, which proves the result.
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3.3 Martingales

We say that the sequence of sigma fields F1,F2 . . . is a filtration if
F1 ⊆ F2 . . .. We say a sequence of random variables X1,X2, . . . is
adapted to Fn if Xn ∈ Fn for all n.

To obtain a feel for these definitions it is useful to think of n
as representing time, with information being gathered as time pro-
gresses. With this interpretation, the sigma field Fn represents all
events that are determined by what occurs up to time n, and thus
contains Fn−1. The sequence Xn, n ≥ 1, is adapted to the filtration
Fn, n ≥ 1, when the value of Xn is determined by what occurs by
time n.

Definition 3.7 Zn is a martingale for filtration Fn if

1. E[|Zn|] < ∞

2. Zn is adapted to Fn

3. E [Zn+1|Fn] = Zn

A bet is said to be fair it its expected gain is equal to 0. A
martingale can be thought of as being a generalized version of a fair
game. For consider a gambling casino in which bets can be made
concerning games played in sequence. Let Fn consist of all events
whose outcome is determined by the results of the first n games. Let
Zn denote the fortune of a specified gambler after the first n games.
Then the martingale condition states that no matter what the results
of the first n games, the gambler’s expected fortune after game n+1
is exactly what it was before that game. That is, no matter what has
previously occurred, the gambler’s expected winnings in any game is
equal to 0.

It follows upon taking expectations of both sides of the final mar-
tingale condition that

E[Zn+1] = E[Zn]

implying that
E[Zn] = E[Z1]

We call E[Z1] the mean of the martingale.
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Another useful martingale result is that

E[Zn+2|Fn] = E[E[Zn+2|Fn+1 ∪ Fn]|Fn]
= E[E[Zn+2|Fn+1]|Fn]
= E[Zn+1|Fn]
= Zn

Repeating this argument yields that

E[Zn+k|Fn] = Zn, k ≥ 1

Definition 3.8 We say that Zn, n ≥ 1, is a martingale (without spec-
ifying a filtration) if

1. E[|Zn|] < ∞

2. E [Zn+1|Z1, . . . , Zn] = Zn

If {Zn} is a martingale for the filtration Fn, then it is a martin-
gale. This follows from

E[Zn+1|Z1, . . . , Zn] = E[E[Zn+1|Z1, . . . , Zn,Fn]|Z1, . . . , Zn]
= E[E[Zn+1|Fn]|Z1, . . . , Zn]
= E[Zn|Z1, . . . , Zn]
= Zn

where the second equality followed because Zi ∈ Fn, for all i =
1, . . . , n.

We now give some examples of martingales.

Example 3.9 If Xi, i ≥ 1, are independent zero mean random vari-
ables, then Zn =

∑n
i=1 Xi, n ≥ 1, is a martingale with respect to

the filtration σ(X1, . . . ,Xn), n ≥ 1. This follows because

E[Zn+1|X1, . . . ,Xn] = E[Zn + Xn+1|X1, . . . ,Xn]
= E[Zn|X1, . . . ,Xn] + E[Xn+1|X1, . . . ,Xn]
= Zn + E[Xn+1]

by the independence of the Xi

= Zn
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Example 3.10 Let Xi, i ≥ 1, be independent and identically dis-
tributed with mean zero and variance σ2. Let Sn =

∑n
i=1 Xi, and

define
Zn = S2

n − nσ2, n ≥ 1

Then Zn, n ≥ 1 is a martingale for the filtration σ(X1, . . . ,Xn). To
verify this claim, note that

E[S2
n+1|X1, . . . ,Xn] = E[(Sn + Xn+1)2|X1, . . . ,Xn]

= E[S2
n|X1, . . . ,Xn] + E[2SnXn+1|X1, . . . ,Xn]

+E[X2
n+1|X1, . . . ,Xn]

= S2
n + 2SnE[Xn+1|X1, . . . ,Xn] + E[X2

n+1]
= S2

n + 2SnE[Xn+1] + σ2

= S2
n + σ2

Subtracting (n + 1)σ2 from both sides, yields

E[Zn+1|X1, . . . ,Xn] = Zn

Our next example introduces an important type of martingale,
known as a Doob martingale.

Example 3.11 Let Y be an arbitrary random variable with E[|Y |] <
∞, let Fn, n ≥ 1, be a filtration, and define

Zn = E[Y |Fn]

We claim that Zn, n ≥ 1, is a martingale with respect to the filtration
Fn, n ≥ 1. To verify this, we must first show that E[|Zn|] < ∞, which
is accomplished as follows.

E[ |Zn| ] = E[ |E[Y |Fn]| ]
≤ E[E[ |Y ||Fn ] ]
= E[ |Y | ]
< ∞

where the first inequality uses that the function f(x) = |x| is convex,
and thus from Jensen’s inequality

E[ |Y | |Fn] ≥ |E[Y |Fn]|
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while the final equality used the tower property. The verification is
now completed as follows.

E[Zn+1|Fn] = E[E[Y |Fn+1]|Fn]
= E[Y |Fn] by the tower property
= Zn

The martingale Zn, n ≥ 1, is a called a Doob martingale.

Example 3.12 Our final example generalizes the result that the suc-
cessive partial sums of independent zero mean random variables con-
stitutes a martingale. For any random variables Xi, i ≥ 1, the ran-
dom variables Xi − E[Xi|X1, . . . ,Xi−1], i ≥ 1, have mean 0. Even
though they need not be independent, their partial sums constitute
a martingale. That is, we claim that

Zn =
n∑

i=1

(Xi − E[Xi|X1, . . . ,Xi−1]), n ≥ 1

is, provided that E[|Zn|] < ∞, a martingale with respect to the
filtration σ(X1, . . . ,Xn), n ≥ 1. To verify this claim, note that

Zn+1 = Zn + Xn+1 − E[Xn+1|X1, . . . ,Xn]

Thus,

E[Zn+1|X1, . . . ,Xn] = Zn + E[Xn+1|X1, . . . ,Xn]
− E[Xn+1|X1, . . . ,Xn]

= Zn

3.4 The Martingale Stopping Theorem

The positive integer valued, possibly infinite, random variable N is
said to be a random time for the filtration Fn if {N = n} ∈ Fn or,
equivalently, if {N ≥ n} ∈ Fn−1, for all n. If P (N < ∞) = 1, then
the random time is said to be a stopping time for the filtration.

Thinking once again in terms of information being amassed over
time, with Fn being the cumulative information as to all events that
have occurred by time n, the random variable N will be a stopping
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time for this filtration if the decision whether to stop at time n (so
that N = n) depends only on what has occurred by time n. (That is,
the decision to stop at time n is not allowed to depend on the results
of future events.) It should be noted, however, that the decision
to stop at time n need not be independent of future events, only
that it must be conditionally independent of future events given all
information up to the present.

Lemma 3.13 Let Zn, n ≥ 1, be a martingale for the filtration Fn.
If N is a random time for this filtration, then the process Z̄n =
Zmin(N,n), n ≥ 1, called the stopped process, is also a martingale for
the filtration Fn.

Proof Start with the identity

Z̄n = Z̄n−1 + I{N≥n}(Zn − Zn−1)

To verify the preceding, consider two cases:
(1) N ≥ n : Here, Z̄n = Zn, Z̄n−1 = Zn−1, I{N≥n} = 1, and the

preceding is true
(2) N < n : Here, Z̄n = Z̄n−1 = ZN , I{N≥n} = 0, and the

preceding is true
Hence,

E[Z̄n|Fn−1] = E[Z̄n−1|Fn−1] + E[I{N≥n}(Zn − Zn−1)|Fn−1]
= Z̄n−1 + I{N≥n}E[Zn − Zn−1|Fn−1]
= Z̄n−1

Theorem 3.14 The Martingale Stopping Theorem Let Zn, n ≥ 1,
be a martingale for the filtration Fn, and suppose that N is a stopping
time for this filtration. Then

E[ZN ] = E[Z1]

if any of the following three sufficient conditions hold.
(1) Z̄n are uniformly bounded;
(2) N is bounded;
(3) E[N ] < ∞, and there exists M < ∞ such that

E[|Zn+1 − Zn||Fn] < M
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Proof. Because the stopped process is also a martingale,

E[Z̄n] = E[Z̄1] = E[Z1].

Because P (N < ∞) = 1, it follows that Z̄n = ZN for sufficiently
large N , implying that

lim
n→∞ Z̄n = ZN .

Part (1) follows from the bounded convergence theorem, and part
(2) with the bound N ≤ n follows from the dominated convergence
theorem using the bound |Z̄j| ≤

∑n
i=1 |Z̄i|.

To prove (3), note that with Z̄0 = 0

|Z̄n| = |
n∑

i=1

(Z̄i − Z̄i−1)|

≤
∞∑
i=1

|Z̄i − Z̄i−1|

=
∞∑
i=1

I{N≥i}|Zi − Zi−1|,

and the result now follows from the dominated convergence theorem
because

E[
∞∑
i=1

I{N≥i}|Zi − Zi−1|] =
∞∑
i=1

E[I{N≥i}|Zi − Zi−1|]

=
∞∑
i=1

E[E[I{N≥i}|Zi − Zi−1||Fi−1]]

=
∞∑
i=1

E[I{N≥i}E[|Zi − Zi−1||Fi−1]]

≤ M
∞∑
i=1

P (N ≥ i)

= ME[N ]
< ∞.
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A corollary of the martingale stopping theorem is Wald’s equa-
tion.

Corollary 3.15 Wald’s Equation If X1,X2, . . . are independent and
identically distributed with finite mean μ = E[Xi], and if N is a
stopping time for the filtration Fn = σ(X1, . . . ,Xn), n ≥ 1, such that
E[N ] < ∞, then

E[
N∑

i=1

Xi] = μE[N ]

Proof. Zn =
∑n

i=1(Xi − μ), n ≥ 1, being the successive partial
sums of independent zero mean random variables, is a martingale
with mean 0. Hence, assuming the martingale stopping theorem can
be applied we have that

0 = E[ZN ]

= E[
N∑

i=1

(Xi − μ)]

= E[
N∑

i=1

Xi − Nμ)]

= E[
N∑

i=1

Xi] − E[Nμ]

To complete the proof, we verify sufficient condition (3) of the mar-
tingale stopping theorem.

E[|Zn+1 − Zn||Fn] = E[|Xn+1 − μ||Fn]
= E[|Xn+1 − μ|] by independence
≤ E[|Xi|] + |μ|

Thus, condition (3) is verified and the result proved.

Example 3.16 Suppose independent and identically distributed dis-
crete random variables X1,X2, . . . , are observed in sequence. With
P (Xi = j) = pj, what is the expected number of random variables
that must be observed until the subsequence 0, 1, 2, 0, 1 occurs? What
is the variance?



3.4 The Martingale Stopping Theorem 91

Solution Consider a fair gambling casino - that is, one in which the
expected casino winning for every bet is 0. Note that if a gambler
bets her entire fortune of a that the next outcome is j, then her
fortune after the bet will either be 0 with probability 1− pj , or a/pj

with probability pj. Now, imagine a sequence of gamblers betting
at this casino. Each gambler starts with an initial fortune 1 and
stops playing if his or her fortune ever becomes 0. Gambler i bets
1 that Xi = 0; if she wins, she bets her entire fortune (of 1/p0)
that Xi+1 = 1; if she wins that bet, she bets her entire fortune
that Xi+2 = 2; if she wins that bet, she bets her entire fortune
that Xi+3 = 0; if she wins that bet, she bets her entire fortune that
Xi+4 = 1; if she wins that bet, she quits with a final fortune of
(p2

0p
2
1p2)−1.
Let Zn denote the casino’s winnings after the data value Xn is

observed; because it is a fair casino, Zn, n ≥ 1, is a martingale with
mean 0 with respect to the filtration σ(X1, . . . ,Xn), n ≥ 1. Let N
denote the number of random variables that need be observed until
the pattern 0, 1, 2, 0, 1 appears - so (XN−4, . . . ,XN ) = (0, 1, 2, 0, 1).
As it is easy to verify that N is a stopping time for the filtration,
and that condition (3) of the martingale stopping theorem is satisfied
when M = 4/(p2

0p
2
1p2), it follows that E[ZN ] = 0. However, after

XN has been observed, each of the gamblers 1, . . . , N −5 would have
lost 1; gambler N −4 would have won (p2

0p
2
1p2)−1−1; gamblers N −3

and N − 2 would each have lost 1; gambler N − 1 would have won
(p0p1)−1 − 1; gambler N would have lost 1. Therefore,

ZN = N − (p2
0p

2
1p2)−1 − (p0p1)−1

Using that E[ZN ] = 0 yields the result

E[N ] = (p2
0p

2
1p2)−1 + (p0p1)−1

In the same manner we can compute the expected time until any
specified pattern occurs in independent and identically distributed
generated random data. For instance, when making independent flips
of a coin that comes u heads with probability p, the mean number
of flips until the pattern HHTTHH appears is p−4q−2 + p−2 + p−1,
where q = 1 − p.

To determine Var(N), suppose now that gambler i starts with an
initial fortune i and bets that amount that Xi = 0; if she wins, she
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bets her entire fortune that Xi+1 = 1; if she wins that bet, she bets
her entire fortune that Xi+2 = 2; if she wins that bet, she bets her
entire fortune that Xi+3 = 0; if she wins that bet, she bets her entire
fortune that Xi+4 = 1; if she wins that bet, she quits with a final
fortune of i/(p2

0p
2
1p2). The casino’s winnings at time N is thus

ZN = 1 + 2 + . . . + N − N − 4
p2
0p

2
1p2

− N − 1
p0p1

=
N(N + 1)

2
− N − 4

p2
0p

2
1p2

− N − 1
p0p1

Assuming that the martingale stopping theorem holds (although
none of the three sufficient conditions hold, the stopping theorem
can still be shown to be valid for this martingale), we obtain upon
taking expectations that

E[N2] + E[N ] = 2
E[N ] − 4
p2
0p

2
1p2

+ 2
E[N ] − 1

p0p1

Using the previously obtained value of E[N ], the preceding can now
be solved for E[N2], to obtain Var(N) = E[N2] − (E[N ])2.

Example 3.17 The cards from a shuffled deck of 26 red and 26 black
cards are to be turned over one at a time. At any time a player
can say “next”, and is a winner if the next card is red and is a
loser otherwise. A player who has not yet said “next” when only a
single card remains, is a winner if the final card is red, and is a loser
otherwise. What is a good strategy for the player?

Solution Every strategy has probability 1/2 of resulting in a win.
To see this, let Rn denote the number of red cards remaining in the
deck after n cards have been shown. Then

E[Rn+1|R1, . . . , Rn] = Rn − Rn

52 − n
=

51 − n

52 − n
Rn

Hence, Rn
52−n , n ≥ 0 is a martingale. Because R0/52 = 1/2, this

martingale has mean 1/2. Now, consider any strategy, and let N
denote the number of cards that are turned over before “next” is
said. Because N is a bounded stopping time, it follows from the
martingale stopping theorem tahat

E[
RN

52 − N
] = 1/2
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Hence, with I = I{win}

E[I] = E[E[I|RN ]] = E[
RN

52 − N
] = 1/2

Our next example involves the matching problem.

Example 3.18 Each member of a group of n individuals throws his
or her hat in a pile. The hats are then mixed together, and each
person randomly selects a hat in such a manner that each of the
n! possible selections of the n individuals are equally likely. Any
individual who selects his or her own hat departs, and that is the
end of round one. If any individuals remain, then each throws the
hat they have in a pile, and each one then randomly chooses a hat.
Those selecting their own hats leave, and that ends round two. Find
E[N ], where N is the number of rounds until everyone has departed.

Solution Let Xi, i ≥ 1, denote the number of matches on round i
for i = 1, . . . , N , and let it equal 1 for i > N. To solve this example,
we will use the zero mean martingale Zk, k ≥ 1 defined by

Zk =
k∑

i=1

(Xi − E[Xi|X1, . . . ,Xi−1])

=
k∑

i=1

(Xi − 1)

where the final equality follows because, for any number of remaining
individuals, the expected number of matches in a round is 1 (which
is seen by writing this as the sum of indicator variables for the events
that each remaining person has a match). Because

N = min{k :
k∑

i=1

Xi = n}

is a stopping time for this martingale, we obtain from the martingale
stopping theorem that

0 = E[ZN ] = E[
N∑

i=1

Xi − N ] = n − E[N ]

and so E[N ] = n.
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Example 3.19 If X1,X2, . . . , is a sequence of independent and iden-
tically distributed random variables, P (Xi = 0) �= 1, then the process

Sn =
n∑

i=1

Xi, i ≥ 1

is said to be a random walk. For given positive constants a, b, let p
denote the probability that the the random walk becomes as large as
a before it becomes as small as −b.

We now show how to use martingale theory to approximate p. In
the case where we have a bound |Xi| < c it can be shown there will
be a value θ �= 0 such that

E[eθX ] = 1.

Then because

Zn = eθSn =
n∏

i=1

eθXi

is the product of independent random variables with mean 1, it fol-
lows that Zn, n ≥ 1, is a martingale having mean 1. Let

N = min(n : Sn ≥ a or Sn ≤ −b).

Condition (3) of the martingale stopping theorem can be shown to
hold, implying that

E[eθSN ] = 1

Thus.

1 = E[eθSN |SN ≥ a]p + E[eθSN |SN ≤ −b](1 − p)

Now, if θ > 0, then

eθa ≤ E[eθSN |SN ≥ a] ≤ eθ(a+c)

and
e−θ(b+c) ≤ E[eθSN |SN ≤ −b] ≤ e−θb

yielding the bounds

1 − e−θb

eθ(a+c) − e−θb
≤ p ≤ 1 − e−θ(b+c)

eθa − e−θ(b+c)
,
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and motivating the approximation

p ≈ 1 − e−θb

eθa − e−θb
.

We leave it as an exercise to obtain bounds on p when θ < 0.

Our next example involves Doob’s backward martingale. Before
defining this martingale, we need the following definition.

Definition 3.20 The random variables X1, . . . ,Xn are said to be ex-
changeable if Xi1 , . . . ,Xin has the same probability distribution for
every permutation i1, . . . , in of 1, . . . , n.

Suppose that X1, . . . ,Xn are exchangeable. Assume E[|X1|] <
∞, let

Sj =
j∑

i=1

Xi, j = 1, . . . , n

and consider the Doob martingale Z1, . . . , Zn, given by

Z1 = E[X1|Sn]
Zj = E[X1|Sn, Sn−1, . . . , Sn+1−j ], j = 1, . . . , n.

However,

Sn+1−j = E[Sn+1−j |Sn+1−j,Xn+2−j , . . . ,Xn]

=
n+1−j∑

i=1

E[Xi|Sn+1−j,Xn+2−j , . . . ,Xn]

= (n + 1 − j)E[X1|Sn+1−j ,Xn+2−j , . . . ,Xn]
(by exchangeability)

= (n + 1 − j)Zj

where the final equality follows since knowing Sn, Sn−1, . . . , Sn+1−j

is equivalent to knowing Sn+1−j,Xn+2−j , . . . ,Xn.
The martingale

Zj =
Sn+1−j

n + 1 − j
, j = 1, . . . , n

is called the Doob backward martingale. We now apply it to solve the
ballot problem.
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Example 3.21 In an election between candidates A and B candidate
A receives n votes and candidate B receives m votes, where n > m.
Assuming, in the count of the votes, that all orderings of the n + m
votes are equally likely, what is the probability that A is always ahead
in the count of the votes?

Solution Let Xi equal 1 if the ith voted counted is for A and
let it equal −1 if that vote is for B. Because all orderings of the
n + m votes are assumed to be equally likely, it follows that the
random variables X1, . . . ,Xn+m are exchangeable, and Z1, . . . , Zn+m

is a Doob backward martingale when

Zj =
Sn+m+1−j

n + m + 1 − j

where Sk =
∑k

i=1 Xi. Because Z1 = Sn+m/(n + m) = (n−m)/(n +
m), the mean of this martingale is (n−m)/(n+m). Because n > m,
A will always be ahead in the count of the vote unless there is a tie
at some point, which will occur if one of the Sj - or equivalently, one
of the Zj - is equal to 0. Consequently, define the bounded stopping
time N by

N = min{j : Zj = 0 or j = n + m}

Because Zn+m = X1, it follows that ZN will equal 0 if the candidates
are ever tied, and will equal X1 if A is always ahead. However, if A
is always ahead, then A must receive the first vote; therefore,

ZN =
{

1, if A is always ahead
0, otherwise

By the martingale stopping theorem, E[ZN ] = (n − m)/(n + m),
yielding the result

P (A is always ahead) =
n − m

n + m

3.5 The Hoeffding-Azuma Inequality

Let Zn, n ≥ 0, be a martingale with respect to the filtration Fn.
If the differences Zn − Zn−1 can be shown to lie in a bounded ran-
dom interval of the form [−Bn,−Bn + dn] where Bn ∈ Fn−1 and dn
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is constant, then the Hoeffding-Azuma inequality often yields useful
bounds on the tail probabilities of Zn. Before presenting the inequal-
ity we will need a couple of lemmas.

Lemma 3.22 If E[X] = 0, and P (−α ≤ X ≤ β) = 1, then for any
convex function f

E[f(X)] ≤ β

α + β
f(−α) +

α

α + β
f(β)

Proof Because f is convex it follows that, in the region −α ≤ x ≤ β,
it is never above the line segment connecting the points (−α, f(−α))
and (β, f(β)). Because the formula for this line segment is

y =
β

α + β
f(−α) +

α

α + β
f(β) +

1
α + β

[f(β) − f(−α)]x

we obtain from the condition P (−α ≤ X ≤ β) = 1 that

f(X) ≤ β

α + β
f(−α) +

α

α + β
f(β) +

1
α + β

[f(β) − f(−α)]X

Taking expectations, and using that E[X] = 0, yield the result.

Lemma 3.23 For 0 ≤ p ≤ 1

pet(1−p) + (1 − p)e−tp ≤ et2/8

Proof Letting p = (1 + α)/2 and t = 2β, we must show that
for −1 ≤ α ≤ 1

(1 + α)eβ(1−α) + (1 − α)e−β(1+α) ≤ 2eβ2/2

or, equivalently,

eβ + e−β + α(eβ − e−β) ≤ 2eαβ+β2/2

The preceding inequality is true when α = −1 or +1 and when |β| is
large (say when |β| ≥ 100). Thus, if the Lemma were false, then the
function

f(α, β) = eβ + e−β + α(eβ − e−β) − 2eαβ+β2/2
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would assume a strictly positive maximum in the interior of the re-
gion R = {(α, β) : |α| ≤ 1, |β| ≤ 10}. Setting the partial derivatives
of f equal to 0, we obtain

eβ − e−β + α(eβ + e−β) = 2αβeαβ+β2/2 (3.3)

eβ − e−β = 2βeαβ+β2/2 (3.4)

We will now prove the lemma by showing that any solution of (3.3)
and (3.4) must have β = 0. However, because f(α, 0) = 0, this would
contradict the hypothesis that f assumes a strictly positive maximum
in R , thus establishing the lemma.

So, assume that there is a solution of (3.3) and (3.4) in which
β �= 0. Now note that there is no solution of these equations for
which α = 0 and β �= 0. For if there were such a solution, then (3.4)
would say that

eβ − e−β = 2βeβ2/2 (3.5)

But expanding in a power series about 0 shows that (3.5) is equivalent
to

2
∞∑
i=0

β2i+1

(2i + 1)!
= 2

∞∑
i=0

β2i+1

i!2i

which (because (2i + 1)! > i!2i when i > 0) is clearly impossible
when β �= 0. Thus, any solution of (3.3) and (3.4) in which β �= 0
will also have α �= 0. Assuming such a solution gives, upon dividing
(3.3) by (3.4), that

1 + α
eβ + e−β

eβ − e−β
= 1 +

α

β

Because α �= 0, the preceding is equivalent to

β(eβ + e−β) = eβ − e−β

or, expanding in a Taylor series,
∞∑
i=0

β2i+1

(2i)!
=

∞∑
i=0

β2i+1

(2i + 1)!

which is clearly not possible when β �= 0. Thus, there is no solution
of (3.3) and (3.4) in which β �= 0, thus proving the result.

We are now ready for the Hoeffding-Azuma inequality.
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Theorem 3.24 The Hoeffding-Azuma Inequality Let Zn, n ≥
1, be a martingale with mean μ with respect to the filtration Fn.
Let Z0 = μ and suppose there exist nonnegative random variables
Bn, n > 0, where Bn ∈ Fn−1, and positive constants dn, n > 0, such
that

−Bn ≤ Zn − Zn−1 ≤ −Bn + dn

Then, for n > 0, a > 0,

(i) P (Zn − μ ≥ a) ≤ e−2a2/
�n

i=1 d2
i

(ii) P (Zn − μ ≤ −a) ≤ e−2a2/
�n

i=1 d2
i (3.6)

Proof Suppose that μ = 0. For any c > 0

P (Zn ≥ a) = P (ecZn ≥ eca)
≤ e−caE[ecZn ]

where we use Markov’s inequality in the second equality. Let Wn =
ecZn . Note that W0 = 1, and that for n > 0

E[Wn|Fn−1] = E[ecZn−1 ec(Zn−Zn−1)|Fn−1]
= ecZn−1 E[ec(Zn−Zn−1)|Fn−1]
= Wn−1 E[ec(Zn−Zn−1)|Fn−1] (3.7)

where the second equality used that Zn−1 ∈ Fn−1. Because
(i) f(x) = ecx is convex;
(ii)

E[Zn − Zn−1|Fn−1] = E[Zn|Fn−1] − E[Zn−1|Fn−1]
= Zn−1 − Zn−1 = 0

and
(iii) −Bn ≤ Zn − Zn−1 ≤ −Bn + dn

it follows from Lemma 3.22, with α = Bn, β = −Bn + dn, that

E[ec(Zn−Zn−1)|Fn−1] ≤ E[
(−Bn + dn)e−cBn + Bnec (−Bn+dn)

+dn
|Fn−1]

=
(−Bn + dn)e−cBn + Bnec (−Bn+dn)

dn
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where the final equality used that Bn ∈ Fn−1. Hence, from Equation
(3.7), we see that

E[Wn|Fn−1] ≤ Wn−1
(−Bn + dn)e−cBn + Bnec (−Bn+dn)

dn

≤ Wn−1e
c2d2

n/8

where the final inequality used Lemma 3.23 (with p = Bn/dn, t =
cdn). Taking expectations gives

E[Wn] ≤ E[Wn−1]ec2d2
n/8

Using that E[W0] = 1 yields, upon iterating this inequality, that

E[Wn] ≤
n∏

i=1

ec2d2
i /8 = ec2

�n
i=1 d2

i /8

Therefore, from Equation (3.6), we obtain that for any c > 0

P (Zn ≥ a) ≤ exp(−ca + c2
n∑

i=1

d2
i /8)

Letting c = 4a/
∑n

i=1 d2
i , (which is the value of c that minimizes

−ca + c2
∑n

i=1 d2
i /8), gives that

P (Zn ≥ a) ≤ e−2a2/
�n

i=1 d2
i

Parts (i) and (ii) of the Hoeffding-Azuma inequality now follow from
applying the preceding, first to the zero mean martingale {Zn − μ},
and secondly to the zero mean martingale {μ − Zn}.

Example 3.25 Let Xi, i ≥ 1 be independent Bernoulli random vari-
ables with means pi, i = 1, . . . , n. Then

Zn =
n∑

i=1

(Xi − pi) = Sn −
n∑

i=1

pi, n ≥ 0

is a martingale with mean 0. Because Zn − Zn−1 = Xn − p, we see
that

−p ≤ Zn − Zn−1 ≤ 1 − p
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Thus, by the Hoeffding-Azuma inequality (Bn = p, dn = 1), we see
that for a > 0

P (Sn −
n∑

i=1

pi ≥ a) ≤ e−2a2/n

P (Sn −
n∑

i=1

pi ≤ −a) ≤ e−2a2/n

The preceding inequalities are often called Chernoff bounds.

The Hoeffding-Azuma inequality is often applied to a Doob type
martingale. The following corollary is often used.

Corollary 3.26 Let h be such that if the vectors x = (x1, . . . , xn) and
y = (y1, . . . , yn) differ in at most one coordinate (that is, for some
k, xi = yi for all i �= k) then

|h(x) − h(y)| ≤ 1

Then, for a vector of independent random variables X = (X1, . . . ,Xn),
and a > 0

P (h(X) − E[h(X)] ≥ a) ≤ e−2a2/n

P (h(X) − E[h(X)] ≤ −a) ≤ e−2a2/n

Proof Let Z0 = E[h(X)], and Zi = E[h(X)|σ(X1, . . . ,Xi)], for
i = 1, . . . , n. Then Z0, . . . , Zn is a martingale with respect to the
filtration σ(X1, . . . ,Xi), i = 1, . . . , n. Now,

Zi − Zi−1 = E[h(X)|X1, . . . ,Xi)] − E[h(X)|X1, . . . ,Xi−1]
≤ sup

x
{E[h(X)|X1, . . . ,Xi−1,Xi = x]

−E[h(X)|X1, . . . ,Xi−1]}

Similarly,

Zi − Zi−1 ≥ inf
y
{E[h(X)|X1, . . . ,Xi−1,Xi = y]

− E[h(X)|X1, . . . ,Xi−1]}
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Hence, letting

−Bi = inf
y
{E[h(X)|X1, . . . ,Xi−1,Xi = y] − E[h(X)|X1, . . . ,Xi−1]}

and di = 1, the result will follow from the Hoeffding-Azuma inequal-
ity if we can show that

sup
x
{E[h(X)|X1, . . . ,Xi−1,Xi = x]}

− inf
y
{E[h(X)|X1, . . . ,Xi−1,Xi = y]} ≤ 1

However, with Xi−1 = (X1, . . . ,Xi−1), the left-hand side of the pre-
ceding can be written as

sup
x,y

{E[h(X)|X1, . . . ,Xi−1,Xi = x]

− E[h(X)|X1, . . . ,Xi−1,Xi = y]}
= sup

x,y
{E[h(X1, . . . ,Xi−1, x,Xi+1, . . . ,Xn)|Xi−1]

− E[h(X1, . . . ,Xi−1, y,Xi+1, . . . ,Xn)|Xi−1]}
= sup

x,y
{E[h(X1, . . . ,Xi−1, x,Xi+1, . . . ,Xn)

− E[h(X1, . . . ,Xi−1, y,Xi+1, . . . ,Xn)|Xi−1]}
≤ 1

and the proof is complete.

Example 3.27 Let X1,X2, . . . ,Xn be independent and identically
distributed discrete random variables, with P (Xi = j) = pj . With
N equal to the number of times the pattern 3, 4, 5, 6, appears in the
sequence X1,X2, . . . ,Xn, obtain bounds on the tail probability of
N .

Solution First note that

E[N ] =
n−3∑
i=1

E[I{pattern begins at position i}]

= (n − 3)p3p4p5p6
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With h(x1, . . . , xn) equal to the number of times the pattern 3, 4, 5, 6
appears when Xi = xi, i = 1, . . . , n, it is easy to see that h satisfies
the condition of Corollary 3.26. Hence, for a > 0

P (N − (n − k + 1)p3p4p5p6 ≥ a) ≤ e−2a2/(n−3)

P (N − (n − k + 1)p3p4p5p6 ≤ −a) ≤ e−2a2/(n−3)

Example 3.28 Suppose that n balls are to be placed in m urns, with
each ball independently going into urn i with probability pi,

∑m
i=1 pi =

1. Find bounds on the tail probability of Yk, equal to the number of
urns that receive exactly k balls.

Solution First note that

E[Yk] = E

[
m∑

i=1

I{urn i has exactly k balls}

]

=
m∑

i=1

(
n

i

)
pk

i (1 − pi)n−k

Let Xj denote the urn in which ball j is put, j = 1, . . . , n. Also,
let hk(x1, . . . , xn) denote the number of urns that receive exactly k
balls when Xi = xi, i = 1, . . . , n, and note that Yk = hk(X1, . . . ,Xn).
When k = 0 it is easy to see that h0 satisfies the condition that if
x and y differ in at most one coordinate, then |h0(x) − h0(y)| ≤ 1.
Therefore, from Corollary 3.26 we obtain, for a > 0, that

P (Y0 −
m∑

i=1

(1 − pi)n ≥ a) ≤ e−2a2/n

P (Y0 −
m∑

i=1

(1 − pi)n ≤ −a) ≤ e−2a2/n

For 0 < k < n it is no longer true that if x and y differ in at most
one coordinate, then |hk(x)−hk(y)| ≤ 1. This is so because the one
different value could result in one of the vectors having one less and
the other having one more urn with k balls than would have resulted
if that coordinate was not included. Thus, if x and y differ in at
most one coordinate, then

|hk(x) − hk(y)| ≤ 2
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showing that h∗
k(x) = hk(x)/2 satisfies the condition of Corollary

3.26. Because

P (Yk − E[Yk] ≥ a) = P (h∗
k(X) − E[h∗

k(X)] ≥ a/2)

we obtain, for a > 0, 0 < k < n, that

P (Yk −
m∑

i=1

(
n

i

)
pk

i (1 − pi)n−k ≥ a) ≤ e−a2/2n

P (Yk −
m∑

i=1

(
n

i

)
pk

i (1 − pi)n−k ≤ −a) ≤ e−a2/2n

Of course,

P (Yn = 1) =
m∑

i=1

pn
i = 1 − P (Yn = 0)

3.6 Submartingales, Supermartingales, and a Con-
vergence Theorem

Submartingales model superfair games, while supermartingales model
subfair ones.

Definition 3.29 The sequence of random variables Zn, n ≥ 1, is said
to be a submartingale for the filtration Fn if

1. E[|Zn|] < ∞

2. Zn is adapted to Fn

3. E [Zn+1|Fn] ≥ Zn

If 3 is replaced by E [Zn+1|Fn] ≤ Zn, then Zn, n ≥ 1, is said to be
supermartingale.

It follows from the tower property that

E[Zn+1] ≥ E[Zn]

for a submartingale, with the inequality reversed for a supermartin-
gale. (Of course, if Zn, n ≥ 1, is a submartingale, then −Zn, n ≥ 1,
is a supermartingale, and vice-versa.)
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The analogs of the martingale stopping theorem remain valid
for submartingales and supermartingales. We leave the proof of the
following theorem as an exercise.

Theorem 3.30 If N is a stopping time for the filtration Fn, then

E[ZN ] ≥ E[Z1] for a submartingale
E[ZN ] ≤ E[Z1] for a supermartingale

provided that any of the sufficient conditions of Theorem 3.14 hold.

One of the most useful results about submartingales is the Kol-
mogorov inequality. Before presenting it, we need a couple of lem-
mas.

Lemma 3.31 If Zn, n ≥ 1, is a submartingale for the filtration Fn,
and N is a stopping time for this filtration such that P (N ≤ n) = 1,
then

E[Z1] ≤ E[ZN ] ≤ E[Zn]

Proof. Because N is bounded, it follows from the submartingale
stopping theorem that E[ZN ] ≥ E[Z1]. Now,

E[Zn|Fk, N = k] = E[Zn|Fk] ≥ Zk = ZN

Taking expectations of this inequality completes the proof.

Lemma 3.32 If Zn, n ≥ 1, is a martingale with respect to the filtra-
tion Fn, n ≥ 1, and f a convex function for which E[|f(Zn)|] < ∞,
then f(Zn), n ≥ 1, is a submartingale with respect to the filtration
Fn, n ≥ 1.

Proof.

E[f(Zn+1)|Fn] ≥ f(E[Zn+1|Fn]) by Jensen’s inequality
= f(Zn)

Theorem 3.33 Kolmogorov’s Inequality for Submartingales Sup-
pose Zn, n ≥ 1, is a nonnegative submartingale, then for a > 0

P (max{Z1, . . . , Zn} ≥ a) ≤ E[Zn]/a
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Proof Let N be the smallest i, i ≤ n such that Zi ≥ a, and let it
equal n if Zi < a for all i = 1, . . . , n. Then

P (max{Z1, . . . , Zn} ≥ a) = P (ZN ≥ a)
≤ E[ZN ]/a by Markov’s inequality
≤ E[Zn]/a since N ≤ n

Corollary 3.34 If Zn, n ≥ 1, is a martingale, then for a > 0

P (max{|Z1|, . . . , |Zn|} ≥ a) ≤ min(E[|Zn|]/a, E[Z2
n]/a2)

Proof Noting that

P (max{|Z1|, . . . , |Zn|} ≥ a) = P (max{Z2
1 . . . , Z2

n} ≥ a2)

the corollary follows from Lemma 3.32 and Kolmogorov’s inequality
for submartingales upon using that f(x) = |x| and f(x) = x2 are
convex functions.

Theorem 3.35 The Martingale Convergence Theorem Let Zn, n ≥
1, be a martingale. If there is M < ∞ such that

E[|Zn|] ≤ M for all n

then, with probability 1, limn→∞ Zn exists and is finite.

Proof We will give a proof under the stronger condition that E[Z2
n]

is bounded. Because f(x) = x2 is convex, it follows from Lemma
3.32 that Z2

n, n ≥ 1, is a submartingale, yielding that E[Z2
n] is non-

decreasing. Because E[Z2
n] is bounded, it follows that it converges;

let m < ∞ be given by

m = lim
n→∞E[Z2

n]

We now argue that limn→∞ Zn exists and is finite by showing that,
with probability 1, Zn, n ≥ 1, is a Cauchy sequence. That is, we will
show that, with probability 1,

|Zm+k − Zm| → 0 as m,k → ∞
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Using that Zm+k−Zm, k ≥ 1, is a martingale, it follows that (Zm+k−
Zm)2, k ≥ 1, is a submartingale. Thus, by Kolmogorov’s inequality,

P (|Zm+k − Zm| > ε for some k ≤ n)

= P ( max
k=1,...,n

(Zm+k − Zm)2 > ε2)

≤ E[(Zm+n − Zm)2]/ε2

= E[Z2
n+m − 2ZmZn+m + Z2

m]/ε2

However,

E[ZmZn+m] = E[E[ZmZn+m|Zm]]
= E[ZmE[Zn+m|Zm]]
= E[Z2

m]

Therefore,

P (|Zm+k − Zm| > ε for some k ≤ n) ≤ (E[Z2
n+m] − E[Z2

m])/ε2

Letting n → ∞ now yields

P (|Zm+k − Zm| > ε for some k) ≤ (m − E[Z2
m])/ε2

Thus,

P (|Zm+k − Zm| > ε for some k) → 0 as m → ∞

Therefore, with probability 1, Zn, n ≥ 1, is a Cauchy sequence, and
so has a finite limit.

As a consequence of the martingale convergence theorem we ob-
tain the following.

Corollary 3.36 If Zn, n ≥ 1, is a nonnegative martingale then, with
probability 1, limn→∞ Zn exists and is finite.

Proof Because Zn is nonnegative

E[|Zn|] = E[Zn] = E[Z1] < ∞
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Example 3.37 A branching process follows the size of a population
over succeeding generations. It supposes that, independent of what
occurred in prior generations, each individual in generation n inde-
pendently has j offspring with probability pj, j ≥ 0. The offspring
of individuals of generation n then make up generation n + 1. Let
Xn denote the number of individuals in generation n. Assuming
that m =

∑
j jpj , the mean number of offspring of an individual,

is finite it is east to verify that Zn = Xn/mn, n ≥ 0, is a martin-
gale. Because it is nonnegative, the preceding corollary implies that
limn Xn/mn exists and is finite. But this implies, when m < 1,
that limn Xn = 0; or, equivalently, that Xn = 0 for all n sufficiently
large. When m > 1, the implication is that the generation size either
becomes 0 or converges to infinity at an exponential rate.
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3.7 Exercises

1. For F = {φ,Ω}, show that E[X|F ] = E[X].

2. Give the proof of Proposition 3.2 when X and Y are jointly
continuous.

3. If E [|Xi|] < ∞, i = 1, . . . , n, show that

E[
n∑

i=1

Xi|F ] =
n∑

i=1

E[Xi|F ]

4. Prove that if f is a convex function, then

E[f(X)|F ] ≥ f(E[X|F ])

provided the expectations exist.

5. Let X1,X2, . . . , be independent random variables with mean
1. Show that Zn =

∏n
i=1 Xi, n ≥ 1, is a martingale.

6. If E[Xn+1|X1, . . . ,Xn] = anXn+bn for constants an, bn, n ≥ 0,
find constants An, Bn so that Zn = AnXn + Bn, n ≥ 0, is a
martingale with respect to the filtration σ(X0, . . . ,Xn).

7. Consider a population of individuals as it evolves over time,
and suppose that, independent of what occurred in prior gen-
erations, each individual in generation n independently has j
offspring with probability pj , j ≥ 0. The offspring of individuals
of generation n then make up generation n + 1. Assume that
m =

∑
j jpj < ∞. Let Xn denote the number of individuals

in generation n, and define a martingale related to Xn, n ≥ 0.
The process Xn, n ≥ 0 is called a branching process.

8. Suppose X1,X2, ..., are independent and identically distributed
random variables with mean zero and finite variance σ2. If T
is a stopping time with finite mean, show that

Var(
T∑

i=1

Xi) = σ2E(T ).
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9. Suppose X1,X2, ..., are independent and identically distributed
mean 0 random variables which each take value +1 with prob-
ability 1/2 and take value -1 with probability 1/2. Let Sn =∑n

i=1 Xi. Which of the following are stopping times? Compute
the mean for the ones that are stopping times.
(a) T1 = min{i ≥ 5 : Si = Si−5 + 5}
(b) T2 = T1 − 5
(c) T3 = T2 + 10.

10. Consider a sequence of independent flips of a coin, and let
Ph denote the probability of a head on any toss. Let A be
the hypothesis that Ph = a and let B be the hypothesis that
Ph = b, for given values 0 < a, b < 1. Let Xi be the outcome of
flip i, and set

Zn =
P (X1, . . . ,Xn|A)
P (X1, . . . ,Xn|B)

If Ph = b, show that Zn, n ≥ 1, is a martingale having mean 1.

11. Let Zn, n ≥ 0 be a martingale with Z0 = 0. Show that

E[Z2
n] =

n∑
i=1

E[(Zi − Zi−1)2]

12. Consider an individual who at each stage, independently of
past movements, moves to the right with probability p or to
the left with probability 1 − p. Assuming that p > 1/2 find
the expected number of stages it takes the person to move i
positions to the right from where she started.

13. In Example 3.19 obtain bounds on p when θ < 0.

14. Use Wald’s equation to approximate the expected time it takes
a random walk to either become as large as a or as small as −b,
for positive a and b. Give the exact expression if a and b are
integers, and at each stage the random walk either moves up 1
with probability p or moves down 1 with probability 1 − p.

15. Consider a branching process that starts with a single individ-
ual. Let π denote the probability this process eventually dies
out. With Xn denoting the number of individuals in generation
n, argue that πXn , n ≥ 0, is a martingale.
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16. Given X1,X2, ..., let Sn =
∑n

i=1 Xi and Fn = σ(X1,...Xn).
Suppose for all n E|Sn| < ∞ and E[Sn+1|Fn] = Sn. Show
E[XiXj ] = 0 if i �= j.

17. Suppose n random points are chosen in a circle having diam-
eter equal to 1, and let X be the length of the shortest path
connecting all of them. For a > 0, bound P (X − E[X] ≥ a).

18. Let X1,X2, . . . ,Xn be independent and identically distributed
discrete random variables, with P (Xi = j) = pj. Obtain
bounds on the tail probability of the number of times the pat-
tern 0, 0, 0, 0 appears in the sequence.

19. Repeat Example 3.27, but now assuming that the Xi are inde-
pendent but not identically distributed. Let Pi,j = P (Xi = j).

20. Let Zn, n ≥ 0, be a martingale with mean Z0 = 0, and let
vj , j ≥ 0, be a sequence of nondecreasing constants with v0 = 0.
Prove the Kolmogorov-Hajek-Renyi inequality:

P (|Zj | ≤ vj , for all j = 1, . . . , n) ≥ 1 −
n∑

j=1

E[(Zj − Zj−1)2]/v2
j

21. Consider a gambler who plays at a fair casino. Suppose that the
casino does not give any credit, so that the gambler must quit
when his fortune is 0. Suppose further that on each bet made
at least 1 is either won or lost. Argue that, with probability 1,
a gambler who wants to play forever will eventually go broke.

22. What is the implication of the martingale convergence theorem
to the scenario of Exercise 10?

23. Three gamblers each start with a, b, and c chips respectively.
In each round of a game a gambler is selected uniformly at
random to give up a chip, and one of the other gamblers is
selected uniformly at random to receive that chip. The game
ends when there are only two players remaining with chips.
Let Xn, Yn, and Zn respectively denote the number of chips
the three players have after round n, so (X0, Y0, Z0) = (a, b, c).
(a) Compute E[Xn+1Yn+1Zn+1 | (Xn, Yn, Zn) = (x, y, z)].
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(b) Show that Mn = XnYnZn +n(a+ b+ c)/3 is a martingale.
(c) Use the preceding to compute the expected length of the
game.



Chapter 4

Bounding Probabilities and
Expectations

4.1 Introduction

In this chapter we develop some approaches for bounding expec-
tations and probabilities. We start in Section 2 with Jensen’s in-
equality, which bounds the expected value of a convex function of a
random variable. In Section 3 we develop the importance sampling
identity and show how it can be used to yield bounds on tail probabil-
ities. A specialization of this method results in the Chernoff bound,
which is developed in section 4. Section 5 deals with the Second
Moment and the Conditional Expectation Inequalities, which bound
the probability that a random variable is positive. Section 6 develops
the Min-Max Identity and use it to obtain bounds on the maximum
of a set of random variables. Finally, in Section 7 we introduce some
general stochastic order relations and explore their consequences.

4.2 Jensen’s Inequality

Jensen’s inequality yields a lower bound on the expected value of a
convex function of a random variable.

Proposition 4.1 If f is a convex function, then

E[f(X)] ≥ f(E[X])

113
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provided the expectations exist.

Proof. We give a proof under the assumption that f has a Taylor
series expansion. Expanding f about the value μ = E[X], and using
the Taylor series expansion with a remainder term, yields that for
some a

f(x) = f(μ) + f ′(μ)(x − μ) + f ′′(a)(x − μ)2/2
≥ f(μ) + f ′(μ)(x − μ)

where the preceding used that f ′′(a) ≥ 0 by convexity. Hence,

f(X) ≥ f(μ) + f ′(μ)(X − μ)

Taking expectations yields the result.

Remark 4.2 If

P (X = x1) = λ = 1 − P (X = x2)

then Jensen’s inequality implies that for a convex function f

λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2),

which is the definition of a convex function. Thus, Jensen’s inequal-
ity can be thought of as extending the defining equation of convexity
from random variables that take on only two possible values to arbi-
trary random variables.

4.3 Probability Bounds via the Importance Sam-
pling Identity

Let f and g be probability density (or probability mass) functions;
let h be an arbitrary function, and suppose that g(x) = 0 implies that
f(x)h(x) = 0. The following is known as the importance sampling
identity.

Proposition 4.3 The Importance Sampling Identity

Ef [h(X)] = Eg[
h(X)f(X)

g(X)
]

where the subscript on the expectation indicates the density (or mass
function) of the random variable X.
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Proof We give the proof when f and g are density functions:

Ef [h(X)] =
∫ ∞

−∞
h(x) f(x) dx

=
∫ ∞

−∞

h(x) f(x)
g(x)

g(x) dx

= Eg[
h(X)f(X)

g(X)
]

The importance sampling identity yields the following useful corol-
lary concerning the tail probability of a random variable.

Corollary 4.4

Pf (X > c) = Eg[
f(X)
g(X)

|X > c]Pg(X > c)

Proof.

Pf (X > c) = Ef [I{X>c}]

= Eg[
I{X>c}f(X)

g(X)
]

= Eg[
I{X>c}f(X)

g(X)
|X > c]Pg(X > c)

= Eg[
f(X)
g(X)

|X > c]Pg(X > c)

Example 4.5 Bounding Standard Normal Tail Probabilities Let f be
the standard normal density function

f(x) =
1√
2π

e−x2/2, −∞ < x < ∞

For c > 0, consider Pf (X > c}, the probability that a standard
normal random variable exceeds c. With

g(x) = ce−cx, x > 0
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we obtain from Corollary 4.4

Pf (X > c) =
e−c2

c
√

2π
Eg[e−X2/2ecX |X > c]

=
e−c2

c
√

2π
Eg[e−(X+c)2/2ec(X+c)]

where the first equality used that Pg(X > c) = e−c2, and the sec-
ond the lack of memory property of exponential random variables to
conclude that the conditional distribution of an exponential random
variable X given that it exceeds c is the unconditional distribution
of X + c. Thus the preceding yields

Pf (X > c) =
e−c2/2

c
√

2π
Eg[e−X2/2] (4.1)

Noting that, for x > 0,

1 − x < e−x < 1 − x + x2/2

we see that

1 − X2/2 < e−X2/2 < 1 − X2/2 + X4/8

Using that E[X2] = 2/c2 and E[X4] = 24/c4 when X is exponential
with rate c, the preceding inequality yields

1 − 1/c2 < Eg[e−X2/2] < 1 − 1/c2 + 3/c4

Consequently, using Equation (4.1 ), we obtain

(1−1/c2)
e−c2/2

c
√

2π
< Pf (X > c) < (1−1/c2+3/c4)

e−c2/2

c
√

2π
(4.2)

Our next example uses the importance sampling identity to bound
the probability that successive sums of a sequence of independent
and identically distributed normal random variables with a negative
mean ever cross some specified positive number.



4.3 Probability Bounds via the Importance Sampling Identity 117

Example 4.6 Let X1,X2, . . . be a sequence of independent and iden-
tically distributed normal random variables with mean μ < 0 and
variance 1. Let Sk =

∑k
i=1 Xi and, for a fixed A > 0, consider

p = P (Sk > A for some k)

Let fk(xk) = fk(x1, . . . , xk) be the joint density function of Xk =
(X1, . . . ,Xk). That is,

fk(xk) = (2π)−k/2e−
�k

i=1(xi−μ)2/2

Also, let gk be the joint density of k independent and identically
distributed normal random variables with mean −μ and variance 1.
That is,

gk(xk) = (2π)−k/2e−
�k

i=1(xi+μ)2/2

Note that
fk(xk)
gk(xk)

= e2μ
�k

i=1 xi

With

Rk = {(x1, . . . , xk) :
j∑

i=1

xi ≤ A, j < k,
k∑

i=1

xi > A}

we have

p =
∞∑

k=1

P (Xk ∈ Rk)

=
∞∑

k=1

Efk
[I{Xk∈Rk}]

=
∞∑

k=1

Egk
[
I{Xk∈Rk}fk(Xk)

gk(Xk)
]

=
∞∑

k=1

Egk
[I{Xk∈Rk} e2μSk ]

Now, if Xk ∈ Rk then Sk > A, implying, because μ < 0, that
e2μSk < e2μA. Because this implies that

I{Xk∈Rk} e2μSk ≤ I{Xk∈Rk} e2μA
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we obtain from the preceding that

p ≤
∞∑

k=1

Egk
[I{Xk∈Rk} e2μA]

= e2μA
∞∑

k=1

Egk
[I{Xk∈Rk}]

Now, if Yi, i ≥ 1, is a sequence of independent normal random vari-
ables with mean −μ and variance 1, then

Egk
[I{Xk∈Rk}] = P (

j∑
i=1

Yi ≤ A, , j < k,
k∑

i=1

Yi > A)

Therefore, from the preceding

p ≤ e2μA
∞∑

k=1

P (
j∑

i=1

Yi ≤ A, , j < k,

k∑
i=1

Yi > A)

= e2μAP (
k∑

i=1

Yi > A for some k)

= e2μA

where the final equality follows from the strong law of large numbers
because limn→∞

∑n
i=1 Yi/n = −μ > 0, implies P (limn→∞

∑n
i=1 Yi =

∞) = 1, and thus P (
∑k

i=1 Yi > A for some k) = 1.

The bound

p = P (Sk > A for some k) ≤ e2μA

is not very useful when A is a small nonnegative number. In this case,
we should condition on X1, and then apply the preceding inequality.
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With Φ being the standard normal distribution function, this yields

p =
∫ ∞

−∞
P (Sk > A for some k|X1 = x)

1√
2π

e−(x−μ)2/2dx

=
∫ A

−∞
P (Sk > A for some k|X1 = x)

1√
2π

e−(x−μ)2/2dx

+P (X1 > A)

≤ 1√
2π

∫ A

−∞
e2μ(A−x)e−(x−μ)2/2dx + 1 − Φ(A − μ)

= e2μA 1√
2π

∫ A

−∞
e−(x+μ)2/2dx + 1 − Φ(A − μ)

= e2μAΦ(A + μ) + 1 − Φ(A − μ)

Thus, for instance

P (Sk > 0 for some k) ≤ Φ(μ) + 1 − Φ(−μ) = 2Φ(μ)

4.4 Chernoff Bounds

Suppose that X has probability density (or probability mass) func-
tion f(x). For t > 0, let

g(x) =
etxf(x)
M(t)

where M(t) = Ef [etX ] is the moment generating function of X.
Corollary 4.4 yields, for c > 0, that

Pf (X ≥ c) = Eg[M(t)e−tX |X ≥ c]Pg(X ≥ c)
≤ Eg[M(t)e−tX |X ≥ c]
≤ M(t) e−tc

Because the preceding holds for all t > 0, we can conclude that

Pf (X ≥ c) ≤ inf
t>0

M(t) e−tc (4.3)

The inequality (4.3) is called the Chernoff bound.
Rather than choosing the value of t so as to obtain the best

bound, it is often convenient to work with bounds that are more
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analytically tractable. The following inequality can be used to sim-
plify the Chernoff bound for a sum of independent Bernoulli random
variables.

Lemma 4.7 For 0 ≤ p ≤ 1

pet(1−p) + (1 − p)e−tp ≤ et2/8

The proof of Lemma 4.7 was given in Lemma 3.23 above.

Corollary 4.8 Let X1, . . . ,Xn be independent Bernoulli random
variables, and set X =

∑n
i=1 Xi. Then, for any c > 0

P (X − E[X] ≥ c) ≤ e−2c2/n (4.4)

P (X − E[X] ≤ −c) ≤ e−2c2/n (4.5)

Proof. For c > 0, t > 0

P (X − E[X] ≥ c) = P (et(X−E[X]) ≥ etc)
≤ e−tcE[et(X−E[X])] by the Markov inequality

≤ e−tcE[exp{
n∑

i=1

t(Xi − E[Xi])}]

= e−tcE[
n∏

i=1

et(Xi−E[Xi])]

= e−tc
n∏

i=1

E[et(Xi−E[Xi])]

However, if Y is Bernoulli with parameter p, then

E[et(Y −E[Y ]] = pet(1−p) + (1 − p)e−tp ≤ et2/8

where the inequality follows from Lemma 4.7. Therefore,

P (X − E[X] ≥ c) ≤ e−tcent2/8

Letting t = 4c/n yields the inequality (4.4).
The proof of the inequality (4.5) is obtained by writing it as

P (E[X] − X ≥ c) ≤ e−2c2/n

and using an analogous argument.
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Example 4.9 Suppose that an entity contains n + m cells, of which
cells numbered 1, . . . , n are target cells, whereas cells n + 1, . . . , n +
m are normal cells. Each of these n + m cells has an associated
weight, with wi being the weight of cell i. Suppose that the cells
are destroyed one at a time in a random order such that if S is the
current set of surviving cells, then the next cell destroyed is i, i ∈ S,
with probability wi/

∑
j∈S wj . In other words, the probability that a

specified surviving cell is the next one destroyed is equal to its weight
divided by the weights of all still surviving cells. Suppose that each
of the n target cells has weight 1, whereas each of the m normal
cells has weight w. For a specified value of α, 0 < α < 1, let Nα

equal the number of normal cells that are still alive at the moment
when the number of surviving target cells first falls below αn. We
will now show that as n,m → ∞, the probability mass function of
Nα becomes concentrated about the value mαw.

Theorem 4.10 For any ε > 0, as n → ∞ and m → ∞,

P ((1 − ε)mαw ≤ Nα ≤ (1 + ε)mαw) → 1

Proof. To prove the result, it is convenient to first formulate an
equivalent continuous time model that results in the times at which
the n+m cells are killed being independent random variables. To do
so, let X1, . . . ,Xn+m be independent exponential random variables,
with Xi having weight wi, i = 1, . . . , n+m. Note that Xi will be the
smallest of these exponentials with probability wi/

∑
j wj; further,

given that Xi is the smallest, Xr, r �= i, will be the second smallest
with probability wr/

∑
j �=i wj ; further, given that Xi and Xr are, re-

spectively, the first and second smallest, Xs, s �= i, r, will be the next
smallest with probability ws/

∑
j �=i,r wj ; and so on. Consequently,

if we imagine that cell i is killed at time Xi, then the order in which
the n + m cells are killed has the same distribution as the order in
which they are killed in the original model. So let us suppose that
cell i is killed at time Xi, i ≥ 1.

Now let τα denote the time at which the number of surviving
target cells first falls below nα. Also, let N(t) denote the number of
normal cells that are still alive at time t; so Nα = N(τα). We will
first show that

P (N(τα) ≤ (1 + ε)mαw) → 1 as n,m → ∞ (4.6)
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To prove the preceding, let ε∗ be such that 0 < ε∗ < ε, and set
t = − ln(α(1+ ε∗)1/w). We will prove (4.6) by showing that as n and
m approach ∞,

(i) P (τα > t) → 1,
and

(ii) P (N(t) ≤ (1 + ε)mαw) → 1.

Because the events τα > t and N(t) ≤ (1 + ε)mαw together imply
that
N(τα) ≤ N(t) ≤ (1 + ε)mαw, the result (4.6) will be established.

To prove (i), note that the number, call it Y , of surviving target
cells by time t is a binomial random variable with parameters n and
e−t = α(1 + ε∗)1/w. Hence, with a = nα[(1 + ε∗)1/w − 1], we have

P (τα ≤ t) = P (Y ≤ nα} = P (Y ≤ ne−t − a) ≤ e−2a2/n

where the inequality follows from the Chernoff bound (4.3). This
proves (i), because a2/n → ∞ as n → ∞.

To prove (ii), note that N(t) is a binomial random variable with
parameters m and e−wt = αw(1+ε∗). Thus, by letting b = mαw(ε−
ε∗) and again applying the Chernoff bound (4.3), we obtain

P (N(t) > (1 + ε)mαw} = P (N(t) > me−wt + b)

≤ e−2b2/m

This proves (ii), because b2/m → ∞ as m → ∞. Thus (4.6) is
established.

It remains to prove that

P (N(τα) ≥ (1 − ε)mαw) → 1 as n,m → ∞ (4.7)

However, (4.7) can be proven in a similar manner as was (4.6); a
combination of these two results completes the proof of the theorem.

4.5 Second Moment and Conditional Expecta-
tion Inequalities

The second moment inequality gives a lower bound on the probability
that a nonnegative random variable is positive.
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Proposition 4.11 The Second Moment Inequality For a non-
negative random variable X

P (X > 0) ≥ (E[X])2

E[X2]

Proof. Using Jensen’s inequality in the second line below, we have

E[X2] = E[X2|X > 0]P (X > 0)
≥ (E[X|X > 0])2P (X > 0)

=
(E[X])2

P (X > 0)
.

When X is the sum of Bernoulli random variables, we can improve
the bound of the second moment inequality. So, suppose for the
remainder of this section that

X =
n∑

i=1

Xi,

where Xi is Bernoulli with E[Xi] = pi, i = 1, . . . , n.
We will need the following lemma.

Lemma 4.12 For any random variable R

E[XR] =
n∑

i=1

piE[R|Xi = 1]

Proof

E[XR] = E[
n∑

i=1

XiR]

=
n∑

i=1

E[XiR]

=
n∑

i=1

{E[XiR|Xi = 1]pi + E[XiR|Xi = 0](1 − pi)}

=
n∑

i=1

E[R|Xi = 1]pi
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Proposition 4.13 The Conditional Expectation Inequality

P (X > 0) ≥
n∑

i=1

pi

E[X|Xi = 1]

Proof. Let R = I{X>0}
X . Noting that

E[XR] = P (X > 0), E[R|Xi = 1] = E[
1
X

|Xi = 1]

we obtain, from Lemma 4.12,

P (X > 0) =
n∑

i=1

piE[
1
X

|Xi = 1]

≥
n∑

i=1

pi
1

E[X|Xi = 1]

where the final equality made use of Jensen’s inequality.

Example 4.14 Consider a system consisting of m components, each
of which either works or not. Suppose, further, that for given subsets
of components Sj, j = 1, . . . , n, none of which is a subset of another,
the system functions if all of the components of at least one of these
subsets work. If component j independently works with probability
αj , derive a lower bound on the probability the system functions.

Solution Let Xi equal 1 if all the components in Si work, and let
it equal 0 otherwise, i = 1, . . . , n. Also, let

pi = P (Xi = 1) =
∏
j∈Si

αj

Then, with X =
∑n

i=1 Xi, we have

P (system functions) = P (X > 0)

≥
n∑

i=1

pi

E[X|Xi = 1]

=
n∑

i=1

pi∑n
j=1 P (Xj = 1|Xi = 1)

=
n∑

i=1

pi

1 +
∑

j �=i

∏
k∈Sj−Si

αk
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where Sj − Si consists of all components that are in Sj but not in
Si.

Example 4.15 Consider a random graph on the set of vertices {1, 2,
. . . , n}, which is such that each of the

(
n
2

)
pairs of vertices i �= j

is, independently, an edge of the graph with probability p. We are
interested in the probability that this graph will be connected, where
by connected we mean that for each pair of distinct vertices i �= j
there is a sequence of edges of the form (i, i1), (i1, i2), . . . , (ik, j).
(That is, a graph is connected if for each each pair of distinct vertices
i and j, there is a path from i to j.)

Suppose that

p = c
ln(n)

n
We will now show that if c < 1, then the probability that the graph
is connected goes to 0 as n → ∞. To verify this result, consider the
number of isolated vertices, where vertex i is said to be isolated if
there are no edges of type (i, j). Let Xi be the indicator variable for
the event that vertex i is isolated, and let

X =
n∑

i=1

Xi

be the number of isolated vertices.
Now,

P (Xi = 1) = (1 − p)n−1

Also,

E[X|Xi = 1] =
n∑

j=1

P (Xj = 1|Xi = 1)

= 1 +
∑
j �=i

(1 − p)n−2

= 1 + (n − 1)(1 − p)n−2

Because

(1 − p)n−1 = (1 − c
ln(n)

n
)n−1

≈ e−c ln(n)

= n−c
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the conditional expectation inequality yields that for n large

P (X > 0) ≥ n1−c

1 + (n − 1)1−c

Therefore,
c < 1 ⇒ P (X > 0} → 1 as n → ∞

Because the graph is not connected if X > 0, it follows that the graph
will almost certainly be disconnected when n is large and c < 1. (It
can be shown when c > 1 that the probability the graph is connected
goes to 1 as n → ∞.)

4.6 The Min-Max Identity and Bounds on the
Maximum

In this section we will be interested in obtaining an upper bound on
E[maxi Xi], when X1, . . . ,Xn are nonnegative random variables. To
begin, note that for any nonnegative constant c,

max
i

Xi ≤ c +
n∑

i=1

(Xi − c)+ (4.8)

where x+, the positive part of x, is equal to x if x > 0 and is equal to
0 otherwise. Taking expectations of the preceding inequality yields
that

E[max
i

Xi] ≤ c +
n∑

i=1

E[(Xi − c)+]

Because (Xi − c)+ is a nonnegative random variable, we have

E[(Xi − c)+] =
∫ ∞

0
P ((Xi − c)+ > x)dx

=
∫ ∞

0
P (Xi − c > x)dx

=
∫ ∞

c
P (Xi > y)dy

Therefore,

E[max
i

Xi] ≤ c +
n∑

i=1

∫ ∞

c
P (Xi > y)dy (4.9)
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Because the preceding is true for all c ≥ 0, the best bound is obtained
by choosing the c that minimizes the right side of the preceding.
Differentiating, and setting the result equal to 0, shows that the best
bound is obtained when c is the value c∗ such that

n∑
i=1

P (Xi > c∗) = 1

Because
∑n

i=1 P (Xi > c) is a decreasing function of c, the value of c∗

can be easily approximated and then utilized in the inequality (4.9).
It is interesting to note that c∗ is such that the expected number
of the Xi that exceed c∗ is equal to 1, which is interesting because
the inequality (4.8) becomes an equality when exactly one of the Xi

exceed c.

Example 4.16 Suppose the Xi are independent exponential random
variables with rates λi, i = 1, . . . , n. Then the minimizing value c∗ is
such that

1 =
n∑

i=1

e−λic∗

with resulting bound

E[max
i

Xi] ≤ c∗ +
n∑

i=1

∫ ∞

c∗
e−λiydy

= c∗ +
n∑

i=1

1
λi

e−λic
∗

In the special case where the rates are all equal, say λi = 1, then

1 = ne−c∗ or c∗ = ln(n)

and the bound becomes

E[max
i

Xi] ≤ ln(n) + 1 (4.10)

However, it is easy to compute the expected maximum of a sequence
of independent exponentials with rate 1. Interpreting these random
variables as the failure times of n components, we can write

max
i

Xi =
n∑

i=1

Ti
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where Ti is the time between the (i− 1)st and the ith failure. Using
the lack of memory property of exponentials, it follows that the Ti

are independent, with Ti being an exponential random variable with
rate n− i + 1. (This is because when the (i− 1)st failure occurs, the
time until the next failure is the minimum of the n− i+1 remaining
lifetimes, each of which is exponential with rate 1.) Therefore, in
this case

E[max
i

Xi] =
n∑

i=1

1
n − i + 1

=
n∑

i=1

1
i

As it is known that, for n large

n∑
i=1

1
i
≈ ln(n) + E

where E ≈ .5772 is Euler’s constant, we see that the bound yielded
by the approach can be quite accurate. (Also, the bound (4.10) only
requires that the Xi are exponential with rate 1, and not that they
are independent.)

The preceding bounds on E[maxi Xi] only involve the marginal
distributions of the Xi. When we have additional knowledge about
the joint distributions, we can often do better. To illustrate this, we
first need to establish an identity relating the maximum of a set of
random variables to the minimums of all the partial sets.

For nonnegative random variables X1, . . . ,Xn, fix x and let Ai

denote the event that Xi > x. Let

X = max(X1, . . . ,Xn)

Noting that X will be greater than x if and only if at least one of
the events Ai occur, we have

P (X > x) = P (∪n
i=1Ai)

and the inclusion-exclusion identity gives

P (X > x) =
n∑

i=1

P (Ai) −
∑
i<j

P (AiAj) +
∑

i<j<k

P (AiAjAk)

+ . . . + (−1)n+1P (A1 · · ·An)
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which can be succinctly written

P (X > x) =
n∑

r=1

(−1)r+1
∑

i1<···<ir

P (Ai1 · · ·Air)

Now,

P (Ai) = P (Xi > x}
P (AiAj) = P (Xi > x,Xj > x} = P (min(Xi,Xj) > x)

P (AiAjAk) = P (Xi > x,Xj > x,Xk > x}
= P (min(Xi,Xj ,Xk) > x)

and so on. Thus, we see that

P (X > x) =
n∑

r=1

(−1)r+1
∑

i1<···<ir

P (min(Xi1 , . . . ,Xir ) > x))

Integrating both sides as x goes from 0 to ∞ gives the result:

E[X] =
n∑

r=1

(−1)r+1
∑

i1<···<ir

E[min(Xi1 , . . . ,Xir )]

Moreover, using that going out one term in the inclusion-exclusion
identity results in an upper bound on the probability of the union,
going out two terms yields a lower bound, going out three terms
yields an upper bound, and so on, yields

E[X] ≤
∑

i

E[Xi]

E[X] ≥
∑

i

E[Xi] −
∑
i<j

E[min(Xi,Xj)]

E[X] ≤
∑

i

E[Xi] −
∑
i<j

E[min(Xi,Xj)] +
∑

i<j<k

E[min(Xi,Xj ,Xk)]

E[X] ≥ . . .

and so on.
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Example 4.17 Consider the coupon collectors problem, where each
different coupon collected is, independent of past selections, a type
i coupon with probability pi. Suppose we are interested in E[X],
where X is the number of coupons we need collect to obtain at least
one of each type. Then, letting Xi denote the number that need be
collected to obtain a type i coupon we have that

X = max(X1, . . . ,Xn)

yielding that

E[X] =
n∑

r=1

(−1)r+1
∑

i1<···<ir

E[min(Xi1 , . . . ,Xir )]

Now, min(Xi1 , . . . ,Xir ) is the number of coupons that need be col-
lected to obtain any of the types i1, . . . , ir. Because each new type
collected will be one of these types with probability

∑r
j=1 pij , it

follows that min(Xi1 , . . . ,Xir ) is a geometric random variable with
mean 1�r

j=1 pij
. Thus, we obtain the result

E[X] =
∑

i

1
pi

−
∑
i<j

1
pi + pj

+
∑

i<j<k

1
pi + pj + pk

+ . . . + (−1)n+1 1
p1 + . . . + pn

Using the preceding formula for the mean number of coupons
needed to obtain a complete set requires summing over 2n terms, and
so is not practical when n is large. Moreover, the bounds obtained
by only going out a few steps in the formula for the expected value
of a maximum generally turn out to be too loose to be beneficial.
However, a useful bound can often be obtained by applying the max-
min inequalities to an upper bound for E[X] rather than directly to
E[X]. We now develop the theory.

For nonnegative random variables X1, . . . ,Xn, let

X = max(X1, . . . ,Xn).

Fix c ≥ 0, and note the inequality

X ≤ c + max((X1 − c)+, . . . , (Xn − c)+).
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Now apply the max-min upper bound inequalities to the right side
of the preceding, take expectations, and obtain that

E[X] ≤ c +
n∑

i=1

E[(Xi − c)+]

E[X] ≤ c +
∑

i

E[(Xi − c)+] −
∑
i<j

E[min((Xi − c)+, (Xj − c)+)]

+
∑

i<j<k

E[min((Xi − c)+, (Xj − c)+, (Xk − c)+)]

and so on.

Example 4.18 Consider the case of independent exponential ran-
dom variables X1, . . . ,Xn, all having rate 1. Then, the preceding
gives the bound

E[max
i

Xi]

≤ c +
∑

i

E[(Xi − c)+] −
∑
i<j

E[min((Xi − c)+, (Xj − c)+)]

+
∑

i<j<k

E[min((Xi − c)+, (Xj − c)+, (Xk − c)+)]

To obtain the terms in the three sums of the right hand side of
the preceding, condition, respectively, on whether Xi > c, whether
min(Xi,Xj) > c, and whether min(Xi,Xj ,Xk) > c. This yields

E[(Xi − c)+] = e−c

E[min((Xi − c)+, (Xj − c)+)] = e−2c 1
2

E[min((Xi − c)+, (Xj − c)+, (Xk − c)+)] = e−3c 1
3

Using the constant c = ln(n) yields the bound

E[max
i

Xi] ≤ ln(n) + 1 − n(n − 1)
4n2

+
n(n − 1)(n − 2)

18n3

≈ ln(n) + .806 for n large
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Example 4.19 Let us reconsider Example 4.17, the coupon col-
lector’s problem. Let c be an integer. To compute E[(Xi − c)+],
condition on whether a type i coupon is among the first c collected.

E[(Xi − c)+] = E[(Xi − c)+|Xi ≤ c]P (Xi ≤ c)
+E[(Xi − c)+|Xi > c]P (Xi > c)

= E[(Xi − c)+|Xi > c](1 − pi)c

=
(1 − pi)c

pi

Similarly,

E[min((Xi − c)+, (Xj − c)+)] =
(1 − pi − pj)c

pi + pj

E[min((Xi − c)+, (Xj − c)+, (Xk − c)+)] =
(1 − pi − pj − pk)c

pi + pj + pk

Therefore, for any nonnegative integer c

E[X] ≤ c +
∑

i

(1 − pi)c

pi

E[X] ≤ c +
∑

i

(1 − pi)c

pi
−
∑
i<j

(1 − pi − pj)c

pi + pj

+
∑

i<j<k

(1 − pi − pj − pk)c

pi + pj + pk

4.7 Stochastic Orderings

We say that X is stochastically greater than Y , written X ≥st Y, if

P (X > t) ≥ P (Y > t) for all t

In this section, we define and compare some other stochastic order-
ings of random variables.

If X is a nonnegative continuous random variable with distribu-
tion function F and density f then the hazard rate function of X is
defined by

λX(t) = f(t)/F̄ (t)
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where F̄ (t) = 1 − F (t). Interpreting X as the lifetime of an item,
then for ε small

P (t year old item dies within an additional time ε)
= P (X < t + ε|X > t)
≈ λX(t)ε

If Y is a nonnegative continuous random variable with distribu-
tion function G and density g, say that X is hazard rate order larger
than Y , written X ≥hr Y, if

λX(t) ≤ λY (t) for all t

Say that X is likelihood ratio order larger than Y , written X ≥lr

Y, if
f(x)/g(x) ↑ x

where f and g are the respective densities of X and Y .

Proposition 4.20

X ≥lr Y ⇒ X ≥hr Y ⇒ X ≥st Y

Proof. Let X have density f , and Y have density g. Suppose X ≥lr

Y . Then, for y > x

f(y) = g(y)
f(y)
g(y)

≥ g(y)
f(x)
g(x)

implying that ∫ ∞

x
f(y)dy ≥ f(x)

g(x)

∫ ∞

x
g(y)dy

or
λX(x) ≤ λY (x)

To prove the final implication, note first that∫ s

0
λX(t)dt =

∫ s

0

f(t)
F̄ (t)

dt = − log F̄ (s)

or
F̄ (s) = e−

� s
0

λX(t)
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which immediately shows that X ≥hr Y ⇒ X ≥st Y.

Define rX(t), the reversed hazard rate function of X, by

rX(t) = f(t)/F (t)

and note that

lim
ε↓0

P (t − ε < X|X < t)
ε

= rX(t)

Say that X is reverse hazard rate order larger than Y , written
X ≥rh Y, if

rX(t) ≥ rY (t) for all t

Our next theorem gives some representations of the orderings of
X and Y in terms of stochastically larger relations between certain
conditional distributions of X and Y . Before presenting it, we intro-
duce the following notation.

Notation For a random variable X and event A, let [X|A] de-
note a random variable whose distribution is that of the conditional
distribution of X given A.

Theorem 4.21

(i) X ≥hr Y ⇔ [X|X > t] ≥st [Y |Y > t] for all t

(ii) X ≥rh Y ⇔ [X|X < t] ≥st [Y |Y < t] for all t

(iii) X ≥lr Y ⇔ [X|s < X < t] ≥st [Y |s < Y < t] for all s, t

Proof. To prove (i), let Xt =d [X − t|X > t] and Yt =d [Y − t|Y > t].
Noting that

λXt(s) =
{

0, if s < t
λX(s + t), if s ≥ t

shows that

X ≥hr Y ⇒ Xt ≥hr Yt ⇒ Xt ≥st Yt ⇒ [X|X > t] ≥st [Y |Y > t]

To go the other way, use the identity

F̄Xt(ε) = e−
� t+ε
t

λX(s)ds
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to obtain that

[X|X > t] ≥st [Y |Y > t] ⇔ Xt ≥st Yt

⇒ λX(t) ≤ λY (t)

(ii) With Xt =d [t − X|X < t],

λXt(y) = rX(t − y) 0 < y < t

Therefore, with Yt =d [t − Y |Y < t]

X ≥rh Y ⇔ λXt(y) ≥ λYt(y)
⇒ Xt ≤st Yt

⇔ [t − X|X < t] ≤st [t − Y |Y < t]
⇔ [X|X < t] ≥st [Y |Y < t]

On the other hand

[X|X < t] ≥st [Y |Y < t] ⇔ Xt ≤st Yt

⇒
∫ ε

0
λXt(y)dy ≥

∫ ε

0
λYt(y)dy

⇔
∫ ε

0
rX(t − y)dy ≥

∫ ε

0
rY (t − y)dy

⇒ rX(t) ≥ rY (t)

(iii) Let X and Y have respective densities f and g. Suppose
[X|s < X < t] ≥st [Y |s < Y < t] for all s < t. Letting s < v < t,
this implies that

P (X > v|s < X < t) ≥ P (Y > v|s < Y < t)

or, equivalently, that

P (v < X < t)
P (s < X < t)

≥ P (v < Y < t)
P (s < Y < t)

or, upon inverting, that

1 +
P (s < X ≤ v)
P (v < X < t)

≤ 1 +
P (s < Y ≤ v)
P (v < Y < t)
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or, equivalently, that

P (s < X ≤ v)
P (s < Y ≤ v)

≤ P (v < X < t)
P (v < Y < t)

(4.11)

Letting v ↓ s in Equation (4.11) yields

f(s)
g(s)

≤ P (s < X < t)
P (s < Y < t)

whereas, letting v ↑ t in Equation (4.11) yields

P (s < X < t)
P (s < Y < t)

≤ f(t)
g(t)

Thus, f(t)
g(t) ≥ f(s)

g(s) , showing that X ≥lr Y.

Now suppose that X ≥lr Y. Then clearly [X|s < X < t] ≥lr

[Y |s < Y < t], implying, from Proposition 4.20, that [X|s < X <
t] ≥st [Y |s < Y < t].

Corollary 4.22 X ≥lr Y ⇒ X ≥rh Y ⇒ X ≥st Y

Proof. The first implication immediately follows from parts (ii) and
(iii) of Theorem 4.21. The second implication follows upon taking
the limit as t → ∞ in part (ii) of that theorem.

Say that X is an increasing hazard rate (or IHR) random variable
if λX(t) is nondecreasing in t. (Other terminology is to say that X
has an increasing failure rate.)

Proposition 4.23 Let Xt =d [X − t|X > t]. Then,
(a) Xt ↓st as t ↑ ⇔ X is IHR
(b) Xt ↓lr as t ↑ ⇔ log f(x) is concave

Proof. (a) Let λ(y) be the hazard rate function of X. Then λt(y),
the hazard rate function of Xt is given by

λt(y) = λ(t + y), y > 0

Hence, if X is IHR then Xt ↓hr t, implying that Xt ↓st t. Now, let
s < t, and suppose that Xs ≥st Xt. Then,

e−
� t+ε
t

λ(y)dy = P (Xt > ε) ≤ P (Xs > ε) = e−
� s+ε

s
λ(y)dy
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showing that λ(t) ≥ λ(s). Thus part (a) is proved.
(b) Using that the density of Xt is fXt(x) = f(x + t)/F̄ (t) yields,
for s < t, that

Xs ≥lr Xt ⇔ f(x + s)
f(x + t)

↑ x

⇔ log f(x + s) − log f(x + t) ↑ x

⇔ f ′(x + s)
f(x + s)

− f ′(x + t)
f(x + t)

≥ 0

⇔ f ′(y)
f(y)

↓ y

⇔ d

dy
log f(y) ↓ y

⇔ log f(y) is concave

4.8 Excercises

1. For a nonnegative random variable X, show that (E[Xn])1/n

is nondecreasing in n.

2. Let X be as standard normal random variable. Use Corollary
4.4, along with the density

g(x) = xe−x2/2, x > 0

to show, for c > 0, that
(a) P (X > c) = 1√

2π
e−c2/2Eg[ 1

X |X > c]
(b) Show, for any positive random variable W , that

E[
1
W

|W > c] ≤ E[
1
W

]

(c) Show that

P (X > c) ≤ 1
2
e−c2/2

(d) Show that

Eg[X|X > c] = c + ec2/2
√

2πP (X > c)
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(e) Use Jensen’s inequality, along with the preceding, to show
that

cP (X > c) + ec2/2
√

2π(P (X > c))2 ≥ 1√
2π

e−c2/2

(f) Argue from (e) that P (X > c) must be at least as large
as the positive root of the equation

cx + ec2/2
√

2πx2 =
1√
2π

e−c2/2

(g) Conclude that

P (X > c) ≥ 1
2
√

2π
(
√

c2 + 4 − c) e−c2/2

3. Let X be a Poisson random variable with mean λ. Show that,
for n ≥ λ, the Chernoff bound yields that

P (X ≥ n) ≤ e−λ(λe)n

nn

4. Let m(t) = E[Xt]. The moment bound states that for c > 0

P (X ≥ c) ≤ m(t)c−t

for all t > 0. Show that this result can be obtained from the
importance sampling identity.

5. Fill in the details of the proof that, for independent Bernoulli
random variables X1, . . . ,Xn, and c > 0,

P (S − E[S] ≤ −c) ≤ e−2c2/n

where S =
∑n

i=1 Xi.

6. If X is a binomial random variable with parameters n and p,
show
(a) P (|X − np| ≥ c) ≤ 2e−2c2/n

(b) P (X − np ≥ αnp) ≤ exp{−2np2α2}

7. Give the details of the proof of (4.7).



4.8 Excercises 139

8. Prove that

E[f(X)] ≥ E[f(E[X|Y ])] ≥ f(E[X])

Suppose you want a lower bound on E[f(X)] for a convex
function f . The preceding shows that first conditioning on Y
and then applying Jensen’s inequality to the individual terms
E[f(X)|Y = y] results in a larger lower bound than does an
immediate application of Jensen’s inequality.

9. Let Xi be binary random variables with parameters pi, i =
1, . . . , n. Let X =

∑n
i=1 Xi, and also let I, independent of the

variables X1, . . . ,Xn, be equally likely to be any of the values
1, . . . , n. For R independent of I, show that
(a) P (I = i|XI = 1) = pi/E[X]
(b) E[XR] = E[X]E[R|XI = 1]
(c) P (X > 0) = E[X]E[ 1

X |XI = 1]

10. For Xi and X as in Exercise 9, show that

∑
i

pi

E[X|Xi = 1]
≥ (E[X])2

E[X2]

Thus, for sums of binary variables, the conditional expectation
inequality yields a stronger lower bound than does the second
moment inequality.
Hint: Make use of the results of Exercises 8 and 9.

11. Let Xi be exponential with mean 8 + 2i, for i = 1, 2, 3. Obtain
an upper bound on E[max Xi], and compare it with the exact
result when the Xi are independent.

12. Let Ui, i = 1, . . . , n be uniform (0, 1) random variables. Obtain
an upper bound on E[max Ui], and compare it with the exact
result when the Ui are independent.

13. Let U1 and U2 be uniform (0, 1) random variables. Obtain an
upper bound on E[max(U1, U2)], and show this maximum is
obtained when U1 = 1 − U2.
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14. Show that X ≥hr Y if and only if

P (X > t)
P (X > s)

≥ P (Y > t)
P (Y > s)

for all s < t.

15. Let h(x, y) be a real valued function satisfying

h(x, y) ≥ h(y, x) whenever x ≥ y

(a) Show that if X and Y are independent and X ≥lr Y then
h(X,Y ) ≥st h(Y,X).
(b) Show by a counterexample that the preceding is not valid
under the weaker condition X ≥st Y.

16. There are n jobs, with job i requiring a random time Xi to
process. The jobs must be processed sequentially. Give a suffi-
cient condition, the weaker the better, under which the policy
of processing jobs in the order 1, 2, . . . , n maximizes the prob-
ability that at least k jobs are processed by time t for all k and
t.
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Markov Chains

5.1 Introduction

This chapter introduces a natural generalization of a sequence of in-
dependent random variables, called a Markov chain, where a variable
may depend on the immediately preceding variable in the sequence.
Named after the 19th century Russian mathematician Andrei An-
dreyevich Markov, these chains are widely used as simple models of
more complex real-world phenomena.

Given a sequence of discrete random variables X0,X1,X2, ... tak-
ing values in some finite or countably infinite set S, we say that Xn

is a Markov chain with respect to a filtration Fn if Xn ∈ Fn for all
n and, for all B ⊆ S, we have the Markov property

P (Xn+1 ∈ B| Fn) = P (Xn+1 ∈ B|Xn).

If we interpret Xn as the state of the chain at time n, then the
preceding means that if you know the current state, nothing else
from the past is relevant to the future of the Markov chain. That
is, given the present state, the future states and the past states are
independent. When we let Fn = σ(X0,X1, . . . ,Xn) this definition
reduces to

P (Xn+1 = j| Xn = i,Xn−1 = in−1, . . . ,X0 = i0)
= P (Xn+1 = j| Xn = i).

If P (Xn+1 = j| Xn = i) is the same for all n, we say that the Markov

141
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chain has stationary transition probabilities, and we set

Pij = P (Xn+1 = j| Xn = i)

In this case the quantities Pij are called the transition probabilities,
and specifying them along with a probability distribution for the
starting state X0 is enough to determine all probabilities concerning
X0, . . . ,Xn. We will assume from here on that all Markov chains
considered have stationary transition probabilities. In addition, un-
less otherwise noted, we will assume that S, the set of all possible
states of the Markov chain, is the set of nonnegative integers.

Example 5.1 Reflected random walk. Suppose Yi are independent
and identically distributed Bernoulli(p) random variables, and let
X0 = 0 and Xn = (Xn−1 + 2Yn − 1)+ for n = 1, 2, .... The process
Xn, called a reflected random walk, can be viewed as the position
of a particle at time n such that at each time the particle has a p
probability of moving one step to the right, a 1 − p probability of
moving one step to the left, and is returned to position 0 if it ever
attempts to move to the left of 0. It is immediate from its definition
that Xn is a Markov chain.

Example 5.2 A non-Markov chain. Again let Yi be independent and
identically distributed Bernoulli(p) random variables, let X0 = 0, and
this time let Xn = Yn +Yn−1 for n = 1, 2, .... It’s easy to see that Xn

is not a Markov chain because P (Xn+1 = 2|Xn = 1,Xn−1 = 2) = 0
while on the other hand P (Xn+1 = 2|Xn = 1,Xn−1 = 0) = p.

5.2 The Transition Matrix

The transition probabilities

Pij = P (X1 = j|X0 = i),

are also called the one-step transition probabilities. We define the n-
step transition probabilities by

P
(n)
ij = P (Xn = j|X0 = i).
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In addition, we define the transition probability matrix

P =

⎡⎢⎣ P00 P01 P02 · · ·
P10 P11 P12 · · ·
...

...
...

⎤⎥⎦
and the n-step transition probability matrix

P(n) =

⎡⎢⎣ P
(n)
00 P

(n)
01 P

(n)
02 · · ·

P
(n)
10 P

(n)
11 P

(n)
12 · · ·

...
...

...

⎤⎥⎦ .

An interesting relation between these matrices is obtained by
noting that

P
(n+m)
ij =

∑
k

P (Xn+m = j|X0 = i,Xn = k)P (Xn = k|X0 = i)

=
∑

k

P
(m)
kj P

(n)
ik .

The preceding are called the Chapman-Kolmogorov equations.
If follows from the Chapman-Kolmogorov equations that

P(n+m) = Pn ×Pm,

where here “×” represents matrix multiplication. Hence,

P(2) = P× P,

and, by induction,
P(n) = Pn,

where the right-hand side represents multiplying the matrix P by
itself n times.

Example 5.3 Reflected random walk. A particle starts at position
zero and at each time moves one position to the right with probability
p and, if the particle is not in position zero, moves one position to
the left (or remains in state 0) with probability 1 − p. The position
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Xn of the particle at time n forms a Markov chain with transition
matrix

P =

⎡⎢⎢⎢⎣
1 − p p 0 0 0 · · ·
1 − p 0 p 0 0 · · ·

0 1 − p 0 p 0 · · ·
...

...
...

⎤⎥⎥⎥⎦
Example 5.4 The two state Markov chain. Consider a Markov chain
with states 0 and 1 having transition probability matrix

P =
[

α 1 − α
β 1 − β

]
The two-step transition probability matrix is given by

P(2) =
[

α2 + (1 − α)β 1 − α2 − (1 − α)β
αβ + β(1 − β) 1 − αβ − β(1 − β)

]

5.3 The Strong Markov Property

Consider a Markov chain Xn having one-step transition probabilities
Pij , which means that if the Markov chain is in state i at a fixed
time n, then the next state will be j with probability Pij . However,
it is not necessarily true that if the Markov chain is in state i at a
randomly distributed time T , the next state will be j with probability
Pij . That is, if T is an arbitrary nonnegative integer valued random
variable, it is not necessarily true that P (XT+1 = j|XT = i) = Pij .
For a simple counterexample suppose

T = min(n : Xn = i,Xn+1 = j)

Then, clearly,
P (XT+1 = j|XT = i) = 1.

The idea behind this counterexample is that a general random vari-
able T may depend not only on the states of the Markov chain up
to time T but also on future states after time T . Recalling that T is
a stopping time for a filtration Fn if {T = n} ∈ Fn for every n, we
see that for a stopping time the value of T can only depend on the
states up to time t. We now show that P (XT+n = j|XT = i) will
equal P

(n)
ij provided that T is a stopping time.
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This is usually called the strong Markov property, and essentially
means a Markov chain “starts over” at stopping times. Below we
define FT ≡ {A : A ∩ {T = t} ∈ Ft for all t}, which intuitively
represents any information you would know by time T .

Proposition 5.5 The strong Markov property. Let Xn, n ≥ 0, be a
Markov chain with respect to the filtration Fn. If T < ∞ a.s. is a
stopping time with respect to Fn, then

P (XT+n = j|XT = i,FT ) = P
(n)
ij

Proof.

P (XT+n = j|XT = i,FT , T = t) = P (Xt+n = j|Xt = i,Ft, T = t)
= P (Xt+n = j|Xt = i,Ft)

= P
(n)
ij

where the next to last equality used the fact that T is a stopping
time to give {T = t} ∈ Ft.

Example 5.6 Losses in queueing busy periods. Consider a queu-
ing system where Xn is the number of customers in the system at
time n. At each time n = 1, 2, ... there is a probability p that a
customer arrives and a probability (1 − p), if there are any cus-
tomers present, that one of them departs. Starting with X0 = 1,
let T = min{t > 0 : Xt = 0} be the length of a busy period. Sup-
pose also there is only space for at most m customers in the system.
Whenever a customer arrives to find m customers already in the sys-
tem, the customer is lost and departs immediately. Letting Nm be
the number of customers lost during a busy period, compute E[Nm].

Solution. Let A be the event that the first arrival occurs before the
first departure. We will obtain E[Nm] by conditioning on whether A
occurs. Now, when A happens, for the busy period to end we must
first wait an interval of time until the system goes back to having a
single customer, and then after that we must wait another interval
of time until the system becomes completely empty. By the Markov
property the number of losses during the first time interval has dis-
tribution Nm−1, because we are now starting with two customers and



146 Chapter 5 Markov Chains

therefore with only m−1 spaces for additional customers. The strong
Markov property tells us that the number of losses in the second time
interval has distribution Nm. We therefore have

E[Nm|A] =
{

E[Nm−1] + E[Nm] if m > 1
1 + E[Nm] if m = 1,

and using P (A) = p and E[Nm|Ac] = 0 we have

E[Nm] = E[Nm|A]P (A) + E[Nm|Ac]P (Ac)
= pE[Nm−1] + pE[Nm]

for m > 1 along with

E[N1] = p + pE[N1]

and thus

E[Nm] = (
p

1 − p
)m.

It’s quite interesting to notice that E[Nm] increases in m when
p > 1/2, decreases when p < 1/2, and stays constant for all m when
p = 1/2. The intuition for the case p = 1/2 is that when m increases,
losses become less frequent but the busy period becomes longer.

We next apply the strong Markov property to obtain a result for
the cover time, the time when all states of a Markov chain have been
visited.

Proposition 5.7 Cover times. Given an N -state Markov chain Xn,
let Ti = min{n ≥ 0 : Xn = i} and let C = maxi Ti be the cover time.
Then E[C] ≤

∑N
m=1

1
m maxi,j E[Tj |X0 = i].

Proof. Let I1, I2, ..., IN be a random permutation of the integers
1, 2, ..., N chosen so that all possible orderings are equally likely.
Letting TI0 = 0 and noting that maxj≤m TIj − maxj≤m−1 TIj is
the additional time after all states I1, . . . , Im−1 have been visited
until all states I1, . . . , Im have been visited, we see that

C =
N∑

m=1

(max
j≤m

TIj − max
j≤m−1

TIj ).
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Thus, we have

E[C] =
N∑

m=1

E

[
max
j≤m

TIj − max
j≤m−1

TIj

]

=
N∑

m=1

1
m

E

[
max
j≤m

TIj − max
j≤m−1

TIj |TIm > max
j≤m−1

TIj

]

≤
N∑

m=1

1
m

max
i,j

E[Tj |X0 = i],

where the second line follows since all orderings are equally likely
and thus P (TIm > maxj≤m−1 TIj ) = 1/m, and the third from the
strong Markov property.

5.4 Classification of States

We say that states i, j of a Markov chain communicate with each
other, or are in the same class, if there are integers n and m such
that both P

(n)
ij > 0 and P

(m)
ji > 0 hold. This means that it is possible

for the chain to get from i to j and vice versa. A Markov chain is
called irreducible if all states are in the same class.

For a Markov chain Xn, let

Ti = min{n > 0 : Xn = i}

be the time until the Markov chain first makes a transition into state
i. Using the notation Ei[· · · ] and Pi(· · · ) to denote that the Markov
chain starts from state i, let

fi = Pi(Ti < ∞)

be the probability that the chain ever makes a transition into state
i given that it starts in state i. We say that state i is transient if
fi < 1 and recurrent if fi = 1. Let

Ni =
∞∑

n=1

I{Xn=i}
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be the total number of transitions into state i. The strong Markov
property tells us that, starting in state i,

Ni + 1 ∼ geometric(1 − fi),

since each time the chain makes a transition into state i there is,
independent of all else, a (1− fi) chance it will never return. Conse-
quently,

Ei[Ni] =
∞∑

n=1

P
(n)
ii

is either infinite or finite depending on whether or not state i is
recurrent or transient.

Proposition 5.8 If state i is recurrent and i communicates with j,
then j is also recurrent.

Proof. Because i and j communicate, there exist values n and m

such that P
(n)
ij P

(m)
ji > 0. But for any k > 0

P
(n+m+k)
jj ≥ P

(m)
ji P

(k)
ii P

(n)
ij

where the preceding follows because P
(n+m+k)
jj is the probability

starting in state j that the chain will be back in j after n+m+k tran-
sitions, whereas P

(m)
ji P

(k)
ii P

(n)
ij is the probability of the same event oc-

curring but with the additional condition that the chain must also be
in i after the first m transitions and then back in i after an additional
k transitions. Summing over k shows that

Ej [Nj ] ≥
∑

k

P
(n+m+k)
jj ≥ P

(m)
ji P

(n)
ij

∑
k

P
(k)
ii = ∞

Thus, j is also recurrent.

Proposition 5.9 If j is transient, then
∑∞

n=1 P
(n)
ij < ∞

Proof. Note that

Ei[Nj ] = Ei[
∞∑

n=0

I{Xn=j}] =
∞∑

n=1

P
(n)
ij
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Let fij denote the probability that the chain ever makes a transition
into j given that it starts at i. Then, conditioning on whether such a
transition ever occurs yields, upon using the strong Markov property,
that

Ei[Nj ] = (1 + Ej [Nj ])fij < ∞

since j is transient.

If i is recurrent, let
μi = Ei[Ti]

denote the mean number of transitions it takes the chain to return to
state i, given it starts in i. We say that a recurrent state i is null if
μi = ∞ and positive if μi < ∞. In the next section we will show that
positive recurrence is a class property, meaning that if i is positive
recurrent and communicates with j then j is also positive recurrence.
(This also implies, using that recurrence is a class property, that so
is null recurrence.)

5.5 Stationary and Limiting Distributions

For a Markov chain Xn starting in some given state i, we define the
limiting probability of being in state j to be

Pj = lim
n→∞P

(n)
ij

if the limit exists and is the same for all i.
It is easy to see that not all Markov chains will have limiting

probabilities. For instance, consider the two state Markov chain with
P01 = P10 = 1. For this chain P

(n)
00 will equal 1 when n is even and 0

when n is odd, and so has no limit.

Definition 5.10 State i of a Markov chain Xn is said to have period
d if d is the largest integer having the property that P

(n)
ii = 0 when n

is not a multiple of d.

Proposition 5.11 If states i and j communicate, then they have the
same period.
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Proof. Let dk be the period of state k. Let n,m be such that
P

(n)
ij P

(m)
ji > 0. Now, if P

(r)
ii > 0, then

P
(r+n+m)
jj ≥ P

(m)
ji P

(r)
ii P

(n)
ij > 0

So dj divides r + n + m. Moreover, because

P
(2r)
ii ≥ P

(r)
ii P

(r)
ii > 0

the same argument shows that dj also divides 2r + n + m; therefore
dj divides 2r+n+m−(r+n+m) = r. Because dj divides r whenever
P

(r)
ii > 0, it follows that dj divides di. But the same argument can

now be used to show that di divides dj . Hence, di = dj.

It follows from the preceding that all states of an irreducible
Markov chain have the same period. If the period is 1, we say that
the chain is aperiodic. It’s easy to see that only aperiodic chains can
have limiting probabilities.

Intimately linked to limiting probabilities are stationary proba-
bilities. The probability vector πi, i ∈ S is said to be a stationary
probability vector for the Markov chain if

πj =
∑

i

πiPij for all j∑
j

πj = 1

Its name arises from the fact that if the X0 is distributed according
to a stationary probability vector {πi} then

P (X1 = j) =
∑

i

P (X1 = j|X0 = i)πi =
∑

i

πiPij = πj

and, by a simple induction argument,

P (Xn = j) =
∑

i

P (Xn = j|Xn−1 = i)P (Xn−1 = i) =
∑

i

πiPij = πj

Consequently, if we start the chain with a stationary probability
vector then Xn,Xn+1, . . . has the same probability distribution for
all n.

The following result will be needed later.
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Proposition 5.12 An irreducible transient Markov chain does not
have a stationary probability vector.

Proof. Assume there is a stationary probability vector πi, i ≥ 0 and
take it to be the probability mass function of X0. Then, for any j

πj = P (Xn = j) =
∑

i

πiP
(n)
ij

Consequently, for any m

πj = lim
n→∞

∑
i

πiP
(n)
ij

≤ lim
n→∞(

∑
i≤m

πiP
(n)
ij +

∑
i>m

πi)

=
∑
i≤m

πi lim
n→∞P

(n)
ij +

∑
i>m

πi

=
∑
i>m

πi

where the final equality used that
∑

j P
(n)
ij < ∞ because j is tran-

sient, implying that limn→∞ P
(n)
ij = 0. Letting m → ∞ shows that

πj = 0 for all j, contradicting the fact that
∑

j πj = 1. Thus, assum-
ing a stationary probability vector results in a contradiction, proving
the result.

The following theorem is of key importance.

Theorem 5.13 An irreducible Markov chain has a stationary proba-
bility vector {πi} if and only if all states are positive recurrent. The
stationary probability vector is unique and satisfies

πj = 1/μj

Moreover, if the chain is aperiodic then

πj = lim
n

P
(n)
ij

To prove the preceding theorem, we will make use of a couple of
lemmas.
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Lemma 5.14 For an irreducible Markov chain, if there exists a sta-
tionary probability vector {πi} then all states are positive recurrent.
Moreover, the stationary probability vector is unique and satisfies

πj = 1/μj

Proof. Let πj be stationary probabilities, and suppose that P (X0 =
j) = πj for all j. We first show that πi > 0 for all i. To verify this,
suppose that πk = 0. Now for any state j, because the chain is irre-
ducible, there is an n such that P

(n)
jk > 0. Because X0 is determined

by the stationary probabilities,

πk = P (Xn = k) =
∑

i

πiP
(n)
ik ≥ πjP

(n)
jk

Consequently, if πk = 0 then so is πj. Because j was arbitrary, that
means that it πi = 0 for any i, then πi = 0 for all i. But that would
contradict the fact that

∑
i πi = 1. Hence any stationary probabil-

ity vector for an irreducible Markov chain must have all positive
elements.

Now, recall that Tj = min(n > 0 : Xn = j). So,

μj = E[Tj |X0 = j]

=
∞∑

n=1

P (Tj ≥ n|X0 = j)

=
∞∑

n=1

P (Tj ≥ n,X0 = j)
P (X0 = j)

Because X0 is chosen according to the stationary probability vector
{πi}, this gives

πjμj =
∞∑

n=1

P (Tj ≥ n,X0 = j) (5.1)

Now,
P (Tj ≥ 1,X0 = j) = P (X0 = j) = πj

and, for n ≥ 2

P (Tj ≥ n,X0 = j)
= P (Xi �= j, 1 ≤ i ≤ n − 1,X0 = j)
= P (Xi �= j, 1 ≤ i ≤ n − 1) − P (Xi �= j, 0 ≤ i ≤ n − 1)
= P (Xi �= j, 1 ≤ i ≤ n − 1) − P (Xi �= j, 1 ≤ i ≤ n)
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where the final equality used that X0, . . . ,Xn−1 has the same proba-
bility distribution as X1, . . . ,Xn, when X0 is chosen according to the
stationary probabilities. Substituting these results into (5.1) yields

πjμj = πj + P (X1 �= j) − lim
n

P (Xi �= j, 1 ≤ i ≤ n)

But the existence of a stationary probability vector implies that the
Markov chain is recurrent, and thus that limn P (Xi �= j, 1 ≤ i ≤
n) = P (Xi �= j, for all i ≥ 1) = 0. Because P (X1 �= j) = 1 − πj , we
thus obtain

πj = 1/μj

thus showing that there is at most one stationary probability vector.
In addition, because all πj > 0, we have that all μj < ∞, showing
that all states of the chain are positive recurrent.

Lemma 5.15 If some state of an irreducible Markov chain is positive
recurrent then there exists a stationary probability vector.

Proof. Suppose state k is positive recurrent. Thus,

μk = Ek[Tk] < ∞

Say that a new cycle begins every time the chain makes a transition
into state k. For any state j, let Aj denote the amount of time the
chain spends in state j during a cycle. Then

E[Aj ] = Ek[
∞∑

n=0

I{Xn=j,Tk>n}]

=
∞∑

n=0

Ek[I{Xn=j,Tk>n}]

=
∞∑

n=0

Pk(Xn = j, Tk > n)

We claim that πj ≡ E[Aj ]/μk, j ≥ 0, is a stationary probability
vector. Because E[

∑
j Aj ] is the expected time of a cycle, it must

equal Ek[Tk], showing that ∑
j

πj = 1
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Moreover, for j �= k

μkπj =
∑
n≥0

Pk(Xn = j, Tk > n)

=
∑
n≥1

∑
i

Pk(Xn = j, Tk > n − 1,Xn−1 = i)

=
∑
n≥1

∑
i

Pk(Tk > n − 1,Xn−1 = i)

×Pk(Xn = j|Tk > n − 1,Xn−1 = i)

=
∑

i

∑
n≥1

Pk(Tk > n − 1,Xn−1 = i)Pij

=
∑

i

∑
n≥0

Pk(Tk > n,Xn = i)Pij

=
∑

i

E[Ai]Pij

= μk

∑
i

πiPij

Finally, ∑
i

πiPik =
∑

i

πi(1 −
∑
j �=k

Pij)

= 1 −
∑
j �=k

∑
i

πiPij

= 1 −
∑
j �=k

πj

= πk

and the proof is complete.

Note that Lemmas (5.14) and (5.15) imply the following.

Corollary 5.16 If one state of an irreducible Markov chain is positive
recurrent then all states are positive recurrent.

We are now ready to prove Theorem 5.13.

Proof. All that remains to be proven is that if the chain is aperi-
odic, as well as irreducible and positive recurrent, then the stationary
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probabilities are also limiting probabilities To prove this, let πi, i ≥ 0,
be stationary probabilities. Let Xn, n ≥ 0 and Yn, n ≥ 0 be indepen-
dent Markov chains, both with transition probabilities Pi,j , but with
X0 = i and with P (Y0 = i) = πi. Let

N = min(n : Xn = Yn)

We first show that P (N < ∞) = 1. To do so, consider the Markov
chain whose state at time n is (Xn, Yn), and which thus has transition
probabilities P(i,j),(k,r) = PikPjr

That this chain is irreducible can be seen by the following ar-
gument. Because {Xn} is irreducible and aperiodic, it follows that
for any state i there are relatively prime integers n,m such that
P

(n)
ii P

(m)
ii > 0. But any sufficiently large integer can be expressed as

a linear combination of relatively prime integers, implying that there
is an integer Ni such that

P
(n)
ii > 0 for all n > Ni

Because i and j communicate this implies the existence of an integer
Ni,j such that

P
(n)
ij > 0 for all n > Ni,j

Hence,

P
(n)
(i,k),(j,r) = P

(n)
ij P

(n)
kr > 0 for all sufficiently large n

which shows that the vector chain (Xn, Yn) is irreducible.
In addition, we claim that πi,j = πiπj is a stationary probability

vector, which is seen from

πiπj =
∑

k

πkPk,i

∑
r

πrPr,j =
∑
k,r

πkπrPk,iPr,j

By Lemma 5.14 this shows that the vector Markov chain is positive
recurrent and so P (N < ∞) = 1 and thus limn P (N > n) = 0.

Now, let Zn = Xn if n < N and let Zn = Yn if n ≥ N . It is
easy to see that Zn, n ≥ 0 is also a Markov chain with transition
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probabilities Pi,j and has Z0 = i. Now

P
(n)
i,j = P (Zn = j)

= P (Zn = j,N ≤ n) + P (Zn = j,N > n)
= P (Yn = j,N ≤ n) + P (Zn = j,N > n)
≤ P (Yn = j) + P (N > n)
= πj + P (N > n) (5.2)

On the other hand

πj = P (Yn = j)
= P (Yn = j,N ≤ n) + P (Yn = j,N > n)
= P (Zn = j,N ≤ n) + P (Yn = j,N > n)
≤ P (Zn = j) + P (N > n)

= P
(n)
ij + P (N > n) (5.3)

Hence, from (5.2) and (5.3) we see that

lim
n

P
(n)
ij = πj.

Remark 5.17 It follows from Theorem 5.13 that if we have an irre-
ducible Markov chain, and we can find a solution of the stationarity
equations

πj =
∑

i

πiPij j ≥ 0∑
i

πi = 1

then the Markov chain is positive recurrent, and the πi are the unique
stationary probabilities. If, in addition, the chain is aperiodic then
the πi are also limiting probabilities.

Remark 5.18 Because μi is the mean number of transitions between
successive visits to state i, it is intuitive (and will be formally proven
in the chapter on renewal theory) that the long run proportion of
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time that the chain spends in state i is equal to 1/μi. Hence, the
stationary probability πi is equal to the long run proportion of time
that the chain spends in state i.

Definition 5.19 A positive recurrent, aperiodic, irreducible Markov
chain is called an ergodic Markov chain.

Definition 5.20 A positive recurrent irreducible Markov chain whose
initial state is distributed according to its stationary probabilities is
called a stationary Markov chain.

5.6 Time Reversibility

A stationary Markov chain Xn is called time reversible if

P (Xn = j|Xn+1 = i) = P (Xn+1 = j|Xn = i) for all i, j.

By the Markov property we know that the processes Xn+1,Xn+2, . . .
and Xn−1,Xn−2, . . . are conditionally independent given Xn, and so
it follows that the reversed process Xn−1,Xn−2, . . . will also be a
Markov chain having transition probabilities

P (Xn = j|Xn+1 = i) =
P (Xn = j,Xn+1 = i)

P (Xn+1 = i)

=
πjPji

πi
,

where πi and Pij respectively denote the stationary probabilities and
the transition probabilities for the Markov chain Xn. Thus an equiv-
alent definition for Xn being time reversible is if

πiPij = πjPji for all i, j.

Intuitively, a Markov chain is time reversible if it looks the same
running backwards as it does running forwards. It also means that
the rate of transitions from i to j, namely πiPij , is the same as the
rate of transitions from j to i, namely πjPji. This happens if there
are no “loops” for which a Markov chain is more likely in the long
run to go in one direction compared with the other direction. We
illustrate with an examples.
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Example 5.21 Random walk on the circle. Consider a particle which
moves around n positions on a circle numbered 1, 2, ..., n according
to transition probabilities Pi,i+1 = p = 1 − Pi+1,i for 1 ≤ i < n
and Pn,1 = p = 1 − P1,n. Let Xn be the position of the parti-
cle at time n. Regardless of p it is easy to see that the station-
ary probabilities are πi = 1/n. Now, for 1 ≤ i < n we have
πiPi,i+1 = p/n and πi+1Pi+1,i = (1 − p)/n (and also πnPn,1 = p/n
and π1P1,n = (1 − p)/n). If p = 1/2 these will all be equal and Xn

will be time reversible. On the other hand, if p �= 1/2 these will not
be equal and Xn will not be time reversible.

It can be much easier to verify the stationary probabilities for
a time reversible Markov chain than for a Markov chain which is
not time reversible. Verifying the stationary probabilities πi for a
Markov chain involves checking

∑
i πi = 1 and, for all j,

πj =
∑

i

πiPij .

For a time-reversible Markov chain, it only requires checking that∑
i πi = 1 and

πiPij = πjPji

for all i, j. Because if the preceding holds, then summing both sides
over j yields

πi

∑
j

Pij =
∑

j

πjPji

or
πi =

∑
j

πjPji.

This can be convenient in some cases, and we illustrate one next.

Example 5.22 Random walk on a graph. Consider a particle mov-
ing on a graph which consists of nodes and edges, and let di be the
number of edges emanating from node i. If Xn is the location of the
particle at time n, let P (Xn+1 = j|Xn = i) = 1/di if there is an
edge connecting node i and node j. This means that when at a given
node, the random walker’s next step is equally likely to be to any of
the nodes which are connected by an edge. If D is the total number
of edges which appear in the graph, we will show that the stationary
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probabilities are given by πi = di
2D .

Solution. Checking that πiPij = πjPji holds for the claimed so-
lution, we see that this requires that

di

2D
1
di

=
dj

2D
1
dj

It thus follows, since also
∑

i πi =
�

i di

2D = 1, that the Markov chain
is time reversible with the given stationary probabilities.

5.7 A Mean Passage Time Bound

Consider now a Markov chain whose state space is the set of non-
negative integers, and which is such that

Pij = 0, 0 ≤ i < j (5.4)

That is, the state of the Markov chain can never strictly increase.
Suppose we are interested in bounding the expected number of tran-
sitions it takes such a chain to go from state n to state 0. To obtain
such a bound, let Di be the amount by which the state decreases
when a transition from state i occurs, so that

P (Di = k) = Pi,i−k, 0 ≤ k ≤ i

The following proposition yields the bound.

Proposition 5.23 Let Nn denote the number of transitions it takes
a Markov chain satisfying (5.4) to go from state n to state 0. If for
some nondecreasing function di, i > 0, we have that E[Di] ≥ di,
then

E[Nn] ≤
n∑

i=1

1/di

Proof. The proof is by induction on n. It is true when n = 1, because
N1 is geometric with mean

E[N1] =
1

P1,0
=

1
E[D1]

≤ 1
d1
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So, assume that E[Nk] ≤
∑k

i=1 1/di, for all k < n. To bound E[Nn],
we condition on the transition out of state n and use the induction
hypothesis in the first inequality below to get

E[Nn]

=
n∑

j=0

E[Nn|Dn = j]P (Dn = j)

= 1 +
n∑

j=0

E[Nn−j ]P (Dn = j)

= 1 + Pn,nE[Nn] +
n∑

j=1

E[Nn−j ]P (Dn = j)

≤ 1 + Pn,nE[Nn] +
n∑

j=1

P (Dn = j)
n−j∑
i=1

1/di

= 1 + Pn,nE[Nn] +
n∑

j=1

P (Dn = j)[
n∑

i=1

1/di −
n∑

i=n−j+1

1/di]

≤ 1 + Pn,nE[Nn] +
n∑

j=1

P (Dn = j)[
n∑

i=1

1/di − j/dn]

where the last line follows because di is nondecreasing. Continuing
from the previous line we get

= 1 + Pn,nE[Nn] + (1 − Pn,n)
n∑

i=1

1/di −
1
dn

n∑
j=1

jP (Dn = j)

= 1 + Pn,nE[Nn] + (1 − Pn,n)
n∑

i=1

1/di −
E[Dn]

dn

≤ Pn,nE[Nn] + (1 − Pn,n)
n∑

i=1

1/di

which completes the proof.

Example 5.24 At each stage, each of a set of balls is independently
put in one of n urns, with each ball being put in urn i with probability
pi,

∑n
i=1 pi = 1. After this is done, all of the balls in the same urn
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are coalesced into a single new ball, with this process continually
repeated until a single ball remains. Starting with N balls, we would
like to bound the mean number of stages needed until a single ball
remains.

We can model the preceding as a Markov chain {Xk, k ≥ 0},
whose state is the number of balls that remain in the beginning
of a stage. Because the number of balls that remain after a stage
beginning with i balls is equal to the number of nonempty urns when
these i balls are distributed, it follows that

E[Xk+1|Xk = i] = E[
n∑

j=1

I{urn j is nonempty}|Xk = i]

=
n∑

j=1

P (urn j is nonempty|Xk = i)

=
n∑

j=1

[1 − (1 − pj)i]

Hence, E[Di], the expected decrease from state i is

E[Di] = i − n +
n∑

j=1

(1 − pj)i

As

E[Di+1] − E[Di] = 1 −
n∑

j=1

pj(1 − pj)i > 0

it follows from Proposition 5.23 that the mean number of transitions
to go from state N to state 1 satisfies

E[Nn] ≤
n∑

i=2

1
i − n +

∑n
j=1(1 − pj)i
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5.8 Exercises

1. Let fij denote the probability that the Markov chain ever makes
a transition into state j given that it starts in state i. Show
that if i is recurrent and communicates with j then fij = 1.

2. Show that a recurrent class of states of a Markov chain is a
closed class, in the sense that if i is recurrent and i does not
communicate with j then Pij = 0.

3. The one-dimensional simple random walk is the Markov chain
Xn, n ≥ 0, whose states are all the integers, and which has the
transition probabilities

Pi,i+1 = 1 − Pi,i−1 = p

Show that this chain is recurrent when p = 1/2, and transient
for all p �= 1/2. When p = 1/2, the chain is called the 1-
dimensional simple symmetric random walk.
Hint: Make use of Stirling’s approximation, which states that

n! ∼ nn+1/2e−n
√

2π

where we say that an ∼ bn if limn→∞ an/bn = 1. You can also
use the fact that if an > 0, bn > 0 for all n, then an ∼ bn implies
that

∑
n an < ∞ if and only if

∑
n bn < ∞.

4. The 2-dimensional simple symmetric random walk moves on a
two dimensional grid according to the transition probabilities

P(i,j),(i,j+1) = P(i,j),(i+1,j) = P(i,j),(i−1,j) = P(i,j),(i,j−1) = 1/4

Show that this Markov chain is recurrent.

5. Define the three-dimensional simple symmetric random walk,
and then show that it is transient.

6. Cover times. Given a finite state Markov chain Xn, let Ti =
min{n ≥ 0 : Xn = i} and C = maxi Ti.
(a) Show that for any subset of states A

min
i

E[C|X0 = i] ≥
|A|∑

m=1

1
m

min
i∈A,j∈A

Ei[Tj ],
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where |A| denotes the number of elements in A.
(b) Obtain a lower bound for the mean number of flips required
until all 2k patterns of length k have appeared when a fair coin
is repeatedly flipped.

7. Consider a Markov chain whose state space is the set of non-
negative integers. Suppose its transition probabilities are given
by

P0,i = pi, i ≥ 0, Pi,i−1 = 1, i > 0

where
∑

i ipi < ∞. Find the limiting probabilities for this
Markov chain.

8. Consider a Markov chain with states 0, 1, . . . , N and transition
probabilities

P0N = 1, Pij = 1/i, i > 0, j < i

That is, from state 0 the chain always goes to state N , and from
state i > 0 it is equally likely to go to any lower numbered state.
Find the limiting probabilities of this chain.

9. Consider a Markov chain with states 0, 1, . . . , N and transition
probabilities

Pi,i+1 = p = 1 − Pi,i−1, i = 1, . . . , N − 1

P0,0 = PN,N = 1

Suppose that X0 = i, where 0 < i < N. Argue that, with
probability 1, the Markov chain eventually enters either state
0 or N . Derive the probability it enters state N before state 0.
This is called the gambler’s ruin probability.

10. If Xn is a stationary ergodic Markov chain, show that X1,X2, . . .
is an ergodic sequence.

11. Suppose X1,X2, . . . are iid integer valued random variables
with Mn = maxi≤n Xi. Is Mn necessarily a Markov chain?
If yes, give its transition probabilities; if no, construct a coun-
terexample.
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12. Suppose Xn is a finite state stationary Markov chain, and let
T = min{n > 0 : Xn = X0}. Compute E[T ].

13. Hastings-Metropolis algorithm. Given an irreducible Markov
chain with transition probabilities Pij and any positive proba-
bility vector {πi} for these states, show that the Markov chain
with transition probabilities Qij = min(Pij , πjPji/πi) if i �= j
and Qii = 1 −

∑
j �=i Qij , is time reversible and has stationary

distribution {πi}.

14. Consider a time reversible Markov chain with transition prob-
abilities Pij and stationary probabilities πi. If A is a set of
states of this Markov chain, then we define the A-truncated
chain as being a Markov chain whose set of states is A and
whose transition probabilities PA

ij , i, j ∈ A, are given by

PA
ij =

{
Pij if j �= i
Pii +

∑
k/∈A Pik if j = i

If this truncated chain is irreducible, show that it is time re-
versible, with stationary probabilities

πA
i = πi/

∑
j∈A

πj , i ∈ A

15. A collection of M balls are distributed among m urns. At each
stage one of the balls is randomly selected, taken from whatever
urn it is in and then randomly placed in one of the other m−1
urns. Consider the Markov chain whose state at any time is
the vector (n1, n2, . . . , nm) where ni is the number of balls in
urn i. Show that this Markov chain is time reversible and find
its stationary probabilities.

16. Let Q be an irreducible symmetric transition probability matrix
on the states 1, . . . , n. That is,

Qij = Qji, i, j = 1, . . . , n

Let bi, i = 1, . . . , n be specified positive numbers, and consider
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a Markov chain with transition probabilities

Pij = Qij
bj

bi + bj
, j �= i

Pii = 1 −
∑
j �=i

Pij

Show that this Markov chain is time reversible with stationary
probabilities

πi =
bi∑n

j=1 bj
, i = 1, . . . , n

17. Consider a Markov chain whose state space is the set of positive
integers, and whose transition probabilities are

P1,1 = 1, Pij =
1

i − 1
, 1 ≤ j < i, i > 1

Show that the bound on the mean number of transitions to go
from state n to state 1 given by Proposition 5.23 is approxi-
mately twice the actual mean number.





Chapter 6

Renewal Theory

6.1 Introduction

A counting process whose sequence of interevent times are indepen-
dent and identically distributed is called a renewal process. More
formally, let X1,X2, . . . be a sequence of independent and identically
distributed nonnegative random variables having distribution func-
tion F . Assume that F (0) �= 1, so that the Xi are not identically 0,
and set

S0 = 0

Sn =
n∑

i=1

Xi, n ≥ 1

With
N(t) = sup(n : Sn ≤ t)

the process {N(t), t ≥ 0} is called a renewal process.
If we suppose that events are occurring in time and we interpret

Xn as the time between the (n−1)st and the nth event, then Sn is the
time of the nth event, and N(t) represents the number of events that
occur before or at time t. An event is also called a renewal, because
if we consider the time of occurrence of an event as the new origin,
then because the Xi are independent and identically distributed, the
process of future events is also a renewal process with interarrival
distribution F . Thus the process probabilistically restarts, or renews,
whenever an event occurs.

167
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Let μ = E[Xi]. Because P (Xi ≥ 0) = 1 and P (Xi = 0) < 1 it
follows that μ > 0. Consequently, by the strong law of large numbers

lim
n→∞Sn/n = μ > 0

implying that
lim

n→∞Sn = ∞

Thus, with probability 1, Sn < t for only a finite number of n,
showing that

P (N(t) < ∞) = 1

and enabling us to write

N(t) = max(n : Sn ≤ t)

The function
m(t) = E[N(t)]

is called the renewal function. We now argue that it is finite for all
t.

Proposition 6.1
m(t) < ∞

Proof. Because P (Xi ≤ 0) < 1, it follows from the continuity
property of probabilities that there is a value β > 0 such that
P (Xi ≥ β) > 0. Let

X̄i = β I{Xi≥β}

and define the renewal process

N̄(t) = max(n : X̄1 + . . . + X̄n ≤ t)

Because renewals of this process can only occur at integral multiples
of β, and because the number of them that occur at the time nβ is
a geometric random variable with parameter P (Xi ≥ β), it follows
that

E[N̄ (t)] ≤ t/β + 1
P (Xi ≥ β)

< ∞

Because X̄i ≤ Xi, i ≥ 1, implies that N(t) ≤ N̄(t), the result is
proven.
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6.2 Some Limit Theorems of Renewal Theory

In this section we prove the strong law and the central limit theorem
for renewal processes, as well as the elementary renewal theorem.
We start with the strong law for renewal processes, which says that
N(t)/t converges almost surely to the inverse of the mean interevent
time.

Proposition 6.2 The Strong Law for Renewal Processes
With probability 1,

lim
t→∞

N(t)
t

=
1
μ

(where
1
∞ ≡ 0)

Proof. Because Sn is the time of the nth event, and N(t) is the num-
ber of events by time t, it follows that SN(t) and SN(t)+1 represent,
respectively, the time of the last event prior to or at time t and the
time of the first event after t. Consequently,

SN(t) ≤ t < SN(t)+1

implying that
SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t)
(6.1)

Because N(t) →as ∞ as t → ∞, it follows by the strong law of
large numbers that

SN(t)

N(t)
=

X1 + . . . + XN(t)

N(t)
→as μ as t → ∞

Similarly,

SN(t)+1

N(t)
=

X1 + . . . + XN(t)+1

N(t) + 1
N(t) + 1

N(t)
→as μ as t → ∞

and the result follows.

Example 6.3 Suppose that a coin selected from a bin will on each
flip come up heads with a fixed but unknown probability whose prob-
ability distribution is uniformly distributed on (0, 1). At any time
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the coin currently in use can be discarded and a new coin chosen.
The heads probability of this new coin, independent of what has
previously transpired, will also have a uniform (0, 1) distribution. If
one’s objective is to maximize the long run proportion of flips that
land heads, what is a good strategy?

Solution. Consider the strategy of discarding the current coin when-
ever it lands on tails. Under this strategy every time a tail occurs
we have a renewal. Thus, by the strong law for renewal processes,
the long run proportion of flips that land tails is the inverse of μ, the
mean number of flips until a selected coin comes up heads. Because

μ =
∫ 1

0

1
1 − p

dp = ∞

it follows that, under this strategy, the long run proportion of coin
flips that come up heads is 1.

The elementary renewal theorem says the E[N(t)/t] also con-
verges to 1/μ. Before proving it, we will prove a lemma.

Lemma 6.4 Wald’s equation. Suppose that Xn ≥ 1 are iid with
finite mean E[X], and that N is a stopping time for this sequence, in
the sense that the event {N > n−1} is independent of Xn,Xn+1, . . . ,
for all n. If E[N ] < ∞, then

E[
N∑

n=1

Xi] = E[N ]E[X]

Proof. To begin, let us prove the lemma when the Xi are replaced
by their absolute values. In this case,

E[
N∑

n=1

|Xn|] = E[
∞∑

n=1

|Xn|I{N≥n}]

= E[ lim
m→∞

m∑
n=1

|Xn|I{N≥n}]

= lim
m→∞E[

m∑
n=1

|Xn|I{N≥n}],
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where the monotone convergence theorem (1.40) was used to justify
the interchange of the limit and expectations operations in the last
equality. Continuing we then get

E[
N∑

n=1

|Xn|] = lim
m→∞

m∑
n=1

E[|Xn|I{N>n−1}]

=
∞∑

n=1

E[|Xn|]E[I{N>n−1}]

= E[|X|]
∞∑

n=1

P (N > n − 1)]

= E[|X|]E[N ]
< ∞.

But now we can repeat exactly the same sequence of steps, but with
Xi replacing |Xi|, and with the justification of the interchange of the
expectation and limit operations in the third equality now provided
by the dominated convergence theorem (1.35) upon using the bound
|
∑m

n=1 XnI{N≥n}| ≤
∑N

n=1 |Xi|.

Proposition 6.5 The Elementary Renewal Theorem

lim
t→∞

m(t)
t

=
1
μ

(where
1
∞ ≡ 0)

Proof. Suppose first that μ < ∞. Because

N(t) + 1 = min(n : Sn > t)

it follows that N(t) + 1 is a stopping time for the sequence of in-
terevent times X1,X2, . . . . Consequently, by Wald’s equation, we
see that

E[SN(t)+1] = μ[m(t) + 1]

Because SN(t)+1 > t the preceding implies that

lim inf
t→∞

m(t)
t

≥ 1
μ
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We will complete the proof by showing that lim supt→∞
m(t)

t ≤ 1
μ .

Towards this end, fix a positive constant M and define a related
renewal process with interevent times X̄n, n ≥ 1, given by

X̄n = min(Xn,M)

Let

S̄n =
n∑

i=1

X̄i, N̄(t) = max(n : S̄n ≤ t).

Because an interevent time of this related renewal process is at most
M , it follows that

S̄N̄(t+1) ≤ t + M

Taking expectations and using Wald’s equation yields

μM [m̄(t) + 1] ≤ t + M

where μ̄M = E[Xn] and m̄(t) = E[N̄ (t)]. The preceding equation
implies that

lim sup
t→∞

m̄(t)
t

≤ 1
μM

However, X̄n ≤ Xn, n ≥ 1, implies that N̄(t) ≥ N(t), and thus that
m̄(t) ≥ m(t). Thus,

lim sup
t→∞

m(t)
t

≤ 1
μM

(6.2)

Now,
min(X1,M) ↑ X1 as M ↑ ∞

and so, by the dominated convergence theorem, it follows that

μ̄M → μ as M → ∞

Thus, letting M → ∞ in (6.2) yields

lim sup
t→∞

m(t)
t

≤ 1
μ

Thus, the result is established when μ < ∞. When μ = ∞, again con-
sider the related renewal process with interarrivals min(Xn,M). Us-
ing the monotone convergence theorem we can conclude that μM =
E[min(X1,M)] → ∞ as M → ∞. Consequently, (6.2) implies that

lim sup
m(t)

t
= 0
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and the proof is complete.

If the interarrival times Xi, i ≥ 1, of the counting process N(t), t ≥
0, are independent, but with X1 having distribution G, and the other
Xi having distribution F , the counting process is said to be a delayed
renewal process. We leave it as an exercise to show that the analogs
of the the strong law and the elementary renewal theorem remain
valid.

Remark 6.6 Consider an irreducible recurrent Markov chain. For
any state j, we can consider transitions into state j as constituting
renewals. If X0 = j, then Nj(n), n ≥ 0, would be a renewal process,
where Nj(n) is the number of transitions into state j by time n; if
X0 �= j, then Nj(n), n ≥ 0 would be a delayed renewal process. The
strong law for renewal processes then shows that, with probability
1, the long run proportion of transitions that are into state j is
1/μj , where μj is the mean number of transitions between successive
visits to state j. Thus, for positive recurrent irreducible chains the
stationary probabilities will equal these long run proportions of time
that the chain spends in each state.

Proposition 6.7 The Central Limit Theorem for Renewal Processes.
If μ and σ2, assumed finite, are the mean and variance of an in-
terevent time, then N(t) is asymptotically normal with mean t/μ
and variance tσ2/μ3. That is,

lim
t→∞P (

Nt) − t/μ

σ
√

t/μ3
< y) =

1√
2π

∫ y

−∞
e−x2/2dx

Proof. Let rt = t/μ + yσ
√

t/μ3. If rt is an integer, let nt = rt; if
rt is not an integer, let nt = [rt] + 1, where [x] is the largest integer
less than or equal to x. Then

P (
N(t) − t/μ

σ
√

t/μ3
< y) = P (N(t) < rt)

= P (N(t) < nt)
= P (Snt > t)

= P (
Snt − ntμ

σ
√

nt
>

t − ntμ

σ
√

nt
)
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where the preceding used that the events {N(t) < n} and {Sn >

t} are equivalent. Now, by the central limit theorem, Snt−ntμ
σ
√

nt

converges to a standard normal random variable as nt approaches
∞, or, equivalently, as t approaches ∞. Also,

lim
t→∞

t − ntμ

σ
√

nt
= lim

t→∞
t − rtμ

σ
√

rt

= lim
t→∞

−yμ
√

t/μ3√
t/μ + yσ

√
t/μ3

= −y

Consequently, with Z being a standard normal random variable

lim
t→∞P (

Nt) − t/μ

σ
√

t/μ3
< y) = P (Z > −y) = P (Z < y)

and the proof is complete.

6.3 Renewal Reward Processes

Consider a renewal process with interarrival times Xn, n ≥ 1, and
suppose that rewards are earned in such a manner that if Rn is the
reward earned during the nth renewal cycle - that is, during the time
from Sn−1 to Sn - then the random vectors (Xn, Rn) are independent
and identically distributed. The idea of this definition is that the
reward earned during a renewal cycle is allowed to depend on what
occurs during that cycle, and thus on its length, but whenever a
renewal occurs the process probabilistically restarts. Let R(t) denote
the total reward earned by time t.

Theorem 6.8 If E[R1] and E[X1] are both finite, then

(a)
R(t)

t
−→as

E[R1]
E[X1]

as t → ∞

(b)
E[R(t)]

t
→ E[R1]

E[X1]
as t → ∞
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Proof. To begin, let us suppose that the reward received during a
renewal cycle is earned at the end of that cycle. Consequently,

R(t) =
N(t)∑
n=1

Rn

and thus
R(t)

t
=
∑N(t)

n=1 Rn

N(t)
N(t)

t

Because N(t) → ∞ as t → ∞, it follows from the strong law of large
numbers that ∑N(t)

n=1 Rn

N(t)
−→as E[R1]

Hence, part (a) follows by the strong law for renewal processes.
To prove (b), fix 0 < M < ∞, set R̄i = min(Ri,M), and let

R̄(t) =
∑N(t)

i=1 R̄i. Then,

E[R(t)] ≥ E[R̄(t)]

= E[
N(t)+1∑

i=1

R̄i] − E[R̄N(t)+1]

= [m(t) + 1]E[R̄1] − E[R̄N(t)+1]

where the final equality used Wald’s equation. Because R̄N(t)+1 ≤
M , the preceding yields

E[R(t)]
t

≥ m(t) + 1
t

E[R̄1] −
M

t

Consequently, by the elementary renewal theorem

lim inft→∞
E[R(t)]

t
≥ E[R̄1]

E[X]

By the dominated convergence theorem, limM→∞ E[R̄1] = E[R1],
yielding that

lim inft→∞
E[R(t)]

t
≥ E[R1]

E[X]
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Letting R∗(t) = −R(t) =
∑N(t)

i=1 (−Ri) yields, upon repeating the
same argument,

lim inft→∞
E[R∗(t)]

t
≥ E[−R1]

E[X]

or, equivalently,

lim supt→∞
E[R(t)]

t
≤ E[R1]

E[X]

Thus,

lim
t→∞

E[
∑N(t)

i=1 Ri]
t

=
E[R1]
E[X]

(6.3)

proving the theorem when the entirety of the reward earned during
a renewal cycle is gained at the end of the cycle. Before proving the
result without this restriction, note that

E[
N(t)∑
i=1

Ri] = E[
N(t)+1∑

i=1

Ri] − E[RN(t)+1]

= E[R1]E[N(t) + 1] − E[RN(t)+1] by Wald’s equation
= E[R1][m(t) + 1] − E[RN(t)+1]

Hence,

E[
∑N(t)

i=1 Ri]
t

=
m(t) + 1

t
E[R1] −

E[RN(t)+1]
t

and so we can conclude from (6.3) and the elementary renewal the-
orem that

E[RN(t)+1]
t

→ 0 (6.4)

Now, let us drop the assumption that the rewards are earned only
at the end of renewal cycles. Suppose first that all partial returns
are nonnegative. Then, with R(t) equal to the total reward earned
by time t ∑N(t)

i=1 Ri

t
≤ R(t)

t
≤
∑N(t)

i=1 Ri

t
+

RN(t)+1

t
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Taking expectations, and using (6.3) and (6.4) proves part (b). Part
(a) follows from the inequality

∑N(t)
i=1 Ri

N(t)
N(t)

t
≤ R(t)

t
≤
∑N(t)+1

i=1 Ri

N(t) + 1
N(t) + 1

t

by noting that for j = 0, 1

∑N(t)+j
i=1 Ri

N(t) + j

N(t) + j

t
−→as

E[R1]
E[X1]

A similar argument holds when all partial returns are nonpositive,
and the general case follows by breaking up the returns into their
positive and negative parts and applying the preceding argument
separately to each.

Example 6.9 Generating a Random Variable whose Distribution is
the Stationary Distribution of a Markov Chain. For a finite state ir-
reducible aperiodic Markov chain Xn, n ≥ 0, having transition prob-
abilities {Pij} and stationary distribution {πi}, Theorem 5.13 says
that the approximation P (Xn = i|X0 = 0) ≈ πi is good for large n.
Here we will show how to find a random time T ≥ 0 so that we have
exactly P (XT = i|X0 = 0) = πi.

Suppose that for some p > 0 we have Pi0 > p for all i. (If this
condition doesn’t hold, then we can always find an m such that the
condition holds for the transition probabilities P

(m)
ij , implying that

the condition holds for the Markov chain Yn = Xnm, n ≥ 0, which
also has the stationary distribution {πi}.)

To begin, let Jn ∼ Bernoulli(p) be iid and define a Markov chain
Yn so that

P (Yn+1 = 0|Yn = i, Jn+1 = 1) = 1,

P (Yn+1 = 0|Yn = i, Jn+1 = 0) = (Pi0 − p)/(1 − p),

and, for j �= 0,

P (Yn+1 = j|Yn = i, Jn+1 = 0) = Pij/(1 − p).
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Notice that this gives Yn = 0 whenever Jn = 1, and in addition that

P (Yn+1 = j|Yn = i) = P (Yn+1 = j|Yn = i, Jn+1 = 0)(1 − p)
+ P (Yn+1 = j|Yn = i, Jn+1 = 1)p
= Pij ,

Thus, both Xn and Yn have the same transition probabilities, and
thus the same stationary distribution.

Say that a new cycle begins at time n if Jn = 1. Suppose that a
new cycle begins at time 0, so Y0 = 0 and let Nj denote the number
of time periods the chain is in state j during the first cycle. If we
suppose that a reward of 1 is earned each time the chain is in state
j, then πj equals the long run average reward per unit time, and the
renewal reward process result yields that

πj =
E[Nj ]
E[T ]

where T = min{n > 0 : Jn = 1} is the time of the first cycle. Because
T is geometric with parameter p, we obtain the identity

πj = pE[Nj ]

Now, let Ik be the indicator variable for the event that a new cycle
begins on the transition following the kth visit to state j. Note that

Nj∑
k=1

Ik = I{YT−1=j}

Because I1, I2, . . . are iid and the event {Nj = n} is independent of
In+1, In+2, . . . it follows from Wald’s equation that

P (YT−1 = j) = E[Nj ]E[I1] = pE[Nj ]

giving the result that

πj = P (YT−1 = j)

Remark 6.10 In terms of the original Markov chain Xn, set X0 = 0.
Let U1, U2, . . . be a sequence of independent uniform (0, 1) random
variables that is independent of the Markov chain. Then define

T = min(n > 0 : Xn = 0, Un < p/PXn−1,0)
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with the result that P (XT−1 = j|X0 = 0) = πj . In fact, if we set
X0 = 0, let T0 = 0, and define

Ti = min(n > Ti−1 : Xn = 0, Un < p/PXn−1,0)

then XTi−1, i ≥ 1, are iid with

P (XTi−1 = j|X0 = 0) = πj .

Example 6.11 Suppose that Xi, i ≥ 1 are iid discrete random vari-
ables with probability mass function pi = P (X = i). Suppose we
want to find the expected time until the pattern 1, 2, 1, 3, 1, 2, 1 ap-
pears. To do so, suppose that we earn a reward of 1 each time the
pattern occurs. Since a reward of 1 is earned at time n ≥ 7 with
probability P (Xn = 1,Xn−1 = 2,Xn−2 = 1, ...,Xn−6 = 1) = p4

1p
2
2p3,

it follows that the long run expected reward per unit time is p4
1p

2
2p3.

However, suppose that the pattern has just occurred at time 0. Say
that cycle 1 begins at time 1, and that a cycle ends when, ignoring
data from previous cycles, the pattern reappears. Thus, for instance,
if a cycle has just ended then the last data value was 1, the next to
last was 2, then 1, then 3, then 1, then 2, then 1. The next cycle will
begin when, without using any of these values, the pattern reappears.
The total reward earned during a cycle, call it R, can be expressed
as

R = 1 + A4 + A6

where A4 is the reward earned when we observe the fourth data
value of the cycle (it will equal 1 if the first 4 values in the cycle are
3, 1, 2, 1), A6 is the reward earned when we observe the sixth data
value of the cycle, and 1 is the reward earned when the cycle ends.
Hence,

E[R] = 1 + p2
1p2p3 + p3

1p
2
2p3

If T is the time of a cycle, then by the renewal reward theorem,

p4
1p

2
2p3 =

E[R]
E[T ]

yielding that the expected time until the pattern appears is

E[T ] =
1

p4
1p

2
2p3

+
1

p2
1p2

+
1
p1

.
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Let
A(t) = t − SN(t), Y (t) = SN(t)+1 − t

The random variable A(t), equal to the time at t since the last re-
newal prior to (or at) time t, is called the age of the renewal process
at t. The random variable Y (t), equal to the time from t until the
next renewal, is called the excess of the renewal process at t. We now
apply renewal reward processes to obtain the long run average values
of the age and of the excess, as well as the long run proportions of
time that the age and the excess are less than x.

The distribution function Fe defined by

Fe(x) =
1
μ

∫ x

0
F̄ (y) dy, x ≥ 0

is called the equilibrium distribution of the renewal process.

Proposition 6.12 Let X have distribution F . With probability 1

(a) lim
t→∞

1
t

∫ t

0
A(s)ds = lim

t→∞
1
t

∫ t

0
E[A(s)]ds =

E[X2]
2μ

(b) lim
t→∞

1
t

∫ t

0
Y (s)ds = lim

t→∞
1
t

∫ t

0
E[Y (s)]ds =

E[X2]
2μ

(c) lim
t→∞

1
t

∫ t

0
I{A(s)<x} ds = lim

t→∞
1
t

∫ t

0
P (A(s) < x)ds = Fe(x)

(d) lim
t→∞

1
t

∫ t

0
I{Y (s)<x} ds = lim

t→∞
1
t

∫ t

0
P (Y (s) < x)ds = Fe(x)

Proof: To prove (a), imagine that a reward at rate A(s) is earned at
time s, s ≥ 0. Then, this reward process is a renewal reward process
with a new cycle beginning each time a renewal occurs. Because the
reward rate at a time x units into a cycle is x, it follows that if X is
the length of a cycle, then T , the total reward earned during a cycle,
is

T =
∫ X

0
x dx = X2/2

As limt→∞ 1
t

∫ t
0 A(s)ds is the long run average reward per unit time,

part (a) follows from the renewal reward theorem.
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To prove (c) imagine that we earn a reward at a rate of 1 per unit
time whenever the age of the renewal process is less than x. That
is, at time s we earn a reward at rate 1 if A(s) < x and at rate 0 if
A(s) > x. Then this reward process is also a renewal reward process
in which a new cycle begins whenever a renewal occurs. Because we
earn at rate 1 during the first x units of a renewal cycle and at rate 0
for the remainder of the cycle, it follows that, with T being the total
reward earned during a cycle,

E[T ] = E[min(X,x)]

=
∫ ∞

0
P (min(X,x) > t) dt

=
∫ x

0
F̄ (t)dt

Because limt→∞ 1
t

∫ t
0 I{A(s)<x} ds is the average reward per unit

time, part (c) follows from the renewal reward theorem.
We will leave the proofs of parts (b) and (d) as an exercise.

6.3.1 Queueing Theory Applications of Renewal Reward
Processes

Suppose that customers arrive to a system according to a renewal
process having interarrival distribution F , with mean 1/λ. Each ar-
riving customer is eventually served and departs the system. Suppose
that at each time point the system is in some state, and let S(t) de-
note the state of the system at time t. Suppose that when an arrival
finds the system empty of other customers the evolution of system
states from this point on is independent of the past and has the
same distribution each time this event occurs. (We often say that
the state process probabilistically restarts every time an arrival finds
the system empty.) Suppose that such an event occurs at time 0.

If we suppose that each arrival pays an amount to the system,
with that amount being a function of the state history while that
customer is in the system, then the resulting reward process is a
renewal reward process, with a new cycle beginning each time an
arrival finds the system empty of other customers. Hence, if R(t)
denotes the total reward earned by time t, and T denotes the length
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of a cycle, then

average reward per unit time =
E[R(T )]

E[T ]
(6.5)

Now, let Ri denote the amount of money paid by customer i, for i ≥
1, and let N denote the number of customers served in a cycle. Then
this sequence R1, R2, . . . can be thought of as the reward sequence
of a renewal reward process in which Ri is the reward earned during
period i and the cycle time is N . Hence, by the renewal reward
process result

lim
n→∞

R1 + . . . + Rn

n
=

E[
∑N

i=1 Ri]
E[N ]

(6.6)

To relate the left hand sides of (6.5) and (6.6), first note that because
R(T ) and

∑N
i=1 Ri both represent the total reward earned in a cycle,

they must be equal. Thus,

E[R(T )] = E[
N∑

i=1

Ri]

Also, with customer 1 being the arrival at time 0 who found the
system empty, if we let Xi denote the time between the arrivals of
customers i and i + 1, then

T =
N∑

i=1

Xi

Because the event {N = n} is independent of all the sequence Xk, k ≥
n+1, it follows that it is a stopping time for the sequence Xi, i ≥ 1.
Thus, Wald’s equation gives that

E[T ] = E[N ]E[X] =
E[N ]

λ

and we have proven the following

Proposition 6.13

average reward per unit time = λR̄
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where
R̄ = lim

n→∞
R1 + . . . + Rn

n

is the average amount that a customer pays.

Corollary 6.14 Let X(t) denote the number of customers in the sys-
tem at time t, and set

L = lim
t→∞

1
t

∫ t

0
X(s)ds

Also, let Wi denote the amount of time that customer i spends in the
system, and set

W = lim
n→∞

W1 + . . . + Wn

n

Then, the preceding limits exist, L and W are both constants, and

L = λW

Proof: Imagine that each customer pays 1 per unit time while in the
system. Then the average reward earned by the system per unit time
is L, and the average amount a customer pays is W . Consequently,
the result follows directly from Proposition 6.13.

6.4 Blackwell’s Theorem

A discrete interarrival distribution F is said to be lattice with period
d if

∑
n≥0 P (Xi = nd) = 1 and d is the largest value having this

property. (Not every discrete distribution is lattice. For instance the
two point distribution that puts all its weights on the values 1 and π -
or any other irrational number - is not lattice.) In this case, renewals
can only occur at integral multiples of d. By letting d be the new
unit of time, we can reduce any lattice renewal process to one whose
interarrival times put all their weight on the nonnegative integers,
and are such that the greatest common divisor of {n : P (Xi = n) >
0} is 1. (If μ′ was the original mean interarrival time then in terms of
our new units the new mean μ would equal μ′/d.) So let us suppose
that the interarrival distribution is lattice with period 1, let pj =
P (Xi = j), j ≥ 0, and μ =

∑
j jpj .
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Theorem 6.15 Blackwell’s Theorem If the interarrival distribution
is lattice with period 1, then

lim
n→∞P (a renewal occurs at time n) =

1 − p0

μ

and

lim
n→∞E[number of renewals at time n] =

1
μ

Proof. With An equal to the age of the renewal process at time n,
it is easy to see that An, n ≥ 0, is an irreducible, aperiodic Markov
chain with transition probabilities

Pi,0 = P (X = i|X ≥ i) =
pi∑
j≥i pj

= 1 − Pi,i+1, i ≥ 0

The limiting probability that this chain is in state 0 is

π0 =
1

E[X|X > 0]

where X is an interarrival time of the renewal process. (The mean
number of transitions of the Markov chain between successive visits
to state 0 is E[X|X > 0] since an interarrival that is equal to 0 is
ignored by the chain) Because a renewal occurs at time n whenever
An = 0, the first part of the theorem is proven. The second part of
the theorem also follows because, conditional on a renewal occurring
at time n, the total number of renewals that occur at that time is
geometric with mean (1 − p0)−1

6.5 The Poisson Process

If the interarrival distribution of a renewal process is exponential
with rate λ, then the renewal process is said to be a Poisson process
with rate λ. Why it is called a Poisson process is answered by the
next proposition.

Proposition 6.16 If N(t), t ≥ 0, is a Poisson process having rate λ,
then N(t) =d Poisson(λ t).
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Proof. We will show P (N(t) = k) = e−λt(λt)k/k! by induction on
k. Note first that P (N(t) = 0) = P (X1 > t) = e−λt. For k > 0, we
condition on X1 to get

P (N(t) = k) =
∫ ∞

0
P (N(t) = k|X1 = x)λe−λxdx

=
∫ t

0
P (N(t − x) = k − 1)λe−λxdx

=
∫ t

0

e−λ(t−x)(λ(t − x))k−1

(k − 1)!
λe−λxdx

= λke−λt

∫ t

0

(t − x)k−1

(k − 1)!
dx

= e−λt(λt)k/k!

which completes the induction proof.

The Poisson process is often used as a model of customer arrivals
to a queuing system, because the process has several properties that
might be expected of such a customer arrival process. The process
N(t), t ≥ 0, is said to be a counting process if events are occurring
randomly in time and N(t) denotes the cumulative number of such
events that occur in [0, t]. The counting process N(t), t ≥ 0, is said
to have stationary increments if the distribution of N(t + s)−N(t)
does not depend on t, and is said to have independent increments
if N(ti + si) − N(ti), for i = 1, 2, . . ., are independent random vari-
ables whenever ti+1 > ti + si for all i. Independent increments says
that customer traffic in one interval of time does not affect traffic in
another (disjoint) interval of time. Stationary increments says that
the traffic process is not changing over time. Our next proposition
shows that the Poisson process is the only possible counting process
with continuous inter-arrival times and with both properties above.

Proposition 6.17 The Poisson process is the only counting process
with stationary, independent increments and continuous inter-arrival
times.
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Proof. Given a counting process N(t), t ≥ 0, with continuous inter-
arrival times Xi and stationary, independent increments, then

P (X1 > t + s|X1 > t) = P (N(t + s) = 0|N(t) = 0)
= P (N(t + s) − N(t) = 0|N(t) = 0)
= P (N(t + s) − N(t) = 0)
= P (N(s) = 0)
= P (X1 > s),

where the third equality follows from independent increments, and
the fourth from stationary increments. Thus, we see that X1 is mem-
oryless. Because the only memoryless continuous random variable is
the exponential distribution, X1 is exponential. Because

P (X2 > s|X1 = t) = P (N(t + s) − N(t) = 0|X1 = t)
= P (N(t + s) − N(t) = 0)
= P (N(s) = 0)
= P (X1 > s),

it follows that X2 is independent of X1 and has the same distribution.
Continuing in this way shows that all the Xi are iid exponentials, so
N(t), t ≥ 0, is a Poisson process.
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6.6 Exercises

1. Consider a renewal process N(t) with Bernoulli(p) inter-event
times.
(a) Compute the distribution of N(t).
(b) With Si, i ≥ 1 equal to the time of event i, find the condi-
tional probability mass function of S1, . . . , Sk given that N(n) =
k

2. For a renewal process with inter-event distribution F with den-
sity F ′ = f , prove the renewal equation

m(t) = F (t) +
∫ t

0
m(t − x)f(x)dx

3. For a renewal process with inter-event distribution F , show
that

P (XN(t)+1 > x) ≥ 1 − F (x)

The preceding states that the length of the renewal interval that
contains the point t is stochastically larger than an ordinary
renewal interval, and is called the inspection paradox.

4. With X1,X2 . . . independent U(0, 1) random variables with
Sn =

∑
i≤n Xi and N = min {n : Sn > 1} , show that E[SN ] =

e/2.

5. A room in a factory has n machines which are always all turned
on at the same time, and each works an independent exponen-
tial time with mean m days before breaking down. As soon as
k machines break, a repairman is called. He takes exactly d
days to arrive and he instantly repairs all the broken machines
he finds. Then this cycle repeats.
(a) How often in the long run does the repairman get called?
(b) What is the distribution of the total number of broken ma-
chines the repairman finds when he arrives?
(c) What fraction of time in the long run are there more than
k broken machines in the room?

6. Each item produced is either defective or acceptable. Initially
each item is inspected, and this continues until k consecutive
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acceptable items are discovered. At this point, one hundred
percent inspection stops and each new item produced is, inde-
pendently, inspected with probability α. This continues until
a defective item is found, at which point we go back to one
hundred percent inspection, with the inspection rule repeating
itself. If each item produced is, independently, defective with
probability q, what proportion of items are inspected?

7. A system consists of two independent parts, with part i func-
tioning for an exponentially distributed time with rate λi before
failing, i = 1, 2., The system functions as long as at least one of
these two parts are working. When the system stops function-
ing a new system, with two working parts, is put into use. A
cost K is incurred whenever this occurs; also, operating costs
at rate c per unit time is incurred whenever the system is op-
erating with both parts working, and operating costs at rate ci

is incurred whenever the system is operating with only part i
working, i = 1, 2. Find the long run average cost per unit time.

8. If the interevent times Xi, i ≥ 1, are independent but with X1

having a different distribution from the others, then {Nd(t), t ≥
0} is called a delayed renewal process, where

Nd(t) = sup{n :
n∑

i=1

Xi ≤ t}

Show that the strong law remains valid for a delayed renewal
process.

9. Prove parts (b) and (d) of Proposition 6.12.

10. Consider a renewal process with continuous inter-event times
X1,X2, . . . having distribution F . Let Y be independent of the
Xi and have distribution function Fe. Show that

E[min{n : Xn > Y }] = sup{x : P (X > x) > 0}/E[X]

where X has distribution F . How can you interpret this re-
sult?

11. Someone rolls a die repeatedly and adds up the numbers. Which
is larger: P (sum ever hits 2) or P (sum ever hits 102)?
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12. If {Ni(t), t ≥ 0}, i = 1, . . . , k are independent Poisson processes
with respective rates λi, 1 ≤ i ≤ k, show that

∑k
i=1 Ni(t), t ≥

0, is a Poisson process with rate λ =
∑k

i=1 λi.

13. A system consists of one server and no waiting space. Cus-
tomers who arrive when the server is busy are lost. There are
n types of customers: type i customers arrive according to a
Poisson process with rate λi and have a service time distribu-
tion that is exponential with rate μi, with the n Poisson arrival
processes and all the service times being independent.
(a) What fraction of time is the server busy?
(b) Let Xn be the type of customer (or 0 if no customer) in the
system immediately prior to the nth arrival. Is this a Markov
chain? Is it time reversible?

14. Let Xi, i = 1, . . . , n be iid continuous random variables having
density function f . Letting

X(i) = ith smallest value of X1, . . . ,Xn

the random variables X(1), . . . ,X(n) are called order statistics.
Find their joint density function.

15. Let Si be the time of event i of a Poisson process with rate λ.
(a) Show that, conditional on N(t) = n, the variables S1, . . . , Sn

are distributed as the order statistics of a set of n iid uniform
(0, t) random variables.
(b) If passengers arrive at a bus stop according to a Poisson
process with rate λ, and the bus arrives at time t, find the
expected sum of the amounts of times that each boarding cus-
tomer has spent waiting at the stop.

16. Suppose that events occur according to a Poisson process with
rate λ, and that an event occurring at time s is, independent
of what has transpired before time s, classified either as a type
1 or as a type 2 event, with respective probabilities p1(s) and
p2(s) = 1 − p1(s). Letting Ni(t) denote the number of type i
events by time t, show that N1(t) and N2(t) are independent
Poisson random variables with means E[Ni(t)] = λ

∫ t
0 pi(s)ds.





Chapter 7

Brownian Motion

7.1 Introduction

One goal of this chapter is to give one of the most beautiful proofs of
the central limit theorem, one which does not involve characteristic
functions. To do this we will give a brief tour of continuous time
martingales and Brownian motion, and demonstrate how the central
limit theorem can be essentially deduced from the fact that Brownian
motion is continuous.

In section 2 we introduce continuous time martingales, and in
section 3 we demonstrate how to construct Brownian motion and
prove it is continuous, and show how the self-similar property of
Brownian motion leads to an efficient way of estimating the price of
path-dependent stock options using simulation. In section 4 we show
how random variables can be embedded in Brownian motion, and in
section 5 we use this to prove a version of the central limit theorem
for martingales.

7.2 Continuous Time Martingales

Suppose we have sigma fields Ft indexed by a continuous parameter
t so that Fs ⊆ Ft for all s ≤ t.

Definition 7.1 We say that X(t) is a continuous time martingale for
Ft if for all t and 0 ≤ s ≤ t we have

1. E|X(t)| < ∞

191
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2. X(t) ∈ Ft

3. E [X(t)|Fs] = X(s)

Example 7.2 Let N(t) be a Poisson process having rate λ, and let
Ft = σ(N(s), 0 ≤ s ≤ t). Then X(t) = N(t) − λt is a continuous
time martingale because

E[N(t) − λt|Fs] = E[N(t) − N(s) − λ(t − s)|Fs] + N(s) − λs

= N(s) − λs.

We say a process X(t) has stationary increments if X(t + s) −
X(t) =d X(s) − X(0) for all t, s ≥ 0. We also say a process X(t)
has independent increments if X(t1) − X(t0),X(t2) − X(t1), . . . are
independent random variables whenever t0 ≤ t1 ≤ · · · .

Though a Poisson process has stationary independent increments,
it does not have continuous sample paths. We show below that it is
possible to construct a process with continuous sample paths, called
Brownian motion, which in fact is the only possible martingale with
continuous sample paths and stationary and independent increments.
These properties will be key in proving the central limit theorem.

7.3 Constructing Brownian Motion

Brownian motion is a continuous time martingale which produces a
randomly selected path typically looking something like the follow-
ing.

-0.05

-0.025

0

0.025

0.05

0 0 1 1 1
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Here we show how to construct Brownian motion B(t) for 0 ≤ t ≤ 1.
To get Brownian motion over a wider interval, you can just repeat
the construction over more unit intervals each time continuing the
path from where it ends in the previous interval.

Given a line segment we say we “move the midpoint up by the
amount z” if we are given a line segment connecting the point (a, b)
to the point (c, d) with midpoint (a+c

2 , b+d
2 ), and we break it into

two line segments connecting (a, b) to (a+c
2 , b+d

2 + z) to (c, d). This
is illustrated below.

z

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2a

b

c

d

Next let Zk,n be iid N(0, 1) random variables, for all k, n. We initiate
a sequence of paths. The zeroth path consists of the line segment
connecting the point (0, 0) to (1, Z0,0). For n ≥ 1, path n will con-
sist of 2n connected line segments, which can be numbered from
left to right. To go from path n − 1 to path n simply move the
midpoint of the kth line segment of path n − 1 up by the amount
Zk,n/(

√
2)n+1, k = 1, . . . , 2n−1. Letting fn(t) be the equation of the

nth path, then the random function

B(t) = lim
n→∞ fn(t)

is called standard Brownian motion.
For example if Z0,0 = 2 then path 0 would be the line segment

connecting (0, 0) to (1, 2). This looks like the following.
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Path 0

0

1

2

3

0 0.25 0.5 0.75 1

Then if Z1,1/(
√

2)2 = 1 we would move the midpoint (1
2 , 1) up to

(1
2 , 2) and thus path 1 would consist of the two line segments con-

necting (0, 0) to (1
2 , 2) to (1, 2). This then gives us the following

path.

Path 1

0

1

2

3

0 0.25 0.5 0.75 1

If Z1,2/(
√

2)3 = −1 and Z2,2/(
√

2)3 = 1 then the next path is
obtained by replacing these two line segments with the four line seg-
ments connecting (0, 0) to (1

4 , 0) to (1
2 , 2) to (3

4 , 3) to (1, 2). This
gives us the following.
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Path 2

0

1

2

3

0 0.25 0.5 0.75 1

Then the next path would have 8 line segments, and so on.

Remark 7.3 By this recursive construction it can immediately be
seen that B(t) is “self similar” in the sense that {B(t/2n)(

√
2)n, 0 ≤

t ≤ 1} has the same distribution as {B(t), 0 ≤ t ≤ 1}. This is the
famous “fractal” property of Brownian motion.

Proposition 7.4 Brownian motion B(t) is a martingale with station-
ary, independent increments and B(t) ∼ N(0, t).

Before we prove this we need a lemma.

Lemma 7.5 If X and Y are iid mean zero normal random variables
then the pair Y +X and Y −X are also iid mean zero normal random
variables.

Proof. Since X,Y are independent, the pair X,Y has a bivariate
normal distribution. Consequently X−Y and X+Y have a bivariate
normal distribution and thus it’s immediate that Y + X and Y − X
are identically distributed normal. Then

Cov(Y + X,Y − X) = E[(Y + X)(Y − X)] = E[Y 2 − X2] = 0

gives the result (since uncorrelated bivariate normal random vari-
ables are independent).
Proof. Proof of Proposition 7.4. Letting

b(k, n) = B(k/2n) − B((k − 1)/2n)
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we will prove that for any n the random variables

b(1, n), b(2, n), ..., b(2n , n)

are independent and identically distributed Normal(0, 1/2n) random
variables. After we prove that Brownian motion is a continuous
function, which we do in the proposition immediately following this
proof, we can then write

B(t) − B(s) = lim
n→∞

∑
k:s+1/2n<k/2n<t

b(k, n).

It will then follow that B(t) − B(s) ∼ N(0, t − s) for t > s and that
Brownian motion has stationary, independent increments and is a
martingale.

We will complete the proof by induction on n. By the first step
of the construction we get b(1, 0) ∼ Normal(0, 1). We then assume
as our induction hypothesis that

b(1, n − 1), b(2, n − 1), ..., b(2n−1, n − 1)

are independent and identically distributed Normal(0, 1/2n−1) ran-
dom variables. Following the rules of the construction we have

b(2k − 1, n) = b(k, n − 1)/2 + Z2k,n/(
√

2)n+1

and

b(2k, n) = b(k, n − 1) − b(2k − 1, n)

= b(k, n − 1)/2 − Z2k,n/(
√

2)n+1,

which is also illustrated in the figure below; in the figure we write
Z = Z2k,n/(

√
2)n+1.
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z

0

0.5

1

1.5

2

2.5

0

Moving the midpoint up by z

0.5a 1 1.5c 2

b

d

b(k,n-1) 

-b(2k,n) 
b(2k-1,n) 

(2k-1)/2n k/2n-1(k-1)/2n-1

Since b(k, n − 1)/2 and Z2k,n/(
√

2)n+1 are iid Normal(0, 1/2n+1)
random variables, we then apply the previous lemma to obtain that
b(2k − 1, n) and b(2k, n) are iid Normal(0, 1/2n) random variables.
Since b(2k − 1, n) and b(2k, n) are independent of b(j, n − 1), j �= k,
we get that

b(1, n), b(2, n), ..., b(2n , n)

are independent and identically distributed Normal(0, 1/2n) random
variables.

And even though each function fn(t) is continuous, it is not im-
mediately obvious that the limit B(t) is continuous. For example,
if we instead always moved midpoints by a non-random amount x,
we would have supt∈A B(t)− inft∈A B(t) ≥ x for any interval A, and
thus B(t) would not be a continuous function. We next show that
Brownian motion is a continuous function.

Proposition 7.6 Brownian motion is a continuous function with prob-
ability 1.

Proof. Note that

P (B(t) is not continuous)

≤
∞∑
i=1

P (B(t) has a discontinuity larger than 1/i),

and so the theorem will be proved if we show, for any ε > 0,

P (B(t) has a discontinuity larger than ε) = 0.
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Since by construction fm is continuous for any given m, in order
for B(t) to have a discontinuity larger than ε we must have

sup
0≤t≤1

|B(t) − fm(t)| > ε/2

or else B(t) would necessarily always be within ε/2 of the known
continuous function fm, and it would be impossible for B(t) to have
a discontinuity larger than ε. Letting

dn = sup
0≤t≤1

|fn−1(t) − fn(t)|

be the largest difference between the function at stage n and stage
n + 1, we must then have

dn > ε(3/4)n/8 for some n > m,

because otherwise it would mean

sup
0≤t≤1

|B(t) − fm(t)| ≤
∑
n>m

dn ≤ ε/2
∑
n>m

(3/4)n/4 ≤ ε/2.

Next note by the construction we have

P (dn > x) = P

(
sup

1≤k≤2n−1

|Zk,n/(
√

2)n+1| > x

)
≤ 2nP

(
|Z| > (

√
2)n+1x

)
≤ exp(n − (

√
2)n+1x),

where the last line is for sufficiently large n and we use 2n < en and
P (|Z| > x) ≤ e−x for sufficiently large x (see Example 4.5).

This together means, for sufficiently large m,

P (B(t) has a discontinuity larger than ε)

≤
∑
n≥m

P (dn > ε(3/4)n/8)

≤
∑
n≥m

exp(n − ε(3
√

2/4)n/8),

which, since the final sum is finite, can be made arbitrarily close to
zero as m increases.
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Remark 7.7 You may notice that the only property of the standard
normal random variable Z used in the proof is that P (|Z| ≥ x) ≤ e−x

for sufficiently large x. This means we could have instead constructed
a process starting with Zk,n having an exponential distribution, and
we would get a different limiting process with continuous paths. We
would not, however, have stationary and independent increments.

As it does for Markov chains, the strong Markov property holds
for Brownian motion. This means that {B(T + t) − B(T ), 0 ≤ t}
has the same distribution as {B(t), 0 ≤ t} for finite stopping times
T < ∞. We leave a proof of this as exercise 8 at the end of the
chapter. An easy result using the continuity of Brownian motion
and the strong Markov property for Brownian motion involves the
suprememum of Brownian motion.

Proposition 7.8 P (sup0≤s≤t B(s) > x) = 2P (B(t) > x).

Proof. Let T = inf{t ≥ 0 : B(t) = x}, and note that continuity of
Brownian motion gives the first line below of

P (B(t) > x) = P (B(t) > x, T < t)
= P (T < t)P (B(t) − B(T ) > 0|T < t)
= P (T < t)/2
= P ( sup

0≤s≤t
B(s) > x)/2,

and the strong Markov property gives the third line above.

Example 7.9 Path dependent stock options. It is most common that
the payoff from exercising a stock option depends on the price of
a stock at a fixed point in time. If it depends on the price of a
stock at several points in time, it is usually called a path dependent
option. Though there are many formulas for estimating the value of
various different types of stock options, many path dependent options
are commonly valued using Monte Carlo simulation. Here we give
an efficient way to do this using simulation and the self similarity
property of Brownian motion.

Let
Y = fn(B(1), B(2), ..., B(n))
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be the payoff you get when exercising a path-dependent stock option,
for standard Brownian motion B(t) and some given function fn, and
our goal is to estimate E[Y ].

The process X(t) = exp{at+bB(t)} is called geometric Brownian
motion with drift, and it is commonly used in finance as a model for a
stock’s price for the purpose of estimating the value of stock options.
One example of a path dependent option is the lookback option,
with payoff function

Y = max
t=1,2,...,n

(exp{at + bB(t)} − k)+.

Another example, the knockout option, is automatically canceled
if some condition is satisfied. For example, you may have the option
to purchase a share of stock during period n for the price k, provided
the price has never gone above a during periods 1 through n. This
gives a payoff function

Y = (exp{an + bB(n)} − k)+ × I{ max
t=1,2,...,n

exp{at + bB(t)} < a},

which is also path-dependent.
The usual method for simulation is to generate Y1, Y2, ..., Yn iid

∼ Y, and use the estimator Ŷ =
∑n

i=1 Yi having V ar(Ŷ ) = 1
nV ar(Y ).

The control variates approach, on the other hand, is to find another
variable X with E[X] = 0 and r = corr(X,Y ) �= 0, and use the
estimator Ŷ ′ =

∑n
i=1(Yi − mXi), where m = r

√
V ar(Y )/V ar(X) is

the slope of the regression line for predicting Y from X. The quantity
m is typically estimated from a short preliminary simulation. Since

V ar(Ŷ ′) = (1 − r2)
1
n

V ar(Y ) < V ar(Ŷ ),

we get a reduction in variance and less error for the same length
simulation run.

Consider the simple example where

Y = max{B(1), B(2), ..., B(100)},

and we want to compute E[Y ]. For each replication, simulate Y , then

1. Compute X ′ = max{B(10), B(20), ..., B(100)}
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2. Compute
X0 =

√
10 max{B(1), B(2), ..., B(10)}

X1 =
√

10(max{B(11), B(12), ..., B(20)} − B(10))
...
X9 =

√
10(max{B(91), B(92), ..., B(100)} − B(90))

notice that self similarity of Brownian motion means that the
Xi are iid ∼ X ′.

3. Use the control variate X = X ′ − 1
10

∑9
i=0 Xi.

Your estimate for that replication is Y − mX

Since E[X] = 0 and X and Y are expected to be highly positively
correlated, we should get a very low variance estimator.

7.4 Embedding Variables in Brownian Motion

Using the fact that both Brownian motion B(t) and (B(t))2 − t are
martingales (we ask you to prove that (B(t))2 − t is a martingale in
the exercises at the end of the chapter) with continuous paths, the
following stopping theorem can be proven.

Proposition 7.10 With a < 0 < b and T = inf{t ≥ 0 : B(t) = a or
B(t) = b}, then E[B(T )] = 0 and E[(B(T ))2] = E[T ].

Proof. Since B(n2−m) for n = 0, 1, ... is a martingale (we ask
you to prove this in the exercises at the end of the chapter) and
E[|B(2−m)|] < ∞, we see that for finite stopping times condition (3)
of Proposition 3.14 (the martingale stopping theorem) holds. If we
use the stopping time Tm = 2−m�2mT + 1� this then gives us the
first equality of

0 = E [B(min(t, Tm))] → E [B(min(t, T ))] → E [B(T )] ,

where the first arrow is as m → ∞ and follows from the dominated
convergence theorem (using continuity of B(t) and Tm → T to get
B(min(t, Tm)) → B(min(t, T )) and using the bound |B(min(t, Tm))| ≤
sup0≤s≤t |B(s)|; this bound has finite mean by Proposition 7.8), and
the second arrow is as t → ∞ and follows again from the dominated
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convergence theorem (using continuity of B(t) and min(t, T ) → T to
get B(min(t, T )) → B(T ) and also using the bound |B(min(t, T ))| ≤
b−a), and hence the first part of the result. The argument is similar
for the second claim of the proposition, by starting with the discrete
time martingale (B(n2−m))2 − n2−m, n = 0, 1, ....

Proposition 7.11 With the definitions from the previous proposition,
P (B(T ) = a) = b/(b − a) and E[T ] = −ab.

Proof. By the previous proposition

0 = E[B(T )] = aP (B(T ) = a) + b(1 − P (B(T ) = a))

and

E[T ] = E[(B(T ))2] = a2P (B(T ) = a) + b2(1 − P (B(T ) = a)),

which when simplified and combined give the proposition.

Proposition 7.12 Given a random variable X having E[X] = 0 and
V ar(X) = σ2, there exists a stopping time T for Brownian motion
such that B(T ) =d X and E[T ] = σ2.

You might initially think of using the obvious stopping time T =
inf{t ≥ 0 : B(t) = X}, but it turns out this gives E[T ] = ∞. Here is
a better approach.
Proof. We give a proof for the case where X is a continuous random
variable having density function f , and it can be shown that the
general case follows using a similar argument.

Let Y,Z be random variables having joint density function

g(y, z) = (z − y)f(z)f(y)/E[X+], for y < 0 < z.

This function is a density because∫ 0

−∞

∫ ∞

0
g(y, z)dzdy =

∫ 0

−∞

∫ ∞

0
(z − y)f(z)f(y)/E[X+]dzdy

=
∫ 0

−∞
f(y)dy

∫ ∞

0
zf(z)dz/E[X+]

−
∫ ∞

0
f(z)dz

∫ 0

−∞
yf(y)dy/E[X+]

= P (X < 0) + P (X > 0)E[X−]/E[X+]
= 1,
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where we use E[X−] = E[X+] in the last line.
Then let T = inf{t ≥ 0 : B(t) = Y or B(t) = Z}. We then obtain

B(T ) =d X by first letting x < 0 and using the previous proposition
in the second line below of

P (B(T ) ≤ x) =
∫ ∞

0

∫ 0

−∞
P (B(T ) ≤ x| Y = y, Z = z)g(y, z)dydz

=
∫ ∞

0

∫ x

−∞

z

z − y
g(y, z)dydz

=
∫ ∞

0

zf(z)
E[X+]

∫ x

−∞
f(y)dydz

= P (X ≤ x)
∫ ∞

0

zf(z)
E[X+]

dz

= P (X ≤ x),

and then noticing that a similar argument works for the case where
x > 0.

To obtain E[T ] = σ2 note that the previous proposition gives

E[T ] = E[−Y Z]

=
∫ ∞

0

∫ 0

−∞
−yzg(y, z)dydz

=
∫ ∞

0

∫ 0

−∞

yz(y − z)f(z)f(y)
E[X+]

dydz

=
∫ 0

−∞
x2f(x)dx +

∫ ∞

0
x2f(x)dx

= σ2.

Remark 7.13 It turns out that the first part of the previous result
works with any martingale M(t) having continuous paths. It can be
shown, with a < 0 < b and T = inf{t ≥ 0 : M(t) = a or M(t) = b},
that E[M(T ) = 0] and thus we can construct another stopping time
T as in the previous proposition to get M(T ) =d X. We do not,
however, necessarily get E[T ] = σ2.
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7.5 The Central Limit Theorem

We are now ready to state and prove a generalization of the central
limit theorem. Since a sequence of independent and identically dis-
tributed random variables is stationary and ergodic, the central limit
then follows from the following proposition.

Proposition 7.14 Suppose X1,X2 . . . is a stationary and ergodic se-
quence of random variables with Fn = σ(X1, ...,Xn) and such that
E[Xi|Fi−1] = 0 and E[X2

i |Fi−1] = 1. With Sn =
∑n

i=1 Xi, then we
have Sn/

√
n →d N(0, 1) as n → ∞.

Proof. By the previous proposition and the strong Markov property,
there must exist stopping times T1, T2, . . . where the Di = Ti+1 − Ti

are stationary and ergodic, and where Sn = B(Tn) for Brownian
motion B(t). The ergodic theorem says Tm/m → 1 a.s., so that
given ε > 0 we have

Nε = min {n : ∀m > n, m(1 − ε) < Tm < m(1 + ε)} < ∞,

and so

P (Sn/
√

n ≤ x) = P (B(Tn)/
√

n ≤ x)
≤ P (B(Tn)/

√
n ≤ x,Nε ≤ n) + P (Nε > n)

≤ P ( inf
|δ|<ε

B(n(1 + δ))/
√

n ≤ x) + P (Nε > n)

= P ( inf
|δ|<ε

B(1 + δ) ≤ x) + P (Nε > n)

→ P (B(1) ≤ x)

as ε → 0 and n → ∞ and using the fact that B(t) is continuous in the
last line. Since the same argument can be applied to the sequence
−X1,−X2, ..., we obtain the corresponding lower bound and thus
conclusion of the proposition.
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7.6 Exercises

1. Show that if X(t), t ≥ 0 is a continuous time martingale then
X(ti), i ≥ 0 is a discrete time martingale whenever t1 ≤ t2 ≤
· · · < ∞ are increasing stopping times.

2. If B(t) is standard Brownian motion, show for any a > 0 that
B(at)/

√
a, t ≥ 0 is a continuous time martingale with station-

ary independent increments and B(at)/
√

a =d B(t).

3. If B(t) is standard Brownian motion compute Cov(B(t), B(s)).

4. If B(t) is standard Brownian motion, which of the following
is a continuous time martingale with stationary independent
increments? (a)

√
tB(1) (b) B(3t) − B(2t) (c) −B(2t)/

√
2

5. If B(t) is standard Brownian motion, show that (B(t))2−t and
B3(t) − 3tB(t) are continuous time martingales.

6. If B(t) is standard Brownian motion and T = inf{t > 0 :
B(t) < 0}, compute E[T ].

7. Is (N(t))2−λN(t) a martingale when N(t) is a Poisson process
with rate λ?

8. Prove the strong Markov property for Brownian motion as
follows. (a) First prove for discrete stopping times T using
the same argument as the strong Markov property for Markov
chains. (b) Extend this to arbitrary stopping times T < ∞
using the dominated convergence theorem and the sequence of
stopping times Tn = (�2nT � + 1)/2n. (c) Apply the extension
theorem to show that Brownian motion after a stopping time
is the same as Brownian motion.





References

The material from sections 2.4, 2.6, and 2.5 comes respectively from
references 1, 3 and 5 below. References 2 and 4 give more exhaustive
measure-theoretic treatments of probability theory, and reference 6
gives an elementary introduction without measure theory.

1. Barbour, A. D., Holst, L., & Janson, S., Poisson Approxima-
tion, Oxford University Press, New York, 1992.

2. Billingsley, P., Probability and Measure, third edition, John
Wiley & Sons, Inc., New York, 1995.

3. Chen, L., Shao, Q., “Stein’s Method for Normal Approxima-
tion,” in An Introduction to Stein’S Method, edited by Barbour,
A.D. and Chen, L., World Scientific, Hackensack, NJ, 2005.

4. Durrett, R., Probability: Theory and Examples, second edition.
Duxbury Press, Belmont, CA, 1996.
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