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The major purpose of this work is to investigate surface stress effects on the bending behavior and properties
of �100� / �100� gold nanowires with both fixed/fixed and fixed/free boundary conditions. The results are
obtained through utilization of the recently developed surface Cauchy-Born model, which captures surface
stress effects on the elastic properties of nanostructures through a three-dimensional, nonlinear finite element
formulation. There are several interesting findings in the present work. First, we quantify the stress and
displacement fields that result in the nanowires due to bending deformation. In doing so, we find that regardless
of boundary condition, the stresses that are present in the nanowires due to deformation induced by surface
stresses prior to any applied bending deformation dominate any stresses that are generated by the bending
deformation unless very large ��5%� bending strains are applied. In contrast, when the stresses and displace-
ments induced by surface stresses prior to bending are subtracted from the stress and displacement fields of the
bent nanowires, we find that the bending stresses and displacements do match the solutions expected from bulk
continuum beam theory, but only within the nanowire bulk, and not at the nanowire surfaces. Second, we find
that the deformation induced by surface stresses also has a significant impact on the nanowire Young’s modulus
that is extracted from the bending simulations, where a strong boundary-condition dependence is also found.
By comparing all results to those that would be obtained using various linear surface-elastic theories, we
demonstrate that a nonlinear, finite deformation formulation that captures changes in both bulk- and surface-
elastic properties resulting from surface stress-induced deformation is critical to reproducing the experimen-
tally observed boundary-condition dependence in Young’s modulus of metal nanowires. Furthermore, we
demonstrate that linear surface-elastic theories based solely on the surface energy erroneously predict an
increase in Young’s modulus with decreasing nanowire size regardless of boundary condition. In contrast,
while the linear surface-elastic theories based upon the Gurtin and Murdoch formalism can theoretically predict
elastic softening with decreasing size, we demonstrate that, regardless of boundary condition, the stiffening due
to the surface stress dominates the softening due to the surface stiffness for the range of nanowire geometries
considered in the present work. Finally, we determine that the nanowire Young’s modulus is essentially
identical when calculated via either bending or resonance for both boundary conditions, indicating that surface
effects have a similar impact on the elastic properties of nanowires for both loading conditions.
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I. INTRODUCTION

Nanowires have been intensely researched by both the
scientific and engineering communities over the past
decade.1–3 One of the major reasons for the surge in interest
for nanowires has been due to their potential as the basic
building block for nanoelectromechanical systems �NEMS�.
As the basic building block for NEMS, nanowires will be
used to perform chemical sensing, act as high-frequency os-
cillators, used to perform ultrasensitive mass and force
detection, and to act as next generation wireless
components.4–6 Of relevance to the present study, in many
NEMS applications, nanowires will be synthesized and actu-
ated in beamlike geometries and configurations that appear
amenable to description using standard continuum beam
theory.

Due to the fact that nanowires have beamlike geometries
and because many of the potential NEMS applications re-
quire knowledge of the nanowire elastic properties, there has
been a recent surge of interest in both experimental and the-
oretical techniques to characterize the elastic properties of
nanowires. The experimental characterization has typically
involved two distinct experimental techniques, those utiliz-
ing atomic force microscope �AFM�-induced bending,7–14

and those utilizing resonance-based measurements.15–21 Un-
fortunately, there is significant scatter in the experimental
results,3 with some reporting an enhanced elastic
stiffness,10,11,18 some reporting a reduced elastic
stiffness,17,21–23 and some reporting no variation in elastic
stiffness8,9,13,14 with decreasing nanostructure size. We note
that the cross-sectional sizes of these nanowires typically are
in the range of 50–250 nm, where nanoscale size and surface
effects may be limited.

The size dependence in elastic behavior and properties at
the nanoscale arises due to surface stress24–27 and surface-
elastic effects,28–30 both of which occur due to the reduced
coordination number31 that characterizes surface atoms as
compared to those that lie within the material bulk. Further-
more, the percentage of surface atoms, and therefore the per-
centage of atoms that have a reduced coordination number
increases with the increasing surface area to volume ratio
that is characteristic of nanomaterials. Because the surface
effects are related to surface area to volume ratio, the surface
stress and surface-elastic effects become significant with de-
creasing structural size.

Atomistic modeling has predicted a strong size depen-
dence in the elastic properties of nanostructures at cross-
sectional sizes smaller than about 10 nm.28,29,32–35 However,
most atomistic calculations have been performed considering
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axial tensile loading, while comparably few results exist for
bending.36–38 This fact is critical because as is well known,
the surfaces of beams are subject to the maximum tensile and
compressive states of stress under bending. Because surfaces
are the key factor in altering the elastic properties of nano-
structures, it is likely that the elastic properties of nanowires
measured under bending may differ from those measured
under resonance or axial testing approaches.39

The theoretical models that have been developed for
nanostructures are typically based upon further develop-
ments of the linear surface-elastic theory of Gurtin and
Murdoch,40 which treats the surface as a deformable elastic
medium attached to the bulk and which can be described
using a Hooke’s-law-type linear elastic stress strain relation-
ship. Various surface-elastic models have been
developed30,39,41–46 and utilized to study the effects of sur-
faces on the bending behavior and properties of nanowires.
There are several key shortcomings of these models that
have motivated the present work. In particular, �1� the mod-
els are generally two-dimensional �2D�, which neglects the
changes in cross-sectional area that arise due to the deforma-
tion induced by surface stresses,25–27 �2� some models as-
sume that surface physics can be captured using overly sim-
plistic interatomic pair potentials to describe the surface
bond energetics; these are physically incorrect because pair
potentials predict that the surface stress of metals is compres-
sive rather than tensile, �3� the complex nature of the analytic
equations makes these models difficult to implement in finite
element �FE�-type numerical analysis, �4� due to equilibrium
requirements enforced between the bulk and surface in de-
riving the surface-elastic formulation,24,40 the surface stress
in the surface-elastic formulation is a 2�2 in-plane stress
tensor, where the out-of-plane stress component must be zero
to satisfy the mechanical equilibrium condition. The impli-
cation of this 2�2 in-plane surface stress tensor is that
surface-elastic formulations are unable to capture the
surface-stress-driven compressive relaxation that metal nano-
wires are known to undergo.25–27 �5� Due to the linear elastic
constitutive response that is assumed for both the bulk and
surface, the surface-elastic models are unable to capture the
nonlinear elasticity of the nanowire bulk which results due to
surface stress driven compressive strain, and which is known
to play a critical role in the elastic properties of metal
nanowires,29 �6� The stress and displacement fields in the
nanowires have not been quantified to date for different
boundary conditions while accounting for surface stress-
induced deformation using a nonlinear, finite deformation
constitutive model.

In the present work, we utilize the recently developed
surface Cauchy-Born �SCB� model,47,48 which captures the
bulk and surface-elastic properties of nanostructures directly
from an underlying atomistic potential49,50 using nonlinear,
finite deformation kinematics to study surface stress effects
on the bending behavior and properties of �100� gold nano-
wires with �100� transverse surfaces. We focus upon
intermediate-size nanowires, with cross-sectional dimensions
between 15 and 25 nm, in order to bridge the small size
scales that have been studied atomistically, and the larger
sizes that have been evaluated experimentally.

By considering nanowires of varying cross-sectional area
and aspect ratio, using both fixed/free and fixed/fixed bound-

ary conditions, we arrive at the key findings of the present
work, which are: �1� corresponding to the discussion above
regarding the inability of current surface-elastic formulations
to capture surface-stress-driven relaxation of the nanowires,
we find that the stresses and displacements induced in the
nanowires due to surface-stress-driven relaxation are signifi-
cantly larger than the stresses and displacements induced by
bending of the nanowires, even out to large ��1%� bending
strains and for fairly large nanowire cross sections
��25 nm�. �2� The bending stiffness, and therefore Young’s
modulus of the nanowires is strongly boundary condition and
size dependent. We discuss the implications of these find-
ings, and compare our results to previous analytic results
based upon linear surface elasticity for nanowire
bending10,11,42 to demonstrate how and why our findings are
different from those found using either linear continuum
beam theory or linear surface-elasticity theory. Finally, we
compare results for the nanowire Young’s modulus obtained
via bending in the present work to resonance51 to determine
if there are any quantifiable differences induced by the test-
ing or loading method in how surfaces impact the nanowire
Young’s modulus.

II. SURFACE CAUCHY-BORN MODEL

A. Overview

The standard bulk Cauchy-Born �BCB� model is a multi-
scale, finite deformation constitutive model that enables the
calculation of continuum stress and stiffness directly from an
underlying interatomic potential energy.52–57 However, be-
cause the BCB model does not account for critical nanoscale
surface stress effects, the SCB model was recently developed
by Park et al.47,48,55 to capture surface stress effects within
the framework of the Cauchy-Born approximation. Because
the SCB formulation for FCC metals was presented in pre-
vious works by Park et al.,48,51 we refer the interested reader
to those works for a detailed exposition on the SCB model.

As noted in previous expositions on the SCB model for
FCC metals,48,51 the SCB model is based on constructing a
surface strain energy density ��C� of a representative surface
unit cell, where C=FTF is the continuum stretch tensor, in-
dicating that the SCB model is a nonlinear, finite deforma-
tion model. The surface energy density ��C� is calculated in
the present work using the embedded atom �EAM� potential
for gold of Foiles.50

We note that extensive studies comparing the SCB model
and purely atomistic simulations for the surface-stress-driven
relaxation of fixed/free FCC metal nanowires have been per-
formed using EAM potentials by Park and Klein;48 the accu-
racy of the SCB model in predicting the compressive relax-
ation strain of the free end was found to be less than 10% for
nanowire cross-sectional sizes larger than about 8 nm. We
also note that the EAM potentials utilized in the present
work are well known to underestimate both the surface en-
ergy and surface stress by 30–50 % as compared to DFT
calculations or experiments;58 these errors are transferred to
the SCB model because it is based upon the EAM potentials.

We also emphasize the differences between the SCB for-
mulation for surface stress and surface energy, and the tradi-
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tional thermodynamic definition of surface stress �see for
example24,59�,

� = �0 + C0� , �1�

where � is the surface stress, �0 is the residual �strain-
independent� portion of the surface stress, C0� is the surface-
elastic �strain-dependent� part of the surface stress, and
where C0 is the �constant� surface-elastic stiffness. Interest-
ingly, recent works by Park and Klein51 and Park60 have
demonstrated that if finite deformation kinematics is consid-
ered, as they are in the SCB model, the residual surface
stress �0 does in fact contribute significantly to the resonant
frequencies of both metallic and semiconducting nanowires.

The difference is that the SCB surface energy density
��C� represents the actual surface energy of the surface unit
cell, and not the excess in energy as compared to a represen-
tative bulk atom, which is how the surface energy is tradi-
tionally defined thermodynamically.24 Once the surface en-
ergy density is known, the second surface Piola-Kirchoff
stress and the surface stiffness can be calculated by taking
derivatives of the surface energy density ��C� with respect to
the stretch tensor C �see Eq. 12 in Park and Klein48	.

III. NUMERICAL EXAMPLES

All numerical examples were performed on three-
dimensional, single-crystal gold nanowires of length L and

square cross section of width a. Two different parametric
studies are conducted in this work, which consider nanowires
with constant cross-sectional area �CCSA�, where a
=160 Å, and constant aspect ratio �CAR� of L /a=8; the
geometries are summarized in Table I. All simulations were
performed using the Sandia-developed simulation code
Tahoe.61

All wires had a �100� longitudinal orientation with �100�
transverse surfaces, while two different boundary conditions,
fixed/free and fixed/fixed ends were used; we note that these
boundary conditions are similar to what has been assumed in
both experimental10,11,14 studies and theoretical10,11 studies of
nanowire bending, to which we will compare the obtained
SCB results in Sec. VI. All finite element �FE� simulations
were performed using the stated boundary conditions and
utilized regular meshes of eight-node hexahedral elements,
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FIG. 1. �Color online� Stresses and y displacements in CAR fixed/fixed nanowires after deformation due to surface stresses.

TABLE I. Summary of nanowire geometries considered: con-
stant aspect ratio, and constant cross-sectional area. All dimensions
are in Angstroms �Å�.

CAR CCSA

1200�150�150 1280�160�160

1440�180�180 2560�160�160

1680�210�210 3840�160�160

1920�240�240 4800�160�160
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with at least ten finite elements through the nanowire thick-
ness.

Regardless of whether fixed/free or fixed/fixed boundary
conditions are utilized, the nanowires are initially out of
equilibrium due to the surface stresses. Therefore, before any
external bending deformation was applied, we first deter-
mined the minimum energy, or relaxed configurations of the
nanowires due to the surface stresses. Finding the minimum-
energy configurations corresponds directly to what would oc-
cur experimentally, in which the nanowires deform in re-
sponse to surface stresses after the synthesis or etching
process.

Once the minimum-energy configuration due to surface
stresses was determined, external loading was applied incre-
mentally under quasistatic loading, such that the nanowire
could equilibrate due to a given load increment before addi-
tional loading was applied. The elastic properties and the
bending stresses were determined after applying bending
strains of 8.5e-3% for the CAR nanowires and 8.6e-2% for
the CCSA nanowires; however, additional calculations were
carried out where the nanowires were bent to strains nearing
5%. In all cases, we also performed the simulations using the
BCB model, i.e., without surface stresses, to quantify how

surface stresses cause variations in both the nanowire elastic
properties, as well as the stress and displacement fields, as a
function of size.

IV. STRESS AND DISPLACEMENT FIELD IN THE
NANOWIRE AFTER SURFACE STRESS INDUCED

DEFORMATION

Before discussing the bending-induced stresses and dis-
placements in the nanowires, we first discuss the state of
stress and the displacement fields that occur in the nanowires
as a result of surface stress-induced deformation, i.e., in the
absence of any applied external forces, as we will demon-
strate that this is critical to the understanding of nanowire
bending stresses, deformation, and elastic properties. As dis-
cussed earlier, the nanowires are initially out of equilibrium
due to the surface stresses, and therefore deform in response
to the surface stresses until an equilibrium configuration is
reached in which the tensile surface stresses are balanced by
compressive stresses within the nanowire bulk.

While both fixed/fixed and fixed/free CCSA and CAR
nanowires were considered, we focus on the fixed/fixed CAR
nanowires as the other geometries and boundary conditions
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FIG. 2. �Color online� Bending �11 for BCB and SCB CAR fixed/fixed nanowires.
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FIG. 3. �Color online� Bending �12 for BCB and SCB CAR fixed/fixed nanowires.
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lead to similar conclusions regarding surface stress effects on
the displacements and stresses in the nanowires. The stresses
in the fixed/fixed CAR nanowires after surface-stress-driven
relaxation are shown in Fig. 1. For the normal stress �11, we
first note that �11 is positive at the nanowire surfaces but
negative within the nanowire core. The normal stress �11 is
positive at the free surfaces of the nanowire due to the tensile
nature of metallic surface stresses.58 In general, �11 is larger
at the surfaces for fixed/fixed nanowires due to the fact that
the fixed/free nanowires can contract axially and thereby re-
lieve some of the effects of the tensile surface stress.

In contrast, �11 is negative within the nanowire bulk for
both boundary conditions; it is negative for the fixed/fixed
case because while both ends of the nanowire are fixed, the
interior still relaxes and compresses slightly in response to
the surface stresses. The size-dependent effect of the surface
stresses reveals itself in the normal stresses �11 in Fig. 1. For
the fixed/fixed CAR nanowires in Fig. 1, there is a slight
difference in �11 between the largest nanowire with cross-
sectional length 24 nm, and the smallest, with cross-sectional
length of 15 nm; �11=−0.0012 eV /Å3 for the 24 nm CAR
nanowire, while �11=−0.0016 eV /A3, or about −0.25 GPa,
for the 15 nm CAR nanowire. While the fixed ends prevent
the nanowire from contracting along its length, the smaller
15 nm CAR nanowire experiences slightly more bulk com-
pression due to surface stresses, and thus is subject to a
larger compressive �11.

In contrast to the normal stress �11, the shear stress �12
=0 in the interior of the nanowires, regardless of the bound-
ary condition. On the surfaces of the nanowires, the nature of
the shear stress depends upon the state of surface deforma-
tion; �12 is positive in Fig. 1 at the surfaces because the
surfaces are in tension resulting from the fixed end boundary
conditions.

Regarding the displacement field, for the fixed/fixed nano-
wire in Fig. 1, we note that the vertical �y� displacements are
negative at the top surface and positive at the bottom surface,
indicating that the cross-sectional area has contracted in re-
sponse to the surface stresses.

Before moving forward to discuss the effects of bending
forces on the nanowire state of stress, we re-emphasize that

the results shown in Fig. 1 constitute the state of stress and
the vertical �y�-displacement field in the nanowires before
any externally applied forces to induced bending are applied.

V. NANOWIRE BENDING STRESS AND DISPLACEMENT
RESULTS

We now discuss the actual bending stresses and displace-
ments for the CAR nanowires, for both fixed/fixed and fixed/
free boundary conditions. Again, we emphasize that the
bending forces were applied after the nanowires were al-
lowed to find a minimum-energy configuration due to the
surface stresses, as was discussed in the previous section. We
show results for both SCB and BCB �i.e., without surface
stress effects� CAR nanowires to compare how the bending
stresses of nanowires are different when surface stresses are
accounted for.

The stress in the nanowire after bending for the fixed/
fixed BCB and SCB CAR nanowires is shown in Figs. 2 and
3. As can be seen, the BCB nanowire stresses exhibit the
expected trends from continuum beam theory, i.e., �11 is lin-
ear, as seen in Fig. 2, and �12 is parabolic, as seen in Fig. 3.
However, the bending stresses for the SCB nanowire are
quite different. As seen in Figs. 2 and 3, the normal stress �11
does not exhibit a linear pattern, nor does the shear stress �12
exhibit a parabolic pattern. In fact, the bending stresses for
the SCB nanowires appear to be remarkably similar to the
stresses present in the nanowires due to surface-stress-
induced deformation as previously seen in Fig. 1 for fixed/
fixed CAR nanowires.

Similarly, a comparison between the y-displacement field
after bending at the center of the fixed/fixed beam for SCB
and BCB nanowires is shown in Fig. 4. While the BCB dis-
placement field is parabolic, and slightly negative due to the
applied force, the displacement field in the SCB nanowire is
significantly different. There, the top surface has a signifi-
cantly larger downward displacement than the bottom sur-
face, and there is an oscillation of the displacement field
between the two surfaces. Furthermore, the SCB displace-
ment field in Fig. 4 appears as though it can be obtained by
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adding the relaxed SCB displacement field in Fig. 1 and the
BCB bending displacement field in Fig. 4.

Due to the similarity between the bending stresses in Figs.
2 and 3, and the relaxed stresses �i.e., the stresses due to
deformation induced by surface stresses before the applica-
tion of any external bending forces� in Fig. 1, and also be-
tween the bending displacements in Fig. 4 and the relaxed
displacements in Fig. 1, we plot in Fig. 5 the stresses and
displacements in the SCB nanowire after subtracting the re-
laxed stresses and displacements. As can be observed, once
the relaxed stresses and displacements are removed, the SCB
nanowire exhibits bending stresses and displacements similar
to those expected from continuum beam theory, and exhib-
ited by the BCB nanowire: �11 exhibits a largely linear pat-
tern within the nanowire bulk, with deviation occurring near
the nanowire surfaces, �12 exhibits the expected parabolic
pattern, again matching the BCB solution within the nano-
wire bulk, and deviating near the surface, while the bending
displacements again match closely, with the displacement er-
ror being about 1.3%. Furthermore, we note that the normal
stress �11 is more positive at the bottom of the fixed/fixed
nanowire than at the top; this makes sense as the top surface
of beams are in compression for bending in a fixed/fixed
configuration, while the bottom of the same beam is under
tension.

We conclude this section on the nanowire bending
stresses and displacements with three comments. First, our
results demonstrate that the nanowire bending stresses and
displacements are strongly impacted by the residual stress
and displacement fields that are present in the nanowire due
to surface stress driven relaxation; these results are expected
to be quantitatively valid as they were obtained using EAM
potentials50 that are known to underestimate the surface
stress by 30–50 % as compared to DFT calculations.58 Prior
works have focused upon predicting size and surface effects
on the bending stiffness of the nanowires;30,39,41–45 we will
demonstrate in the next section that, just as deformation in-
duced by surface stresses has a significant effect on the nano-
wire bending stresses and displacements, the deformation in-
duced by surface stresses also has a significant effect on the
elastic properties of the nanowires.

Second, we have demonstrated that the bending stresses
and displacements, when the relaxed stresses and displace-
ments due to deformation induced by surface stresses are
removed, do follow the expected continuum beam theory
solutions, i.e., linear for the normal stress �11 and parabolic
for the shear stress �12, but only within the nanowire bulk. At
the surfaces, the normal and shear stresses deviate substan-
tially, with dependencies on the boundary condition and the
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resulting state of deformation due to surface stress driven
relaxation.

Finally, we have performed additional simulations which
have demonstrated that it is only for very large bending
strains, i.e., 5%, where the stresses induced by bending be-
come larger than the stresses induced by surface stress driven
relaxation, and only then for fixed/fixed, and not fixed/free
nanowires. Because of this factor, and because the bending
of the nanowires is likely to occur over much smaller bend-
ing strains, the present results are strongly indicative that
continuum beam theory solutions cannot be utilized to de-
scribe the bending stress state in nanowires that are subject to
deformation due to surface stresses.

VI. NANOWIRE ELASTIC PROPERTIES FROM BENDING
SIMULATIONS

The second objective of this work is to characterize the
boundary-condition-dependent elastic properties of the nano-
wires as obtained using the finite element method �FEM�
calculations and both the BCB and SCB models; the BCB
results are pertinent as they enable us to quantify the effects
of surface stresses on the nanowire elastic properties for each
geometry considered. To do so, we first show the force vs
displacement relationships obtained for the various nanowire
geometries and boundary conditions. The force vs displace-
ment relationship is important as it is the quantity that is
extracted during experimental measurements of nanowire
bending.8,9,11,12,14

Through calculation or measurement of the force vs dis-
placement curve, the bending stiffness k of the nanowires
can be directly calculated from

�F = k�d , �2�

where �d is the increment in bending displacement that re-
sults from the increment in applied force �F, and k is the
spring constantlike stiffness that relates the force and dis-
placement.

The bending stiffness k is also a critical parameter be-
cause it enables experimentalists to, using the assumptions of

linear elastic continuum beam theory, estimate the nanowire
Young’s modulus E using known solutions for fixed/fixed
and fixed/free beams, where the stiffness k=192EI /L3 for a
fixed/fixed beam loaded at the beam center, and k=3EI /L3

for a fixed/free beam loaded at the free end.
We first discuss the results for the elastic properties of

CCSA nanowires, where the force vs displacement relation-
ships for fixed/fixed and fixed/free boundary conditions are
shown in Fig. 6, and where the calculated bulk-normalized
bending stiffness k and Young’s modulus E for both bound-
ary conditions and all geometries are summarized in Table II.

In analyzing Fig. 6, it is evident that the boundary condi-
tions play a substantial role in the force vs displacement
response, and therefore the elastic properties of the nano-
wires. For the fixed/fixed CCSA nanowires, for all nanowire
lengths, more force is required to deform the SCB nanowires
to the same displacement as compared to the BCB nanowires
of the same size. In contrast, for the fixed/free CCSA nano-
wires, the force vs displacement plots for the SCB and BCB
nanowires are nearly indistinguishable.

The disparities in the force vs displacement response for
the two boundary conditions for the CCSA nanowires are
highlighted in Table II, where the bulk-normalized bending
stiffnesses, and thus Young’s modulus for the boundary con-
ditions show very different results. First, Table II demon-
strates that Young’s modulus for the SCB nanowires shows a
slightly decreasing trend with increasing aspect ratio, where
the modulus of the fixed/free SCB nanowire is approxi-
mately 98% of the bending modulus of the BCB nanowire
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FIG. 6. �Color online� Force versus displacement relationship for CCSA nanowires.

TABLE II. Normalized stiffness and Young’s modulus, both ex-
pressed as a ratio of SCB/BCB, for CCSA nanowires.

Geometry
kscb

kbcb
=

Escb

Ebcb
�fixed/free�

kscb

kbcb
=

Escb

Ebcb
�fixed/fixed�

128�16�16 0.991 1.164

256�16�16 0.985 1.497

384�16�16 0.983 2.059

480�16�16 0.981 2.625
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when the aspect ratio L /a=30. The nearly bulk or slightly
softened elastic response of fixed/free metal nanowires has
been observed both experimentally,21–23 and using MD
simulations.36

However, the bending modulus ratio for fixed/fixed nano-
wires shows a markedly different trend. In particular, the
bending modulus for the SCB nanowires increases dramati-
cally as compared to the BCB bending modulus with increas-
ing aspect ratio, with a value more than 2.5 times the BCB
value when the aspect ratio L /a=30. Similar increases in
Young’s modulus for fixed/fixed metal nanowires under
bending have been found recently by multiple
researchers;10,11 we further discuss our results in comparison
with analytic solutions for Young’s modulus that include sur-
face effects from both of those works10,11 in the next section.

To determine how the variations in the nanowire bending
modulus scale with size, we also present the results for the
CAR nanowires, which are summarized in Fig. 7 and Table
III. The trends for the fixed/free boundary conditions are
similar to that observed for the CCSA nanowires, where the
force vs displacement response for the SCB and BCB nano-
wires are nearly indistinguishable. However, again, the SCB
nanowires are observed in Fig. 7 to be elastically stiffer than
the BCB nanowires of the same size for the fixed/fixed
boundary conditions.

Similarly, the bending modulus of the fixed/free SCB
nanowires, as shown in Table III, are shown to be nearly
indistinguishable from the bending modulus of the BCB
nanowires; for all CAR geometries, the SCB bending modu-
lus is only 1% smaller than the BCB bending modulus. In

contrast, the bending modulus of the fixed/fixed SCB nano-
wires is considerably elevated as compared to the fixed/fixed
BCB nanowires. However, Table III also shows the manifes-
tation of how surface effects impact the nanowires with vary-
ing size for the CAR nanowires; as the cross-sectional size of
the nanowires is increased, the divergence between the SCB
and BCB bending moduli begins to diminish, which is ex-
pected due to the decrease in overall surface area to volume
with increasing nanowire size.

A. Discussion: Comparison to linear surface-elastic models
that account for surface stress and surface stiffness

We now discuss reasons for the disparity in boundary-
condition effects on the nanowire bending stiffness and
Young’s modulus. For fixed/fixed silver and lead nanowires,
similar increases in both the bending stiffness and Young’s
modulus have been observed experimentally by multiple
researchers.10,11 However, we note that the silver and lead
nanowires were likely not ideal, defect-free single crystals,
and did not have �100� axial orientations or �100� transverse
surface orientations; for example, the silver nanowires con-
sidered by Jing et al.11 were covered with a native oxide
layer. This is in contrast to the ideal, defect-free single crys-
tal �100� / �100� gold nanowires that were studied in this
work using the SCB model.

To shed insights into the strengths and limitations of
available analytic surface-elastic solutions, we compare the
SCB simulation results against those of Jing et al.,11 who
used the surface-elastic formulation of Gurtin and
Murdoch,40 which accounts for both surface stress �0 and
surface stiffness C0, to compare against their experimentally
obtained bending stiffness of fixed/fixed silver nanowires.
Taking Eq. 17 from Jing et al.,11 and modifying the geomet-
ric parameters to account for the fact that our nanowires have
a square, and not circular cross section, we obtain an expres-
sion for the bulk-normalized Young’s modulus as


Eeff

E
�

fixed/fixed
= 1 +

8C0�1 + 	2�
Ea

+
6L2�0�1 − 	�

5Ea3 , �3�

where Eeff is the effective Young’s modulus that accounts for
surface effects, L is the nanowire length, E is the bulk
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FIG. 7. �Color online� Force versus displacement relationship for CAR nanowires.

TABLE III. Normalized stiffness and Young’s modulus, both
expressed as a ratio of SCB/BCB, for CAR nanowires.

Geometry
kscb

kbcb
=

Escb

Ebcb
�fixed/free�

kscb

kbcb
=

Escb

Ebcb
�fixed/fixed�

120�15�15 0.992 1.177

144�18�18 0.990 1.145

168�21�21 0.990 1.122

192�24�24 0.990 1.106
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Young’s modulus, and a is the nanowire cross-sectional
length.

Because Jing et al.11 only studied the bending of fixed/
fixed nanowires, they did not derive an analytic solution for
the effective Young’s modulus of fixed/free nanowires. To
compare the SCB fixed/free results against the Jing solution,
we derive the Jing solution for fixed/free beams in the Ap-
pendix, while stating the final result here to be


Eeff

E
�

fixed/free
= 1 +

8C0�1 + 	2�
Ea

+
96L2�0�1 − 	�

5Ea3 . �4�

For Eqs. �3� and �4�, the parameters utilized were E
=36 GPa for �100� gold,50 �0=0.0981 eV /Å2,50 and C0=
−0.329 eV /Å2 �Ref. 59�; both the surface stress �0 and sur-
face stiffness C0 are for �100� gold surfaces, and constitute
relaxed values. We additionally note that, unlike the original
Jing model,11 we have accounted for transverse deformation
effects by including dependence upon Poisson’s ratio 	 in
Eqs. �3� and �4�, where 	=0.44 for bulk gold.

Due to the geometric factor L2 /a3 that is present in Eqs.
�3� and �4�, we plot in Fig. 8 the bulk-normalized bending
stiffness �or equivalently the bulk-normalized bending modu-
lus� for the fixed/fixed nanowires as obtained using the SCB
and two different Jing models against L2 /a3, where two dif-
ferent Jing models were considered for reasons now de-
scribed.

The �Jing: no 	, +C0� curve in Fig. 8 represents the Jing
solution as presented in Eq. 17 of Jing et al.;11 we refer to it
in the discussion below as the original Jing model. In that
work, transverse deformation was neglected, thus no depen-
dence on Poisson’s ratio 	 was obtained. Furthermore, shear
deformation was neglected in the Jing model by assuming
that the nanowires had an aspect ratio that exceeded 16. Fi-
nally, the surface stiffness C0 was taken to be positive in the
Jing work; this is in contrast to recent atomistic calculations
which have shown that C0 should in fact be negative for
most clean FCC metal surfaces,59,62 as well as for incoherent
FCC metal-metal interfaces,62 though we note that the silver

nanowires considered in the Jing models and experiments
were enclosed by an oxide layer.11

The �Jing:	, −C0� curve in Fig. 8 represents the solution
of Eq. �3�, where transverse deformation is accounted for,
and where the surface stiffness C0 is taken to be negative,
with values from Shenoy59 for �100� gold surfaces. We refer
to this as the modified Jing model in the discussion below.

We first observe that while the original Jing model gives
reasonable agreement with the SCB results for the CAR=8
nanowires in Fig. 8, the results differ significantly from the
SCB results for the CCSA nanowires in Fig. 8. However, if
transverse deformation is accounted for and the surface stiff-
ness C0 is taken to be negative, the modified Jing model
agrees very well with the SCB results for the CCSA nano-
wires in Fig. 8, with improved agreement with increasing
aspect ratio, or increasing L2 /a3. In contrast, the agreement
between the modified Jing model and the SCB results for the
CAR=8 geometries is not as good, for reasons discussed
below.

The fact that the SCB and modified Jing model have the
least accuracy for the smallest aspect ratios is manifested for
both small L2 /a3 for the CCSA nanowires, and also in Fig. 8
for the CAR=8 nanowires. However, because of the im-
proved agreement between the SCB and modified Jing model
for the CCSA nanowires with increasing aspect ratio, we also
calculated results in Fig. 9 for fixed/fixed CAR nanowires
where the aspect ratio was 16 and 24, rather than 8 as seen in
Fig. 8; the square cross-sectional length a was the same as
for the CAR=8 nanowires.

In doing so, we find in Fig. 9 very good agreement be-
tween the modified Jing model and the CAR nanowires with
aspect ratios of 16 and 24, even when the nanowire cross
section was the smallest considered in the present work, or
a=15 nm. This finding suggests that nonlinear elastic effects
resulting from the reduced nanowire cross-sectional size are
not the cause for the difference between the SCB and modi-
fied Jing model for the CAR=8 nanowires in Fig. 8, but
instead result from the well-known fact that continuum beam
theory loses accuracy for smaller aspect ratios, and due to the
neglect of shear deformation for short aspect ratio nanowires
in the Jing model.
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While there is relatively good agreement for fixed/fixed
nanowire bending stiffnesses between the SCB results and
the Jing analytic results, they are entirely different for the
fixed/free case, as illustrated in Fig. 10 for both nanowire
geometries considered. In particular, it is observed that while
the original Jing linear surface-elastic analytic solution in Eq.
�4� predicts a significant increase in normalized bending
stiffness for the fixed/free nanowires, the SCB solution pre-
dicts a very slight decrease for both CCSA and CAR geom-
etries. We additionally note that while the modified Jing
model reduces the difference as compared to the SCB results,
the modified Jing model still predicts that fixed/free nano-
wires are stiffer than the corresponding bulk material with
decreasing nanowire size.

We emphasize that recent atomistic calculations for the
bending properties of fixed/free �100� silver nanowires with
�100� surfaces by McDowell et al.36 also found an essentially
bulk response for nanowires with this boundary condition for
cross-sectional lengths larger than about 4 nm, while experi-
ments by Petrova et al.,21 Zijlstra et al.,22 and Li et al.23 on

free-standing gold nanowires also showed a slight decrease
in the nanowire Young’s modulus. We additionally note that
in both the Petrova21 and Zijlstra22 experimental studies, the
nanowires had a �100� axial orientation, similar to the SCB
nanowires studied in the present work.

The reason why the fixed/free SCB nanowires exhibit dif-
ferent elastic properties under bending than are predicted us-
ing the linear Jing surface-elastic solution in Eq. �4� is as
follows. Because of the surface stresses, the free end of the
nanowire compresses significantly �0.6% or more for the 16
nm cross section CCSA nanowires48�, which alters the elastic
properties of not only the nonlinearly elastic bulk stiffness,
but also the nonlinearly elastic surface stiffness, as the SCB
model is a nonlinear, finite deformation constitutive model.
In particular, compressive strain is known to lead to elastic
softening of bulk �100� FCC metal crystals;28,29 therefore,
the bulk-elastic softening which results from the surface-
stress-driven contraction clearly mitigates the effects of the
tensile surface stress for fixed/free nanowires, leading to the
slight overall decrease in elastic stiffness as seen in Fig. 10.
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In contrast, both the original and modified Jing surface-
elastic bending solutions in Eq. �4� neglect two critical
points. First, the compressive relaxation strain that is caused
by the surface stresses, and which leads to softening of the
�100� bulk28,29 is not accounted for. Second, even if surface-
stress-driven compressive strain was captured by Eq. �4�, due
to the fact that the solutions are based upon linear elasticity,
no changes in bulk or surface stiffness due to the deforma-
tion would be captured; as seen in Eq. �4�, the surface stiff-
ness C0 is a constant.

Therefore, because the Jing solution in Eq. �4� is based
upon the linear surface-elastic theory of Gurtin and
Murdoch,40 and thus depends on both the surface stress �0,
which is generally positive for FCC metals,59 and the surface
stiffness C0, which is generally negative for FCC metals,59 it
is realistic as it could possibly predict a decrease in effective
modulus due to the presence of the negative surface stiffness
C0. However, we have shown in the present work that the
stiffening effects due to the increase in nanowire length L
which results from the L2 /a3 term associated with the surface
stress �0 in Eq. �4� dominates any softening due to C0, and
thus a dramatic stiffening is also observed using the Jing
solution in Eq. �4� for fixed/free metal nanowires.

B. Discussion: Comparison to linear surface-elastic models
based solely on surface energy

Because there exists a class of analytic linear surface-
elastic solutions which depend only on the surface energy
�,10,42 and not the surface stress �0 and surface stiffness C0,
we briefly discuss the implications of the difference form in
surface-elastic solution here. One such solution is that given
by Cuenot et al.,10


 kscb

kbulk
� = 1 +

8L2��1 − 	�
5ED3 , �5�

where D is the diameter of the nanowire assuming a circular
cross section. It is easily seen that, since ��0 for FCC met-
als, the Cuenot analytic solution in Eq. �5� can only lead to
an increase in Young’s modulus with decreasing size. While
we also note that Eq. �5� was derived for fixed/fixed nano-
wires, a similar expression can be derived for fixed/free
nanowires, which in contrast to available experimental
studies21–23 and the present SCB results, again guarantees an
increase in Young’s modulus with decreasing size for fixed/
free nanowires.

To further illustrate the importance of nonlinear kinemat-
ics in accounting for deformation-induced changes due to
surface stresses on the bulk and surface stiffness of nano-
structures, we also discuss the analytic solution for nano-
beam bending of Guo and Zhao,42 where relaxation and de-
formation due to surface stresses are accounted for; however,
the surface and bulk constitutive response in that work42 is
linear elastic, so that no changes in material stiffness occur
due to the surface stress driven relaxation. In particular, their
Eq. 28 gives an expression for the effective Young’s modulus
accounting for surface relaxation effects as

Eeff = Ebulk +
�L2�1 − 	�

�N + 2nk�3a3 , �6�

where k is the surface relaxation parameter, which is a posi-
tive number chosen to vary between 0.85 and 1.15; we note
the similarity of this expression to Eq. �5�. However, because
the surface relaxation parameter k�0 and because the sur-
face energy ��0, the effective Young’s modulus described
by Eq. �6� must stiffen with decreasing nanowire cross-
sectional size a for both fixed/fixed and fixed/free boundary
conditions.

This is again in contrast, for fixed/free boundary condi-
tions, to the SCB results obtained in the present work, recent
atomistic simulations,36 and recent resonant experiments on
gold nanowires,21,22 all of which predict slight decreases in
�100� gold nanowire Young’s modulus for fixed/free or free-
standing boundary conditions.

It is worth emphasizing that while previous computational
studies of metal nanowires have found a reduced elastic
modulus due to surface stress effects,28,29,51 the present find-
ing that softening of fixed/free nanowires can occur despite
the presence of surface stresses has not been found by pre-
vious researchers,10,11,42,44,45 mainly due to the fact that the
analytic works have considered fixed/fixed boundary condi-
tions only.

The present results strongly indicate that a combination of
key factors, including boundary conditions and changes in
both surface- and bulk-elastic properties due to surface stress
driven relaxation, must be accounted for to accurately predict
the boundary-condition-dependent bending-derived elastic
properties of metal nanowires that are subject to surface
stresses.

C. Discussion: Comparison of nanowire Young’s modulus
from bending and resonance SCB calculations

We conclude our analysis by presenting a comparison be-
tween Young’s modulus of the metal nanowires as computed
in the present work using bending simulations, and SCB
resonance simulations of the nanowire Young’s modulus as
previously described by Park and Klein.51 An analysis of
Young’s modulus that might be expected from different load-
ing methods is critical due to the fact that experimentally,
bending and resonance of nanowires are the two most com-
mon methods to extract, by using continuum beam theory
relationships, Young’s modulus of the nanowires.

For the SCB resonance calculations, we first calculated
the resonant frequencies through solution of a standard finite
element eigenvalue problem, where the FEM stiffness matrix
is the relaxed stiffness matrix after deformation due to sur-
face stresses. After obtaining the resonant frequencies, the
nanowire Young’s modulus was obtained by relating the
resonant frequencies to Young’s modulus using standard con-
tinuum beam theory expressions.63

The comparison of the fixed/fixed CCSA and CAR nano-
wires are shown in Fig. 11. In all figures, we plot the bulk-
normalized Young’s modulus against the inverse length ratio
L2 /a3, in accordance with the analytic solutions for bending
in Eqs. �3� and �4�. As can be seen in Fig. 11, the bulk-
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normalized Young’s modulus for fixed/fixed boundary condi-
tions is found to be nearly identical whether bending or reso-
nance calculations are performed, for both CAR and CCSA
nanowires.

We show in Fig. 12 the comparison of the bulk-
normalized Young’s modulus for the fixed/free CCSA and
CAR nanowires. Again, very little discrepancy between
Young’s modulus obtained via resonance or via bending is
found, where both the SCB bending and resonance calcula-
tions predict a very slight decrease in nanowire Young’s
modulus as compared to the bulk value for both CAR and
CCSA geometries. We note again the agreement with recent
experimental results showing the same trend for fixed/free or
free standing gold nanowires.21–23 The present results collec-
tively indicate that surface stresses have a similar effect on
the elastic properties of nanowires as measured using either
resonance or bending testing techniques.

VII. CONCLUSIONS

In conclusion, we have utilized the surface Cauchy-Born
model to quantify the effects of surface stresses on the bend-

ing behavior and properties of �100� gold nanowires with
�100� transverse surfaces. By studying the bending behavior
and properties of nanowires accounting for both fixed/fixed
and fixed/free boundary conditions, we have found that: �1�
in agreement with available experimental data, Young’s
modulus of the nanowires varies depending on the boundary
condition; a distinct stiffening was found for fixed/fixed
boundary conditions,10,11 while a very slight softening was
found for fixed/free boundary conditions.21–23 �2� The
stresses in the nanowires resulting from surface stress-
induced deformation, for both boundary conditions, are sig-
nificantly larger than the stresses generated through bending
unless very large bending strains ��5%� are reached. �3� The
displacements along the nanowire cross section due to sur-
face stress induced deformation are also on the same order as
the deformations due to bending unless large ��1%� bending
strains are generated. �4� Because of the magnitude of the
stresses and displacements in the nanowires induced by sur-
face stresses in the absence of applied bending forces, con-
tinuum beam theories for bending do not appear to be appli-
cable in describing the stresses and displacements of
nanowires. �5� Analytic solutions in the literature that are

0 1 2 3 4 5 6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

L2/a3 (1/Angstroms)

E
sc

b
/E

b
u

lk

Modulus Comparison for Fixed/Fixed CCSA Nanowires

SCB Bending
SCB Resonance

0.25 0.3 0.35 0.4 0.45
1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

L2/a3 (1/Angstroms)

E
sc

b
/E

b
u

lk

Modulus Comparison for Fixed/Fixed CAR Nanowires

SCB Bending
SCB Resonance

(b)(a)

FIG. 11. �Color online� Comparison of nanowire Young’s modulus obtained from SCB bending and resonance calculations for fixed/fixed
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derived from linear surface-elastic theory were found to give
markedly different predictions for Young’s modulus of nano-
wires obtained from bending. While Young’s modulus ob-
tained from SCB simulations was found to be similar to ana-
lytic solutions for fixed/fixed nanowires, analytic solutions
for fixed/free nanowires predicted a significant increase in
Young’s modulus, while a slight decrease was found in both
experiments21–23 and also the SCB simulations. �6� It was
found that analytic surface-elastic solutions that are based
only on the surface energy �, such as that of Cuenot et al.10

and Guo and Zhao,42 must lead to a predicted stiffening of
the nanowire regardless of boundary condition due to the fact
that ��0. In contrast, analytic surface-elastic solutions such
as that of Jing et al.11 which incorporate surface stress and
stiffness following Gurtin and Murdoch,40 can theoretically
predict softening due to the presence of the negative surface
stiffness. However, we have shown that the stiffening effects
of the surface stress dominate the softening due to the sur-
face stiffness for the range of geometries considered in the
present work. �7� An additional shortcoming of linear
surface-elastic analytic solutions arises from their inability to
capture softening or stiffening of the nanowire bulk due to
deformation induced by surface stresses; these effects arise
naturally out of the finite deformation SCB model, and were
shown to be critical in predicting the slight softening of
fixed/free nanowires that is observed experimentally. �8� Sur-
face stress effects were found to have a similar effect on the
elastic properties of nanowires for both SCB bending and
resonance calculations.

ACKNOWLEDGMENTS

H.S.P. and G.Y. both acknowledge support of the NSF
through Grant No. CMMI–0750395; G.Y. also acknowledges
support from the University of Colorado. Both authors also
acknowledge the assistance of Patrick Klein with the surface
stress output in Tahoe, and the helpful comments of the re-
viewer.

APPENDIX: DERIVATION FOR FIXED/FREE JING
LINEAR SURFACE-ELASTIC EQUATIONS

We derive in this appendix the equivalent expression for
Eqs. 16 and 17 in Jing et al.11 for the case of fixed/free
nanowires. For fixed/free nanowires, because the extension
of the beam �L can be calculated to be

�L =
1

2
�

0

L

y��x�2dx =
3
2

5L
, �A1�

we obtain the strain of the neutral axis as

�0 =
3
2

5L2 , �A2�

where 
 is the deflection of the free end and L is the length of
the nanowire. The normal strain along the square cross sec-
tion of the beam is then

�xx = �0 +
y

�
, �A3�

where the radius of the curvature of the nanowire is

� =
L3

3
�x − L�
. �A4�

Similar to Eq. 13 in Jing et al.,11 the surface strain energy
can be written as, assuming a square nanowire cross section,

Us =� �
Surface


�0�xx +
1

2
C0�xx

2 �ds = 4aL�0�0 + 2aLC0�0
2

+
C0a3
2

L3 , �A5�

where �0 is the surface stress when �xx=0, a is the cross-
sectional length of the square cross section, and C0 is the
surface-elastic modulus.

Similar to Eq. 14 in Jing et al.,11 the bulk-elastic energy
Ub of the nanowire can be written as, again assuming a
square cross section,

Ub =� � �
Volume

1

2
E�xx

2 dv =
1

2
a2LE�0

2 +
a4E
2

8L3 , �A6�

where E is the bulk Young’s modulus. Then, similar to Eq.
15 in Jing et al.,11 the total elastic energy U of the homoge-
neous nanowire with an apparent Young’s modulus Eeff is
written as

U =� � �
Volume

1

2
Eeff�xx

2 dv =
1

2
a2LEeff�0

2 +
a4Eeff


2

8L3 ,

�A7�

By applying the relation U=Us+Ub, we obtain

Eeff = E +
8C0

a
+

12�0L2

5a3
1

8
+

9
2

50a2� −

18



a
�2

C0

25a
1

8
+

9
2

50a2� ,

�A8�

which is the equivalent expression to Eq. 16 in Jing et al.,11

though assuming a square cross section and fixed/free
boundary conditions. If we further assume that 
 /a�1, Eq.
�A8� can be written as


Eeff

E
�

fixed/free
= 1 +

8C0

aE
+

96L2�0

5a3E
. �A9�

When the Poisson effect due to transverse deformation is
accounted for, the nonzero strain components should include
�yy =−	�xx and �zz=−	�xx. This leads to a new surface strain
energy which takes the Poisson effect into account, and takes
the following form

Us = 4aL�1 − 	��0�0 + 2aL�1 + 	2�C0�0
2 +

C0a3�1 + 	2�
2

L3 .

�A10�

The bulk-elastic energy Ub and the total elastic energy U do
not change. By the same procedure, we can rewrite Eqs. �A8�
and �A9� as
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Eeff = E +
8�1 + 	2�C0

a
+

12�0�1 − 	�L2

5a3
1

8
+

9
2

50a2� −

18



a
�2

�1 + 	2�C0

25a
1

8
+

9
2

50a2� , �A11�

and


Eeff

E
�

fixed/free
= 1 +

8C0

aE
�1 + 	2� +

96L2�1 − 	��0

5a3E
. �A12�
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