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a b s t r a c t 

Edge effects play an important role for many properties of graphene. While most works have focused on 

the effects from isolated free edges, we present a novel knotting phenomenon induced by the interac- 

tions between a pair of free edges in graphene, and investigate its effect on the buckling of monolayer 

graphene. Upon compression, the buckling of graphene starts gradually in the form of two buckling waves 

from the warped edges. The collision of these two buckling waves results in the creation of a knot struc- 

ture in graphene. The knot structure enables the buckled graphene to exhibit two unique post-buckling 

characteristics. First, it induces a five-fold increase in graphene’s mechanical stiffness during the buckling 

process. Second, the knotted structure enables graphene to exhibit a mechanically stable post-buckling 

regime over a large (3%) compressive strain regime, which is significantly larger than the critical buckling 

strain of about 0.5%. The combination of these two effects enables graphene to exhibit an unexpected 

post-buckling stability that has previously not been reported. We predict that numerical simulations or 

experiments should observe two distinct stress strain relations for the buckling of identical graphene 

samples, due to the characteristic randomness in the formation process of the knot structure. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Graphene is a quasi two-dimensional (2D) honeycomb lattice

structure that exhibits extremely high in-plane stiffness ( Lee et al.,

2008 ) but very small bending stiffness ( Ou-Yang. et al., 1997; Tu

and Ou-Yang, 2002; Arroyo and Belytschko, 2004; Lu et al., 2009 ).

The quasi 2D nature of graphene is the origin for many of the

interesting phenomena involving graphene, including edge effects

and buckling instability, which are of relevance to the present

work. 

For the buckling instability, Euler buckling theory

( Timoshenko and Woinowsky-Krieger, 1987 ) states that the critical

compressive strain, above which graphene is buckled, is inversely

proportional to the in-plane stiffness C 11 and is proportional to

the bending stiffness D ; i.e., εc ∝ D / C 11 . According to Euler buckling

theory, the critical strain for graphene is very small. Consequently,

the buckling process can be induced by very weak external distur-

bances such as thermal expansion ( Bao et al., 2009 ). As a result

of the buckling phenomenon, graphene is bent or folded with a

finite curvature, which can be used to manipulate many of its
∗ Corresponding author. 
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hysical properties ( Cong and Yu, 2014 ). As a result, the buckling

f graphene has attracted intensive research interest in the past

ew years ( Lu and Huang, 2009; Patrick, 2010; Sakhaee-Pour, 2009;

radhan and Murmu, 20 09; Pradhan, 20 09; Frank et al., 2010; Fara-

pour et al., 2011; Tozzini and Pellegrini, 2011; Rouhi and Ansari,

012; Giannopoulos, 2012; Neek-Amal and Peeters, 2012; Shen

t al., 2013 ). Besides graphene, a group of other quasi 2D materials,

g. MoS 2 or black phosphorus, also have small critical buckling

trains because the bending stiffnesses for these atomically thin

aterials are also fairly small ( Jiang, 2014, 2015; Jiang et al., 2013 ).

As another result of graphene’s 2D nature, edge effects play an

mportant role on its physical properties. Based on the Brenner

nteratomic potential ( Brenner et al., 2002 ) and the finite element

ethod, it was demonstrated that graphene’s free edges can

ecome warped due to the compressive edge stress ( Shenoy et al.,

008 ). The warping amplitude decays exponentially from the edge

nto the center; i.e., the height (z) of the warped configuration

s z ∝ e y/l c with l c as the critical penetration depth. The critical

enetration depth can be viewed as the size of the warped edge

egion. For narrow graphene nanoribbons, the size of the edge

egion can be comparable to or larger than the central region. 

If the size of the edge region in graphene nanoribbons is

ufficiently large, the free edges dominate most of graphene’s

hysical properties. Edge reconstructions have been observed

http://dx.doi.org/10.1016/j.ijsolstr.2016.09.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.09.017&domain=pdf
mailto:jiangjinwu@shu.edu.cn
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Fig. 1. (Color online) Warped configuration at 1 K of a free edge in graphene of 

dimension 30 × 80 Å. Half of the system is shown in the figure, while the other 

half (with another warped edge) is not shown. (a) Perspective view of the warped 

edge. The warped shape is described by the function z(x, y ) = z 0 + A sin (πx/L ) e −y/l c . 

(b) z-position for atoms at y = y min . (c) z-position for atoms at the middle plane 

x = 15 Å. The color is with respective to the z-position of each atom. Graphene is 

compressed or stretched in the x-direction. 
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xperimentally ( Gass et al., 2008 ), which can be attributed to

he thermal energy localized by the edge vibrations ( Jia et al.,

009; Engelund et al., 2010 ). Edge vibrations were also found

o be responsible for the larger energy dissipation in graphene

anomechanical resonators ( Kim and Park, 2009; Jiang and Wang,

012 ). It was found that edge effects are the dominant factor for

he friction between neighboring nanotubes in multi-wall carbon

anotubes ( Guo et al., 2011 ), and a piece of graphene can be

riven from a softer regime to the stiffer regime due to the edge

ffect ( Chang et al., 2015 ). Edge effect have recently been shown

o induce negative Poisson’s ratio in graphene nanoribbons with

idths smaller than about 10 nm ( Jiang and Park, 2016 ). While we

ave listed just a few examples here, free edges also have a strong

ffect on other physical properties in graphene (for a review, see

g. Ref. Castro Neto et al. (2009) ). 

Although edge effects on the mechanical properties in graphene

ave been extensively studied, the edge effect on buckling has not

een examined to-date. Furthermore, free edges almost always

re present in pairs. However, in the aforementioned works, each

ree edge makes an independent contribution to those mechanical

roperties in graphene. If the width of the graphene is comparable

ith twice the critical penetration depth l c , there should be a

trong correlation and interactions between the pair of free edges.

he effect from a pair of correlated edges on the mechanical

roperties of graphene has not been studied yet. We thus inves-

igate the effect from a pair of correlated edges on the buckling

henomenon in graphene. 

In this paper, we investigate the buckling process for graphene

ith a pair of free edges. Different from the usual abrupt buck-

ing mode, we find that graphene is gradually buckled starting

rom the free edges if the two edges are warped in opposite

irections. The gradual buckling is due to the formation of a knot

tructure that results from the collision of the buckling waves

rom the two edges. There are four major features brought by

he knotting effect. (1) Graphene with knotted structure has a

uch higher mechanical stiffness than graphene without knotting

uring the buckling process. (2) It is more difficult to buckle

arrower graphene nanoribbons with the knotted structure as the

not is stronger in narrower graphene. (3) As a result of the ran-

omness in the knotting phenomenon, we predict that numerical

imulations or experiments should observe two different buckling

rocesses even for identical graphene samples with free edges. (4)

he knot is formed by the collision of buckling waves from the

wo free edges, and the knot structure will be unknotted if the

ompressive strain is larger than a critical unknotting strain value.

fter unknotting, all graphene with different boundary conditions

ave the same final buckled structure. 

. Simulation details 

The interaction between carbon atoms in graphene is described

y the second generation Brenner potential ( Brenner et al., 2002 ).

or stretching or compression, the edges of the graphene in the

train direction, i.e. the + x and −x edges in Fig. 1 (a), have pre-

cribed motion in the strain direction only, while free boundary

onditions (FBC) are used in the out-of-plane direction. Before

ension or compression, the system is thermalized to a targeted

ressure and temperature within the NPT (i.e. the particles number

, the pressure P and the temperature T of the system are con-

tant) ensemble for 200 ps. The Nosé–Hoover ( Nose, 1984; Hoover,

985 ) thermostat is used for maintaining constant temperature

nd pressure. After thermalization, graphene is stretched or com-

ressed in the x-direction in Fig. 1 (a) by uniformly deforming the

imulation box in this direction, while the structure is allowed to

e fully relaxed in lateral directions during mechanical loading. The

tandard Newton equations of motion are integrated in time using
he velocity Verlet algorithm with a time step of 1 fs. Molecular

ynamics (MD) simulations are performed using the publicly avail-

ble simulation code LAMMPS ( Plimpton, 1995; Lammps, 2012 ).

he OVITO package was used for visualization ( Stukowski, 2010 ). 

. An isolated edge 

.1. Warped configuration 

It has been demonstrated that free edges are warped due to

he compressive edge stress in graphene ( Shenoy et al., 2008 ).

 typical warped edge configuration is illustrated in Fig. 1 (a).

he dimension of the graphene is 30 × 80 Å. The two ends in

he x-direction are fixed, while FBC is applied in the y-direction.

nly half of the system is shown, while the other warped edge

s not displayed. The structure is relaxed at 1.0 K. The warping

mplitude decays exponentially from the free edge into the center.

ig. 1 (b) and (c) show that the height (z) of each atom can be well

escribed by the function z(x, y ) = z 0 + A sin (πx/L ) e −y/l c , where

 = 30 Å is the length of graphene along the x-direction. Fitting

arameter A is the warping amplitude, and l c = 7 . 3 Å is the critical

enetration depth of the warping edge. 

An isolated free edge can be warped either in the + z or −z

irection, whose structures are denoted by η = ±1 in Fig. 2 , and

hose corresponding configurations are displayed as the two



448 H.-Y. Zhang et al. / International Journal of Solids and Structures 100–101 (2016) 446–455 

Fig. 2. (Color online) Potential energy for graphene nanoribbon described by R = 

1 −η
2 

R − + 

1+ η
2 

R + , in which η is an evolving parameter. Two lower insets correspond 

to η = ±1 , while the top inset is the structure for η = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (Color online) Temperature dependence for the flipping probability of one 

isolated warped edge in a graphene nanoribbon of dimension 30 × 80 Å. 

Fig. 4. (Color online) Structure of a pair of free edges at 1 K. (a) PBC case. Graphene 

is flat, with PBC in the y-direction. (b) FBC-1 case. The two edges are warped in the 

opposite direction. (c) FBC + 1 case. The two edges are warped in the same direction. 
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lower insets in the figure. Fig. 2 shows that these two warp-

ing configurations have the same potential energy, as they are

symmetric with respective to the z = 0 plane. It means that the

probability for an isolated free edge to warp in the + z direction is

the same as −z direction. 

3.2. Thermally induced flipping of the warped edge 

While the results in Fig. 2 were for a single temperature, it

is intuitive that as temperature increases, the thermal vibration

energy may become large enough to flip the warping direction

of the free edge; i.e., the + z-warping edge can be flipped into

the −z-warping edge, and vice versa. To determine the critical

temperature, we plot in Fig. 2 the potential energy curve for

the graphene structure evolved by parameter η. The fact that

we are computing an energy landscape implies that these, and

subsequent potential energy surface calculations are performed

at 0 K. The graphene configuration with η = −1 corresponds to

the structure shown in the left bottom inset (denoted by R −),

where the edge is warped downward. Only half of the structure

is shown, while the other half (not shown in the inset) remains

unchanged during the η evolution. The configuration with η = +1

corresponds to the structure shown in the right bottom inset

(denoted by R + ), where the free edge is warped upward. A general

graphene configuration is determined by parameter η following

the formula, R = 

1 −η
2 R − + 

1+ η
2 R + . The top inset displays the

graphene configuration corresponding to η = 0 . 

From the potential energy curve, the two configurations with

η = ±1 are two stable states with the same potential; i.e., this

is a bistable system. The atomic color is with respective to the

z-coordinate of each atom. The potential barrier between con-

figurations η = ±1 is �V = V η=0 − V η= −1 = 0 . 117 eV. The number

of atoms in the warped edge regime is N E = 4 × (W × l c /s 0 ) =
4 × (24 . 0 × 7 . 3 / 10 . 48) = 64 , where s 0 = 10 . 48 Å 

2 is the area for

one cell containing four carbon atoms. The potential energy barrier

per atom is thus about �V/N E = 1 . 83 meV/atom. The probability

to overcome this energy barrier at finite temperature T is propor-

tional to e −�V/k B T , so the critical temperature can be extracted as

T C = �V/k B = 18 . 3 K. This critical temperature means that, for T

> T C , the free edge can be driven from configuration with η = −1

to the configuration with η = 1 purely by the thermal vibrations,

so these two configurations can switch between each other by

thermal vibrations. 

To verify the above potential barrier argument, we perform MD

simulations for the warped free edge in a graphene nanoribbon

of dimension 30 × 80 Å. We ran 50 simulations for this graphene

sample at each temperature. Each simulation is performed using

a different random velocity distribution, while all other simulation

conditions remain unchanged. The warping direction of the free
dge is flipped in many of the simulations, based upon which the

ipping probability is calculated. Fig. 3 shows the temperature

ependence for the flipping probability of one isolated warped

dge. The warping direction of the free edge can be flipped by

hermal vibrations for temperatures above 20 K. It means that

he thermal vibrations for T > 20.0 K are able to overcome the

otential energy barrier of the warped free edge in Fig. 2 , resulting

n the flipping of the warped free edge. In contrast, there is almost

o flipping of the warped free edge for temperatures below 20 K,

hich is very close to the critical temperature of 18.3 K for the

arped edge in Fig. 2 . 

. A pair of edges and the knotting effect 

.1. Structure for interacting edge pair 

We have discussed above the structure of an isolated free edge,

ut free edges normally show up in pairs, which we now consider.

ig. 4 shows three different configurations for a graphene nanorib-

on of dimensions 30 × 80 Å where the two shorter edges are

ree, and where the two longer edges are fixed. Fig. 4 (a) shows

hat graphene at 1 K has a flat configuration if periodic boundary

onditions (PBC) are applied in the y-direction. Fig. 4 (b) and (c) il-

ustrate two possible edge structures for FBC along the y-direction.

he warping directions of the pair of edges are in opposite direc-

ions in Fig. 4 (b), which will be referred to as the FBC-1 configura-

ion; while the warping of the pair of free edges is in the same di-

ection in Fig. 4 (c), which is referred to as the FBC + 1 configuration.
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Fig. 5. (Color online) Stress-strain curves for the compression of a graphene 

nanoribbon of dimension 30 × 80 Å at 1.0 K. 
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Fig. 6. (Color online) Width dependence for the S factor of graphene buckling at 

1.0 K. The length of the graphene is 30 Å. 
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.2. Knotting effect on buckling 

.2.1. Identification of knotting effect from stress-strain relationship 

A thin plate (like graphene) will buckle under a suffi-

iently large compressive loading ( Timoshenko and Woinowsky-

rieger, 1987 ). The buckling phenomenon is typically described

n two stages. First, external work is done to compress the plate,

nd the energy is accumulated as compressive strain energy in the

late. The planar structure for graphene is kept in this process.

econd, after the compressive strain reaches a critical value εc , and

raphene’s planar structure becomes unstable, buckling happens

bruptly, where most of the compressive energy inside the planar

tructure is converted into the bending energy of the buckled

tructure. The value of the critical buckling strain can be deter-

ined by equating the compressive strain energy of the plate just

rior to buckling and the bending energy in the buckled structure.

We note one important condition in the Euler buckling theory

s that the plate is in a planar configuration at the beginning of the

echanical compression. As a result, there is no bending energy

n graphene during the pre-buckling stage. However, for graphene

ith FBC, the free edge is warped into the non-planar shape

(x, y ) = z 0 + A sin (πx/L ) e −y/l c , so the bending energy coexists

ith the compressive energy in graphene even in the pre-buckling

tage with ε < εc . As a result, the buckling process may be quite

ifferent due to the warped free edges in graphene. 

We thus simulate the compressive response of graphene with

ength L = 30 Å in the x-direction and width W = 80 Å in the

-direction. Fig. 5 compares the stress-strain curves at 1.0 K for

raphene with PBC, FBC-1, and FBC + 1 configurations. For graphene

ith PBC, the stress-strain curve is as expected; i.e., the curve

hanges its slope at the critical buckling strain εc = 0 . 0052 , at

hich point the structure is buckled abruptly. 

There are two different stress-strain curves (red and blue lines)

n Fig. 5 corresponding to the buckling of graphene with FBC.

raphene with FBC + 1 configuration has a similar stress-strain re-

ation as the PBC configuration. There are several distinct features

n the stress-strain relation of the FBC-1 case. First, the slope of the

tress-strain curve changes gradually before the critical unknotting

train εu = 0 . 0336 , indicating a gradual buckling mode of the

raphene. Different from the standard critical buckling strain εc ,

u is a new critical strain, above which the knot structure is un-

notted as shown in the following. Second, the achievable stresses

re larger for the FBC-1 case, which indicates that graphene with

BC-1 configuration has a much higher mechanical stiffness during

he buckling process. Third, for strain ε > εu , the stress-strain

urve of FBC-1 case jumps down and coincides with the PBC and

BC + 1 cases. The distinct stress-strain relation indicates some

ovel effects in the buckling of graphene with FBC-1 configuration,

wo of which we highlight now. 
First, to provide a quantitative description for the buckling pro-

ess, we compute the S factor based on the stress-strain curve. The

 factor is useful in capturing the buckling effect on the stiffness

f the material ( Coulais et al., 2015 ), and is defined as S = 

Y f 
Y i 

, with

 i and Y f as the Young’s modulus before and after buckling at the

ritical strain εc , respectively. We note that the critical buckling

train is defined to be the point in the stress-strain curve at which

he slope of the curve changes abruptly. This is a natural choice

or the PBC and FBC + 1 cases, which indeed show abrupt changes

n the slopes of their stress-strain curves. However, despite the

act that the stress-strain curve changes its slope gradually around

c for the FBC-1 case, we still choose this value to be the critical

uckling strain for the convenience of comparing the S factor

f all cases. The S factor is usually smaller than 1, because the

tiffness is reduced by buckling. Fig. 6 shows the S factor for the

uckling of graphene with width W ∈ [20, 10 0 0] Å. The S factor for

raphene with PBC configuration is the lowest one, about 0.2, so

he stiffness is greatly reduced by the buckling of graphene with

BC. The S factor is also width independent for graphene with

BC. The S factor in graphene with FBC-1 case is the largest one

mong all of the three configurations. In particular, the S factor for

BC-1 is close to 1 for narrow graphene with widths W < 50 Å,

hich suggests that the stiffness of the graphene with FBC-1 is

ssentially unaffected by buckling. In other words, the mechanical

tiffness for graphene with FBC-1 configuration is nearly five times

arger than the stiffness of graphene with PBC. For wide graphene

ith width W > 80 Å, the edge effect becomes negligible and the

 factors for graphene with PBC, FBC-1, and FBC + 1 configurations

re quite similar. 

It should be noted that Fig. 6 shows that the S factor for

raphene with FBC + 1 is also much larger than for graphene with

BC. This is because the slope of the FBC + 1 stress-strain curve

hown in Fig. 7 changes gradually, i.e. there is no abrupt change

or the slope at the critical buckling strain εc . The large S factor

n the FBC + 1 case is essentially due to the fact that the gradual

uckling of the relatively narrow ribbon is dominated by the two

ree edges. This gradual buckling leads to the stress-strain curve

or the FBC + 1 case with gradually changing slopes in Fig. 7 , but

his edge effect is different from the knotting effect in the FBC-1

ase. In particular, the stress-strain curve for the FBC + 1 case does

ot exhibit other features for the knotting effect. For example,

here is a critical unknotting strain εu ≈ 0.035 for the FBC-1

ase in Fig. 7 , above which the knot structure is unknotted. This

nknotting strain does not appear in the FBC + 1 case. 

Second, as can be seen in Figs. 5 and 6 , the knotting effect en-

bles graphene to show a fairly stable, post-buckling regime whose

uration of about 3% compressive strain as seen in Fig. 5 is nearly
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Fig. 7. (Color online) Stress-strain curves for the compression of a graphene 

nanoribbon of dimension 30 × 30 Å at 1.0 K. 

Fig. 8. (Color online) Stress-strain curves for the compression of a graphene 

nanoribbon of dimension 30 × 80 Å and 80 × 80 Å at 1.0 K. Similar knotting effects 

also occur in graphene nanoribbon of 80 Å in length. 
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6 times larger than the elastic strain that graphene undergoes

before buckling. Therefore, not only can graphene sustain signifi-

cantly more compressive strain after buckling due to the knotting,

it is also very mechanically stable, particularly if the width is

smaller than about 80 Å, as shown in Fig. 6 . Together, these effects

demonstrate a new post-buckling stability in graphene that has

not previously been reported. 

We note that the above knotting effects are not sensitive to the

length of the graphene nanoribbon, though some intrinsic wave-

lengths have been found for the warping free edges in graphene

nanoribbon ( Lu and Huang, 2010 ). Fig. 8 shows that the distinct

knotting effect is observed for longer graphene ribbons of length

80 Å. We thus simulate graphene nanoribbons of 30 Å in length

in the present work to save computational expense. 

4.2.2. Illustrating the knotting effect during buckling 

According to the above discussions based on the stress-strain

relations, free edges can enhance graphene’s ability to resist

buckling, particularly in graphene with the FBC-1 configuration.

To explicitly disclose the differences in the buckling process, we

show in Fig. 9 some typical MD snapshots for the buckling process

of graphene at 1 K with PBC, FBC-1, and FBC + 1 configurations.

For graphene with PBC (left), the structure is buckled abruptly at

strain εc = 0 . 0052 . For graphene with FBC + 1 (right), the buckling

starts from the two free warped edges. The edge buckling waves

propagate into the interior region. Graphene is buckled after these

two buckling waves meet in the central region at almost the

same critical strain as PBC case (i.e., εc = 0 . 0052 ). The buckled

structure for FBC + 1 case after ε > 0.02 is the same as PBC case

in the left panel, which explains why graphene with PBC and
BC + 1 configurations have similar stress-strain curves just after

he critical buckling strain in Fig. 5 . 

For graphene with the FBC-1 configuration (middle), the struc-

ure also buckles gradually, starting with the propagation of waves

ropagating in from the free warped edges. However, different

rom the FBC + 1 case, a stable knot structure is formed in the cen-

er of the graphene sheet after the collision of these two edge

uckling waves at strain of 0.006. Upon application of additional

orce, the knot propagates towards one of the free ends. This knot-

ing configuration enhances the structure’s mechanical stiffness

uring buckling; i.e., higher stress is observed for FBC-1 in Fig. 5 .

he knotting structrue is unknotted at the critical unknotting strain

u = 0 . 0336 , leading to the final buckled structure. This final buck-

ed structure is the same as the buckled structure for graphene

ith PBC and FBC + 1 configurations. Hence, all of these three

tress-strain relations in Fig. 5 fall onto one curve after ε > εu . 

.2.3. Potential energy analysis for knotting effect 

We now provide a potential energy analysis for the knotting

ffect on the graphene buckling. Fig. 10 shows the potential

nergy curve for a knotting configuration at strain ε = 0 . 02 ; i.e.,

he graphene with FBC-1 configuration is compressed and a knot

s formed at strain ε = 0 . 02 . The x-axis η evolves the structure

ia R = 

1 −η
2 R − + 

1+ η
2 R + . The structure with η = −1 corresponds

o the structure shown in the left bottom inset ( R −), which is the

notting structure. Only half of the structure is displayed here,

s the other half is not changed during the evolving process. The

raphene configuration with η = +1 corresponds to the structure

hown in the right bottom inset ( R + ), which is a more stable struc-

ure with lower potential energy. This is the structure after the

not is unknotted. The top inset illustrates the configuration with

= 0 . After the knot is unknotted, the structure transforms from

 η= −1 to R η=0 . For unknotting to occur, external work needs to be

one to overcome the potential energy barrier �V = V η=0 − V η= −1 . 

The potential energy curve of the knotting at different strains

is displayed in Fig. 11 . Fig. 11 (a) shows that the potential energy

urve becomes higher for larger strain, when the applied com-

ression is smaller than 0.033. In particular, the potential energy

arrier �V in Fig. 12 increases with increasing compression,

o that it becomes more difficult to unknot the knot by applying

train. Fig. 11 (b) shows a quite different situation when the applied

ompressive strain is larger than 0.033, in which the potential

nergy curve decreases for increasing compression. In particular,

ig. 12 shows that the potential energy barrier �V drops rapidly,

nd becomes almost zero at ε = 0 . 03358 , so the structure can

e deformed easily from the configuration with η = −1 to the

onfiguration with η = 1 . According to this η-potential argument,

he knotting will be unknotted at strain ε = 0 . 03358 , which is

xactly the same as the critical unknotting strain εu determined

y the stress-strain curve from MD simulations in Fig. 5 . 

.3. Parametric effects on knotting 

We now perform a parametric analysis of the knotting effect,

pecifically taking into account the effects of graphene width,

emperature, and orientation. 

Fig. 13 shows the width dependence of the knotting effect on

he buckling of graphene with length L = 30 Å. Fig. 13 (d) shows

hat the difference ( �σ ) between the maximum achievable stress

fter buckling for the FBC-1 case and the other two cases becomes

maller as the graphene width increases, and that the knotting

ffect is negligible in graphene with width 200 Å. We can assume

hat graphene is divided into three regions: the two warped edge

egions of width l eff and one central region of width W − 2 l eff ,

ith l eff as the effective thickness for each edge region and W as

he total width. The stress difference �σ can be described by the
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Fig. 9. (Color online) MD snapshot for the buckling processes at 1.0 K of graphene with dimension 30 × 80 Å. Left: graphene with PBC. Right: graphene with FBC + 1. Middle: 

graphene with FBC-1. The knot in graphene with FBC-1 configuration is depicted by the black arrow. 

Fig. 10. (Color online) The potential energy curve of a knotting configuration at 

strain ε = 0 . 02 for graphene of dimension 30 × 80 Å. Graphene with FBC-1 config- 

uration is compressed and a knot is formed at strain ε = 0 . 02 . The configuration is 

evolved by parameter η via R = 

1 −η
2 

R − + 

1+ η
2 

R + , where R ± corresponds to the two 

configurations in the lower insets, denoted by η = ±1 . 
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Fig. 11. (Color online) Potential energy curve of the knotting at different com pres- 

sive strains ε for graphene of dimension 30 × 80 Å. (a) Strain is smaller than 0.033. 

The potential energy curve becomes higher for larger strain. (b) Strain is larger than 

0.033. The potential energy curve becomes lower for increasing strain. 

a  

a  

s  

b  

l  

F  
ormula, �σ = 2(l eff /W )�σE , with �σ E as the stress difference at

he same strain between the edge region and the central region.

rom Fig. 13 (d), we have the fitted coefficient 2 l eff �σE = 165 . 2 .

sing l c = 7 . 3 Å as the effective thickness, i.e., l eff = l c = 7 . 3 Å,

t can be determined that �σE = 11 . 3 GPa. This value is slightly

arger but close to the stress difference (8.7 GPa) for graphene

f 20 Å in width, which is dominated by the two edge regions.

he two warped edge regions cause the buckling to be gradual

or small widths, in contrast to the abrupt buckling of the central

egion for wider graphene. 

Fig. 14 shows the temperature dependence of the knotting

ffect on the buckling of graphene with dimension 30 × 80 Å. In

ig. 14 (a), the knotting structure in graphene with FBC-1 config-

ration is unknotted at the critical unknotting strain εu = 0 . 032
t 20 K. The critical unknotting strain decreases to εu = 0 . 0305

t 40 K as shown in Fig. 14 (b), which indicates that the knotting

tructure is easier to be unknotted at higher temperature. It is

ecause, at higher temperature, the thermal vibration energy is

arger, so it is easier to overcome the potential energy barrier (in

ig. 12 ) of the knotting. Fig. 14 (c) shows the relation between tem-
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Fig. 12. (Color online) The potential barrier �V for knotting at different compres- 

sive strains. 
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perature and the unknotting strain, which discloses an exponential

decay of the unknotting strain with the increase of temperature. 

Finally, we discuss orientation effects on the knotting. In the

above, we have discussed the knotting effect on the buckling of

graphene which is compressed along the armchair orientation.

Fig. 15 shows that the knotting phenomenon can also be found

in the buckling of graphene that is compressed along the zigzag

orientation. This figure has similar features as that for the arm-

chair graphene shown in Fig. 5 . The buckling process of graphene

with FBC + 1 configuration is similar as the buckling of graphene

with PBC configuration. For graphene with FBC-1 configuration,

the stress is obviously higher than the other two cases due to the

knotting phenomenon. 

4.4. Randomness for knotting phenomenon 

4.4.1. Width dependence for randomness 

We have previously shown that for a free edge pair, each edge

can be warped in the ±z direction, resulting in the FBC-1 or FBC + 1

configuration shown in Fig. 4 . The warping direction of each iso-

lated free edge can be either in the + z or −z direction with the

same probability, because these two types of warped edges have
Fig. 13. (Color online) Stress-strain for graphene of width (a) 60 Å, (b) 80 Å, and (c) 20

critical unknotting strain εu . 
he same potential energy. On the one hand, if there is no coupling

etween the two free edges, a pair of free edges with FBC-1 con-

guration or FBC + 1 configuration have the same potential energy,

o the probabilities for the FBC-1 and the FBC + 1 configurations are

he same. On the other hand, if there is coupling between the two

ree edges, it is possible that graphene with FBC-1 configuration

ill have a different potential from the FBC + 1 configuration, so the

robability for FBC-1 and FBC + 1 configurations will be different. 

Indeed, Fig. 16 (a) shows that the probabilities for FBC-1 and

BC + 1 configurations are width dependent at 1.0 K in graphene

ith FBC in the y-direction; i.e., with a pair of free edges in the

-direction. In this set of calculations, we perform thermalization

or graphene with FBC in the y-direction within the NPT ensemble

or 200 ps. The initial graphene structure is accompanied by a pair

f free edges, but both edges are not warped at the initial stage.

fter thermalization, we find that both free edges are warped and

he pair of free edges are either in the FBC-1 configuration or the

BC + 1 configuration. We performed 100 simulations for the same

raphene at each width, but with different initial random velocity

istribution. After thermalization, we counted the number of the

tructure with FBC-1 configuration and the FBC + 1 configuration,

nd the corresponding probabilities were calculated. We find that

or narrow graphene, the probability for structure with FBC-1

onfiguration is obviously larger than the structure with FBC + 1

onfiguration. This difference decreases with increasing width, and

anishes for width above 50 Å. 

The above probability results can be analyzed in terms of the

otential energy difference between the structure with FBC-1

nd FBC + 1 configurations. Fig. 16 (b) shows the potential energy

ifference �V = V FBC −1 − V FBC+1 for graphene of different width.

t shows that the potential for the FBC-1 configuration is lower

han FBC + 1 configuration especially for narrow graphene, which

s the reason for the larger probability of graphene with FBC-1

han FBC + 1 configuration in narrow graphene. For wide graphene,

he potential difference becomes very small, so the probabilities

or FBC-1 and FBC + 1 configurations are almost the same. For

ide graphene, two warped free edges are far from each other,

o they can be regarded as isolated warped edges. As we know
0 Å. (d) The difference between the stress of the FBC-1 case and PBC case at the 
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Fig. 14. (Color online) Temperature effect on the knotting phenomenon for 

graphene of dimension 30 × 80 Å. The stress-strain relation for graphene at tem- 

perature (a) 20 K and (b) 40 K. (c) The temperature dependence for the unknotting 

strain, at which the knotting for graphene with FBC-1 configuration is unknotted. 
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Fig. 15. (Color online) Stress-strain for the compression of graphene along the 

zigzag orientation at 1.0 K. The dimension of the system is 30 × 80 Å. 

Fig. 16. (Color online) Probability for FBC-1 and FBC + 1 cases. (a) Width depen- 

dence for the probability of FBC-1 and FBC + 1 cases in graphene with length 

L = 30 Å at 1.0 K. (b) The width dependence for the potential difference, �V = 

V FBC −1 − V FBC+1 , between graphene with FBC-1 and FBC + 1 configurations. 
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F  
rom Fig. 2 , the potential energy is independent of the warping

irection (upward or downward) in an isolated free edge, so the

otential energy difference between FBC-1 and FBC + 1 is almost

ero for wide graphene, leading to the same probability of FBC-1

nd FBC + 1 configurations in wide graphene. 

The importance of the randomness is that most atomistic

imulation studies start with a flat ideal initial graphene sheet

ith FBC, which will be thermalized to a stable structure at finite

emperature. The resulting stable structure can be either FBC-1

r FBC + 1 configuration with certain probability, which is width

ependent as illustrated in Fig. 16 (a). Furthermore, Fig. 17 shows

hat the stress strain relations for all graphene with the FBC-1 con-

guration fall into one curve; while the stress strain relations for

ll graphene with the FBC + 1 configuration fall into another curve.

here is obvious difference between these two groups of stress-

train curves, which indicates that numerical simulations should

btain two different stress-strain relations for the same graphene,

rovided the free edges are not pre-warped in the initial structure.

.4.2. Temperature dependence for randomness 

We showed in Fig. 16 (a) that graphene with width W = 20 Å

as a larger probability to exist in the FBC-1 configuration than

he FBC + 1 configuration. We also showed in Fig. 3 that an iso-
ated warped free edge has larger probability to flip its warping

irection at higher temperatures. Hence, it is natural to anticipate

hat the structure with FBC-1 configuration may be driven into the

BC + 1 configuration by thermal vibrations at higher temperatures.

n other words, it is expected that, for graphene with W = 20 Å,

he probability of FBC-1 case will be reduced and becomes closer

o the probability of FBC + 1 case, if the temperature is increased.

n this set of simulations, we initialized the velocity of the system

ith 50 different random velocity distributions for each tempera-

ure. The system was thermalized to its thermally stable structure

ithin the NPT ensemble for 200 ps. After thermalization, both

ree edges in graphene are warped, and they are either in the

BC-1 configuration or in the FBC + 1 configuration. The numbers
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Fig. 17. (Color online) Stress-strain for the compression of graphene at 1.0 K. FBC is 

applied in the y-direction. The dimension is 30 × 80 Å. The stress strain relation for 

graphene with FBC-1 configuration fall into the same curve, while the stress strain 

relation for graphene with FBC + 1 configuration fall into another curve. 

Fig. 18. (Color online) Temperature dependence for the probability of FBC-1 and 

FBC + 1 cases in graphene of width W = 20 Å. (a) The probability for FBC-1 config- 

uration is always larger than FBC + 1 configuration. (b) The z-position for the two 

warped edges, which shows the correlated flipping exhibited by the two edges, i.e. 

when one edge flips its warping direction, the other edge will flip its warping di- 

rection simultaneously. 
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for FBC-1 and FBC + 1 cases were collected and their probabilities

were calculated accordingly. 

In Fig. 18 (a), the probability for graphene with FBC-1 config-

uration is always larger than graphene with FBC + 1 configuration

for the whole temperature range. For low temperatures, it is rea-

sonable that the probability for graphene with FBC-1 configuration

is larger than FBC + 1 configuration, because we know that the

potential energy for FBC-1 is lower than FBC + 1 for graphene of

width W = 20 Å in Fig. 16 (b). However, it is surprising that the

probability for graphene with FBC-1 configuration is still larger

than graphene with FBC + 1 configuration at higher temperatures.
his surprising result is attributed to the strong correlated flipping

ue to the antiphase correlation ( Lu and Huang, 2010 ) exhibited

y the two free edges in Fig. 18 (b), which displays the z-position

or the two warped free edges. As can be seen, when the warping

irection of one free edge is flipped, the warping direction of the

ther free edge also flips simultaneously. This correlated flipping

echanism maintains the FBC-1 configuration, which ensures

he larger probability for the FBC-1 configuration even at higher

emperatures. 

. Conclusion 

In conclusion, we have demonstrated a novel knotting phenom-

na induced by the interaction between free edges during the com-

ression of graphene. The knotting phenomenon has substantial ef-

ects on the mechanical properties of buckled graphene, in partic-

lar significantly elevating the stress that can be sustained during

he buckling process, which results in a higher mechanical stiff-

ess than graphene without knotting, and in enabling graphene to

xhibit a stable post-buckling regime where the amount of strain

hat can be sustained is significantly larger than the pre-buckling

lastic strain. The knotting process was shown to be most probable

or narrow graphene ribbons at lower temperatures. Overall, we

ave shown that edge effects, which have previously been shown

o cause undesired instabilities on the mechanical response of

raphene, can be utilized to give surprising enhancements in

echanical performance especially for narrow graphene ribbons. 
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