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a b s t r a c t

In the present work, we have applied recently developed nonlinear multiscale finite element

techniques which account for nanoscale surface stress and surface elastic effects to investigate the

elastic properties of silicon nanowires as obtained through bending deformation. The numerical results

are used to clarify the factors underlying the current disconnect between atomistic simulations and

experiments as to the nanowire sizes at which deviation from bulk elastic properties due to surface

effects are observed. In particular, we demonstrate that when nanowires with aspect ratios (defined as

the axial length divided by the square cross sectional length) larger than about 15 are considered, the

elastic softening that has been observed experimentally for larger (i.e. 420 nm diameter) nanowires is

observed. In contrast, when smaller aspect ratios are considered, very little deviation from the bulk

elastic properties are observed, in agreement with existing atomistic calculations. Furthermore,

we demonstrate that the elastic softening is strongly boundary condition dependent, where fixed/

fixed silicon nanowires exhibit a strong aspect ratio-dependent softening, while little variation in the

elastic properties of fixed/free nanowires are observed. Comparisons are made with existing surface

elastic theories and experiments to bring further insights into the boundary condition dependence in

elastic properties.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Semiconducting nanowires have been intensely researched by
both the scientific and engineering communities over the past
decade [1,2]. One of the major reasons for the surge in interest for
nanowires has been due to their potential as the basic building
block for nanoelectromechanical systems (NEMS) [3]. Of semi-
conducting nanowires, silicon is one of the most important, due to
its optoelectronic properties [4], piezoresistivity [5], thermoelec-
tric potential [6,7], and other unique physical properties [1,3,8,9].

Due to the fact that nanowires have beam-like geometries and
because many of the potential NEMS applications require knowl-
edge of the nanowire elastic properties, there has been a recent
surge of interest in both experimental and theoretical techniques
to characterize the elastic properties of silicon nanowires. Silicon
nanowires are expected to have elastic properties, such as
Young’s modulus, that deviate from the bulk value due to
nanoscale surface stress [10] and surface elastic effects [11], both

of which arise due to the coordination number reduction [12] that
characterizes surface atoms as compared to those that lie within
the material bulk. The coordination number reduction implies
that surface atoms have a different stiffness than do bulk atoms,
since the stiffness is related to the number of bonding neighbors
an atom has. Furthermore, because surface atoms are not at
equilibrium unlike atoms in the bulk, the coordination number
reduction leads to a surface stress, which has an increasingly
important effect on the mechanical behavior and properties of
nanowires with decreasing size, as demonstrated in many
previous works [13–16]. Furthermore, this difference in stiffness
between surface and bulk atoms has an increasingly large effect
on the overall elastic properties of the nanowires with decreasing
nanowire size, or increasing surface area to volume ratio.

The elastic properties of silicon nanowires have been studied
experimentally using a variety of techniques, including resonance
[17], bending [18–23], and tension [24–26]. While these experi-
ments have considered the silicon nanowires with diameters
ranging from about 20–200 nm, and with different axial
(/110S, /111S) and surface orientations, most have reported a
decrease in Young’s modulus with decreasing diameter [9], with
the elastic softening being most strikingly observed in recent
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tension [24–26], resonance [17] and bending [22] investigations,
particularly when the nanowire diameter decreases below about
100 nm [9]. We note in contrast that others have reported no
change in elastic modulus with decreasing size [18].

Theoretically, atomistic simulations based upon classical
molecular dynamics (MD) or density functional theory (DFT) have
been utilized to determine the elastic properties of silicon
nanowires [11,27–31]. Similar to the experimental results, a
significant softening in the Young’s modulus of the silicon
nanowires has been reported in all MD investigations. However,
the MD simulations [11,29] and density functional studies [28,31]
show a large disparity as compared to the experimental results in
that they both predict that the Young’s modulus of the silicon
nanowires reaches the bulk value for nanowire diameters larger
than about 5–10 nm.

The preceding discussion makes clear that there exists a
substantial gap between computational predictions and experi-
mental measurements of the Young’s modulus of semiconducting
nanowires. In particular, while experimental measurements of
the silicon nanowire Young’s modulus deviates from the bulk
Young’s modulus at diameters smaller than about 100 nm, similar
deviations from the bulk Young’s modulus are not observed for
wire diameters larger than approximately 10 nm [9].

Therefore, it is the objective of the present work to shed
insights into the factors causing this gap between experimental
and computational predictions of the Young’s modulus of silicon
nanowires. To do so, we utilize the recently developed surface
Cauchy–Born (SCB) model [32–34], which is a multiscale,
nonlinear finite element (FE)-based computational model that
captures surface stress and surface elastic effects on the mechan-
ical behavior and properties of nanomaterials, to study the elastic
properties of /100S silicon nanowires with unreconstructed
{100} transverse surfaces as obtained through bending simula-
tions. In order to bridge the length scale gap between the
nanowire diameters that are studied experimentally and compu-
tationally, we study silicon nanowires that have cross sectional
dimensions ranging from 12 to 30 nm.

The simulations demonstrate that there are two important
considerations that can explain the disconnect between MD
simulations and experiment. First, we show that the elastic soft-
ening that is exhibited by the nanowires is strongly aspect ratio
dependent. In particular, an increase in the nanowire aspect ratio is
shown to significantly reduce the elastic stiffness of the nanowires
in agreement with existing experimental data [22,25,26], where
nanowires with cross sectional sizes of 30 nm are shown to be
significantly softer than the corresponding bulk material. Second,
we demonstrate that the elastic softening is strongly boundary
condition-dependent, as fixed/fixed nanowires are significantly
softer elastically than are fixed/free nanowires. Both results are
justified through comparisons with existing surface elastic solu-
tions for the effective modulus of silicon nanowires [35].

2. Bulk and surface Cauchy–Born models for silicon

The SCB model is an extension of the standard bulk Cauchy–
Born (BCB) model, which is a multiscale, nonlinear, finite defor-
mation constitutive relationship that enables the calculation of
continuum stress and stiffness directly from an underlying
interatomic potential energy. The BCB model has previously been
utilized by various authors to study the mechanical behavior and
properties of both metals [36], semiconductors [37–39], and
carbon-based nanostructures [40,41]. One key shortcoming of
the classical BCB model is that it does not admit surface effects,
since all material points are assumed to be part of an infinite,
periodic crystal.

Because of this, Park et al. have recently developed the SCB
model [32–34], which extends the BCB model such that the system
total energy includes contributions from not only the bulk, but also
the surface atoms. In doing so, they were able to develop multi-
scale, FE-based computational models that enabled the three-
dimensional solution of nanomechanical boundary value problems
while accounting for nanoscale surface stress and surface elastic
effects within a nonlinear, finite deformation framework.

The SCB model was previously developed for both face-cen-
tered-cubic (FCC) metals [32,33] and non-centrosymmetric
diamond cubic lattices such as silicon [34], and applied to nano-
mechanics and NEMS-related problems ranging from nanoscale
resonant mass sensing [42], thermomechanical coupling [43],
resonant frequencies, and elucidating the importance of nonlinear,
finite deformation kinematics on the resonant frequencies of both
FCC metal [44] and silicon nanowires [45,46], strain sensing [47],
bending of FCC metal nanowires [48], length/time scale bridging
for dynamic multiscale simulations [49], and electromechanical
coupling in surface-dominated nanostructures [50].

Because the details regarding the SCB model for silicon, its
differences from the standard BCB model, and its FE implementa-
tion have been described in previous publications [34,45], we give
an abbreviated explanation for the SCB model for silicon in the
present work.

2.1. Bulk Cauchy–Born model

In the present work, we utilize the T3 form of the Tersoff
potential [51] and the resulting parameters to describe both the
bulk and surface elastic properties of silicon. The T3 is named as
such due to the fact that two earlier versions of the Tersoff
potential suffered from various shortcomings, including not
predicting diamond as the ground state of silicon, inaccuracies
in the bulk elastic constants [52], and inaccurate modeling of the
{100} surfaces of silicon [10]. The T3 form of the Tersoff potential
can be written as

U ¼
1

2

X
ia j

Vij,

Vij ¼ fCðrijÞðfRðrijÞþbijfAðrijÞÞ, ð1Þ

where rij is the distance between atoms i and j, fC is a cut-off
function, which is used to ensure that the Tersoff potential is
effectively a nearest neighbor potential, fR is a repulsive function,
fA is an attractive function, and bij is the bond order function,
which is used to modify the bond strength depending on the
surrounding environment. The various functions all have analytic
forms, which are given as

fRðrijÞ ¼ A expð�lrijÞ, ð2Þ

fAðrijÞ ¼�B expð�mrijÞ, ð3Þ

bij ¼ ð1þb
nzn

ijÞ
�1=2n, ð4Þ

where

zij ¼
X

ka i,j

fCðrikÞgðyijkÞ ð5Þ

and

gðyijkÞ ¼ 1þ
c2

d2
�

c2

d2þðh�cos yijkÞ
2
: ð6Þ

Aside from yijk, which represents the angle between a triplet of
atoms i, j and k, the remaining constants in (2)–(6) are all
parameters of the Tersoff potential, whose values are given in
Table 1.
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The bond order function (4) is the part of the potential
that incorporates many-body effects through the yijk term in
Eqs. (5) and (6). Thus, for each bond i-j, the bond order term bij

depends on the number of neighboring atoms j-k that fall within a
certain cutoff radius fCðrikÞ from atom i.

The Tersoff potential was designed as a nearest neighbor
potential, due to the computational expense involved in evaluating
the bond order function bij for many atomic pairs. For a bulk atom,
this implies that it will have exactly four nearest neighbors in the
undeformed or initial configuration. Thus, the energetics of a
representative bulk atom in a silicon diamond cubic (DC) lattice
can be reproduced using a five-atom unit cell, following that as
introduced by Tang et al. [38], where the center atom A in
Fig. 1(B) represents the first FCC bravais lattice, and the surrounding
four atoms B represent the atoms on the second FCC bravais lattice.

The fact that the DC lattice is composed of two interpenetrat-
ing FCC lattices has important implications for formulating a BCB
model. The first is that the DC lattice structure is not centrosym-
metric, which means that the unit cell must contain more than a
single atom, and leads to additional computational expense in
modeling the larger unit cell. The second important fact is that the
two interpenetrating FCC lattices must be able to translate rigidly
with respect to each other, necessitating the introduction of an
internal degree of freedom N for each unit cell. The internal
degree of freedom N is associated with atom A in Fig. 1(B),
indicating that it can translate rigidly with respect to the B atoms
in the second bravais lattice. This internal degree of freedom N
serves an identical purpose as the shift vector that has been
introduced in the BCB modeling of carbon nanotubes [40,41].

Converting the T3 potential energy (1) into a strain energy
density F to account for a five atom bulk unit cell, we write,

following Tang et al. [38]

F¼
1

2O0

X5

j ¼ 2

V1jðr1jÞ, ð7Þ

where i¼1 in (7) because atom i is considered the center of the
unit cell, and the summation goes over the four nearest neighbor
bonds j¼2,3,4,5. The full expression for the strain energy density
F can be written as

F¼
1

2O0

X5

j ¼ 2

V1j ¼
1

2O0

X5

j ¼ 2

fcðr1jÞ

� A expð�lr1jÞ�B expð�mr1jÞ 1þbn
X

ka1,j

fcðr1kÞgðy1jkÞ

0
@

1
A

n0
@

1
A
�1=2n

0
B@

1
CA,

ð8Þ

where again the multibody effects of the bonding environment
are captured through the gðy1jkÞ term. The strain energy density in
(8) can be turned into an object that is useful for BCB modeling by
making the bond lengths r1j functions of the continuum deforma-
tion quantities and the internal degree of freedom as

r1j ¼ 9r1j9¼ 9FðR1jþNÞ9,j¼ 2;3,4;5 ð9Þ

where r1j is the deformed bond vector, R1j is the undeformed
bond vector between atoms 1 and j, N is the shift degree of
freedom that is necessary to capture rigid body translation
between the two interpenetrating FCC lattices that comprise a
silicon (diamond cubic) lattice, F is the deformation gradient from
nonlinear continuum mechanics, and C¼ FT F is the right Cauchy–
Green stretch tensor. The incorporation of the internal degrees of
freedom and writing the bond lengths in terms of F results in a
modified strain energy density function as

FðCÞ ¼ ~FðC,NðCÞÞ: ð10Þ

We can calculate the second Piola–Kirchoff (PK2) stress S as

1

2
S¼

@F
@C
¼
@ ~F
@C
þ
@ ~F
@N

@N
@C
: ð11Þ

To keep the crystal at an energy minimum, the internal degrees of
freedom are constrained to deform according to Nn, which leads
to the following relationship:

@ ~F
@Nn
¼ 0, ð12Þ

which reduces the expression for the PK2 stress in (11) to

S¼ 2
@ ~F
@C

: ð13Þ

We calculate the tangent modulus as

1

4
CIJKL ¼

@2F
@CKL@CIJ

¼
@2 ~F

@CKL@CIJ
þ

@2 ~F
@Xq@CIJ

@Xq

@CKL
þ
@ ~F
@Xp

@2Xp

@CKL@CIJ

þ
@2 ~F

@CKL@Xp
þ

@2 ~F
@Xq@Xp

@Xq

@CKL

 !
@Xp

@CIJ
: ð14Þ

(14) can be simplified by the knowledge that @N=@C needs to be
evaluated for the equilibrium preserving motion Nn, which leads
to the expression

@2 ~F
@CKL@Xn

p

þ
@2 ~F

@Xn

q@X
n

p

@Xn

q

@CKL
¼ 0: ð15Þ

Solving (15) gives

@Xn

q

@CKL
¼�

@2 ~F
@Xn

q@X
n

p

 !�1
@2 ~F

@CKL@Xn

p

: ð16Þ

Table 1
Tersoff T3 potential parameters [51].

Parameter Value

A 1830.8 eV

B 471.18 eV

l 2.4799 Å
�1

m 1.7322 Å
�1

b 1.1�10�6

c 100,390

d 16.217

h �0.59825

n 0.78734

RC 2.70 Å

Fig. 1. Illustration of the diamond cubic lattice structure of silicon. Black atoms

represent standard FCC unit cell atoms, while green atoms represent the inter-

penetrating FCC lattice. The drawn bonds connect atoms in FCC lattice B to atoms

in FCC lattice A. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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Using (16), the spatial tangent modulus can be expressed as

CIJKL ¼MIJKL�AIJpAKLqðD
�1
Þpq, ð17Þ

where

MIJKL ¼ 4
@2 ~F

@CIJ@CKL
,

Dpq ¼
@2 ~F

@Xn

p@X
n

q

,

AIJp ¼ 2
@2 ~F

@CIJ@Xn

p

: ð18Þ

2.2. Surface Cauchy–Born model

For the SCB model, we consider a nine-atom surface unit cell,
as previously described by Park and Klein [34], and as illustrated
in Fig. 2. The resulting strain energy density g for the nine-atom
surface unit cell can thus be written as

g¼ 1

G0

X
j ¼ 2;6

V1jðr1jÞþ
X

k ¼ 1;7,8;9

V6kðr6kÞþ
X

m ¼ 1;3,4;5

V2mðr2mÞ

0
@

1
A, ð19Þ

where G0 is the area per atom on the surface. Following (9), we
express the bond lengths for the surface unit cell as

r1j ¼ 9r1j9¼ 9FðR1jþNs
Þ9, j¼ 2;6,

r6k ¼ 9r6k9¼ 9FðR6kþNs
Þ9, k¼ 1;7,8;9,

r2m ¼ 9r2m9¼ 9FðR2mþNs
Þ9, m¼ 1;3,4;5: ð20Þ

Incorporating the bond lengths that have been modified by the
deformation gradient F and the internal surface degrees of free-
dom Ns in (20) creates a modified surface energy density ~gðCÞ
from (19), where the surface energy density has been modified
analogous to the procedure outlined previously for the bulk
energy density in (11) and (12) to enforce the energy minimizing
condition

@ ~g
@ ~N

s ¼ 0, ð21Þ

where ~N
s
, similar to the meaning in the bulk case in (12),

represents the deformation of the surface internal degrees of
freedom necessary to minimize the surface energy. Using the
modified surface energy density ~gðCÞ, we arrive at the expression

for the surface PK2 stress Ss
ðCÞ, where the superscript s here and

below indicates surface values

Ss
ðCÞ ¼ 2

@ ~gðCÞ
@C

: ð22Þ

We call the stress in (22) a surface stress because it is not a stress
in the traditional sense, i.e. the normalization factor is an area,
instead of a volume. Therefore, the units of the surface stress are
force/length, as opposed to the force/area units typically found for
bulk stresses. In addition, the surface stresses Ss

ðCÞ are 3�3
tensors with normal components which allow surface relaxation
due to undercoordinated atoms lying at material surfaces [32,33];
discussion of these points and a detailed comparison of the SCB
model to the classical Gurtin–Murdoch theory of surface elasticity
[53] will be given in a later section.

Similarly, the surface tangent modulus can be written as

Cs
IJKL ¼Ms

IJKL�As
IJpAs

KLqðD
�1
Þ
s
pq, ð23Þ

where

Ms
IJKL ¼ 4

@2 ~g
@Cs

IJ@Cs
KL

,

Ds
pq ¼

@2 ~g
@ ~N

s

p@
~N

s

q

,

As
IJp ¼ 2

@2 ~g
@Cs

IJ@
~N

s

p

: ð24Þ

2.3. Governing equilibrium finite element equations

Having defined both the bulk and surface energy densities
~FðCÞ and ~gðCÞ for the bulk and surface unit cells, we can

immediately write the total potential energy P of the system by
combining the bulk and surface energies while including the work
done by external loads T as

PðuÞ ¼
Z
Obulk

0

~FðCÞ dOþ
Z
G0

~gðCÞ dG�
Z
G0

ðT � uÞ dG: ð25Þ

In order to obtain a form suitable for FE calculations, we introduce
the standard discretization of the displacement field uðXÞ using FE
shape functions as

uðXÞ ¼
Xnn

I ¼ 1

NIðXÞuI , ð26Þ

where NI are the shape or interpolation functions, nn are the total
number of nodes in the discretized continuum, and uI are the
displacements of node I [54,55]. Substituting (19), (7) and (26)
into (25) and differentiating gives the minimizer of the potential
energy and also the FE nodal force balance [54]:

@P
@uI
¼

Z
Obulk

0

BT SFT dOþ
Z
G0

BT SsFT dG�
Z
G0

NIT dG, ð27Þ

where S is the PK2 stress due to the bulk strain energy, Ss is the
surface PK2 stress defined in (22), BT represents the derivative of
the strain with respect to uI , and where the displacements u can
be related to the right stretch tensor C by first noting that the
deformation gradient F¼ 1þdu=dX, and then taking the defini-
tion of the right stretch tensor C¼ FT F.

What has been accomplished in (27) is a systematic manner of
obtaining continuum stress measures by calculating the system
potential energy as a function of bulk and surface components. By
correctly calculating the system energy, standard continuum
mechanics relationships can be utilized to derive stress measures

Fig. 2. Illustration of the nine atom surface unit cell for the surface with a [010]

normal of a diamond cubic crystal. Black atoms represent FCC lattice A, while

green atoms represent the interpenetrating FCC lattice B. The drawn bonds

connect atoms in FCC lattice B to atoms in FCC lattice A. (For interpretation of

the references to color in this figure legend, the reader is referred to the web

version of this article.)
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for usage in FE computations. The salient feature of Eq. (27) is that
as the surface area to volume ratio becomes larger, the surface
area terms will dominate the energetic expression. Because the
stresses required for the FE internal forces are calculated by
differentiating the strain energy density, correctly accounting
for the surface energy will naturally lead to the correct forces
on surface nodes. In contrast, if the volume of the bulk material is
significantly larger than the surface area, then the potential
energy from the surface terms will be insignificant compared to
the volumetric potential energy, and the material will feel no
effect from the surface stresses. Thus, this model degenerates to a
BCB model as the length scale of the material increases.

2.3.1. Comparison to classical surface elasticity-based

computational models

It is worth noting that the approach and philosophy taken in
developing the SCB model is different from that taken by other
authors in capturing nanoscale surface effects on the mechanical
behavior and properties of nanomaterials within a computational,
FE-based framework. Most of these computational models [56–60]
are based upon a FE discretization of the governing surface elasticity
equations of Gurtin and Murdoch [53], where the surface stress is
written as, in the traditional thermodynamic definition [61,62]

t¼ t0þC0e, ð28Þ

where t is the surface stress, t0 is the residual (strain-independent)
portion of the surface stress, and C0e is the surface-elastic (strain-
dependent) part of the surface stress, where C0 is the (constant)
surface elastic stiffness. We note that the definition of surface stress
in (28) is based upon linear elastic, small deformation kinematics; a
review of surface elastic formulations within the Gurtin–Murdoch
context was recently performed by Wang et al. [63].

The thermodynamic interpretation of the surface stress t in
(28) is that of an excess quantity, i.e. a measure of the difference
as compared to the equivalent bulk quantity. The SCB surface
energy density gðCÞ in (19) differs from the conventional thermo-
dynamic definition of surface energy density in that it does not
represent the excess, or difference in energy density as compared
to a typical bulk atom; instead, it represents the actual potential
energy density of an atom lying at the surface of a nanostructure.

However, the definition of surface energy density utilized in the
present work in (19) is extremely favorable for nonlinear FE
calculations. In particular, in an actual MD simulation, the force
on a given atom, whether it lies within the bulk or on the surface, is
obtained by differentiating its actual potential energy, and not its
excess energy, i.e. the difference of potential energy as compared to
an ideal bulk atom. Therefore, the SCB definition of surface energy
density in (19) leads directly to a surface stress, and thus an
internal surface force in (27) that is similar in meaning to the force
obtained on a surface atom in an MD calculation.

Another important point of distinction is that the surface
stress t that results from the classical thermodynamic definition
in (28) is a 2�2 in-plane tensor. We note the recent work of Javili
and Steinmann [64,65], who also discretized a total energy similar
to (27) in the present work; however, the resulting surface stress
in that work was also a 2�2 in-plane tensor. In other words, the
component of the stress normal to the surface is zero. The
implication of this 2�2 in-plane surface stress tensor is that,
within the Gurtin–Murdoch formulation, the surface is assumed
to be formed at equilibrium. This assumption contains drawbacks
for many of the important surface-related physics and properties
that are observed in nanomaterials.

For example, surface stresses are known to cause extreme
lattice contractions leading to unexpected shape memory and
pseuedoelastic behavior in certain FCC metal nanowires that are
not observed in the corresponding bulk material [13–15]; surface

stresses can also cause sufficient compressive deformation in FCC
metal nanowires to induce nonlinear elastic stiffening and soft-
ening [66], while surface stresses cause FCC metals and silicon
nanostructures to exhibit different types of surface relaxations
[10]. Due to the 2�2 in-plane nature of the surface stress tensor
that emerges from Gurtin–Murdoch surface elasticity, it is unclear
whether such surface-stress-driven relaxation effects can be
captured within that framework.

In contrast, the surface stress that emerges from the SCB model
is 3�3 and includes the out of plane stress component. This
emerges naturally due to the fact that the deformation gradient, or
stretch tensor that is utilized in the SCB formulation at the surface
is also fully 3D. This is rationalized by the fact that surface atoms
should have an out of plane degree of freedom such that they can
relax normal to the free surface. Importantly, the SCB model has
been shown to accurately capture the surface-stress-driven relaxa-
tion in comparison to direct atomistic simulations for both FCC
metal [33] and semiconducting/silicon nanowires [34,45].

The SCB model has recently been utilized to demonstrate the
importance of finite deformation kinematics (in contrast to
the linear surface elasticity model shown in (28)) and to illustrate
the effect of the residual surface stress on the resonant frequen-
cies of both FCC metal and silicon nanowires if finite deformation
kinematics are considered [44,46]. The key finding was that if
finite deformation kinematics are considered, the strain-indepen-
dent surface stress t0 substantially alters the resonant frequencies
of the nanowires; however, the strain-dependent surface stress
C0e has a significant effect, one that can be comparable to or even
larger than the effect of the strain-independent surface stress
depending on the boundary condition, in shifting the resonant
frequencies of the nanowires as compared to the bulk material.

In addition to the arguments presented above for the need for
finite deformation kinematics with regard to surface stress effects
on the resonant frequencies, the importance of finite deformation
kinematics also emerges due to the surface-stress-driven relaxa-
tion phenomena discussed above. Specifically, because the
Gurtin–Murdoch theory is based upon linear elasticity for not
only the surface but also for the bulk, important phenomena such
as surface-stress-driven nonlinear elastic stiffening or softening
[66] of both the bulk and surface are not allowed to occur within
this framework. In contrast, because the SCB model is based upon
finite deformation kinematics, such effects are naturally captured.

3. Numerical examples

All numerical examples were performed on three-dimensional,
/100S single crystal silicon nanowires of length L, square cross
section of width a, and unreconstructed {100} transverse surfaces.
We considered nanowires of width a ranging from a¼12 to
a¼30 nm, and with aspect ratios of L/a¼ 8, 16, 24 and 32; the
geometries are summarized in Table 2. All simulations were
performed using the Sandia-developed simulation code Tahoe [67].

Table 2
Summary of nanowire geometries considered: constant aspect ratios of L/a¼8

(CAR1), L/a¼16 (CAR2), L/a¼24 (CAR3), L/a¼32 (CAR4). All dimensions are in

nanometers (nm) in the form L� a� a.

CAR1 CAR2 CAR3 CAR4

96�12�12 192�12�12 288�12�12 384�12�12

120�15�15 240�15�15 360�15�15 480�15�15

144�18�18 288�18�18 432�18�18 576�18�18

168�21�21 336�21�21 504�21�21 672�21�21

192�24�24 384�24�24 576�24�24 768�24�24

240�30�30 480�30�30 720�30�30 960�30�30
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Two different boundary conditions, fixed/fixed and fixed/free
ends, were considered; these are similar to those previously utilized
in experimental studies of nanowire bending [19,68,69]. All FE
simulations were performed using regular meshes of 8-node hex-
ahedral elements, where the number of elements ranged from 4096
to 256,000, while each element had a constant cube length of
1.5 nm. The T3 version of the Tersoff potential for silicon [51] was
utilized to calculate the bulk and surface stresses for the SCB model;
we note that for all geometries and boundary conditions both SCB
and BCB bending simulations were carried out, to determine the
effects of surface stresses on the elastic properties of silicon
nanowires as compared to the corresponding bulk material, i.e. the
BCB model which does not account for surface stress effects.

For both boundary conditions, the nanowires were first relaxed
to their minimum energy configurations before any external loading
was carried out; the nanowires are initially out of equilibrium due to
the surface stresses, and at equilibrium the compressive surface
stresses are balanced by tensile stresses that develop in the
nanowire bulk. We note that the effects of the bulk tensile stresses
are naturally captured by the nonlinear BCB model. Once the
minimum energy (deformed) configuration due to surface stresses
was determined, an external force was applied incrementally under
quasistatic loading, such that the nanowire could equilibrate due to
a given load increment before additional loading was applied. The
elastic properties and the bending stresses were determined after
applying bending strains of 8.5e�3%; this strain value is arbitrary
and was simply chosen to be sufficiently small such that nonlinear
elastic bending deformations would not be induced.

3.1. Nanowire elastic properties

The multiscale FE simulations of the bending of silicon
nanowires using either the SCB or BCB models enables us to
determine the bending stiffness k of the nanowires, which can be
directly calculated from

DF ¼ kDd, ð29Þ

where Dd is the increment in bending displacement that results
from the increment in applied force DF, and k is the spring
constant-like stiffness that relates the force and displacement.

The bending stiffness k is also a critical parameter because it
enables experimentalists to, using the assumptions of linear
elastic continuum beam theory, estimate the nanowire Young’s
modulus E using known solutions for fixed/fixed and fixed/free
beams, where the stiffness k¼ 192EI=L3 for a fixed/fixed beam
loaded at the beam center, and k¼ 3EI=L3 for a fixed/free beam
loaded at the free end.

The results for the bulk-normalized bending stiffness for all
geometries and both boundary conditions are summarized in
Figs. 3 and 4. We first discuss results for the fixed/free nanowires
in Fig. 3, where there are two trends of interest. First, we find that
for all cross sectional sizes, the fixed/free nanowires are slightly
stiffer elastically than the corresponding bulk material, with the
stiffness increase being between 3 and 5% larger than the bulk
material. This slight increase in effective stiffness occurs for fixed/
free boundary conditions because the compressive silicon surface
stresses [10] cause the nanowire to elongate axially. The fixed/
free nanowires therefore exists at equilibrium in a tensile state of
strain, which explains the slightly higher effective elastic proper-
ties as seen in Fig. 3 as compared to the bulk value. Second, we
note that the stiffness increase decreases with increasing cross
sectional size, which makes sense as larger nanowires should
have elastic properties that approach the bulk value.

As shown in Fig. 4, the results for the fixed/fixed silicon
nanowires are completely different. First, we notice that for
smaller aspect ratios, i.e. L/a¼8, all nanowires regardless of cross

sectional size have a stiffness that is essentially bulk-like.
However, once the aspect ratio is increased for a given nanowire
cross sectional size, a significant decrease in elastic stiffness (as
compared to the corresponding bulk material) is observed. For
example, the Young’s modulus for the a¼12 nm cross section
silicon nanowire with aspect ratio of 32 is nearly 50% smaller than
the bulk Young’s modulus. More significantly, this trend of a
decreasing Young’s modulus with increasing aspect ratio is
observed even for the largest cross sectional sizes we have
considered, i.e. for the a¼30 nm cross section nanowire, the
Young’s modulus is almost 20% smaller than the bulk Young’s
modulus when the aspect ratio is increased to 32.

These results have significant implications for the comparisons
that are made between computational (molecular dynamics) or
theoretical results with experimental results for nanowire elastic
properties. One reason is because the nanowires that are studied
experimentally typically have extremely large aspect ratios; for
example, in the recent work of Zhu et al. [26], the nanowires that
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were tensile loaded had aspect ratios ranging from 70 to 100.
Similarly, silicon nanowires that were recently studied experi-
mentally by Sadeghian et al. [22] and Zheng et al. [23] had aspect
ratios exceeding 100.

In contrast, the aspect ratios of the silicon nanowires that have
been studied computationally are relatively small, particularly in
comparison to those that have been studied experimentally. For
example, MD simulations of silicon nanowires by various authors
[29,30,70] considered silicon nanowires with aspect ratios
between 2 and 10. The significance of this finding is that the
elastic softening we have observed in Fig. 4 does not manifest
itself strongly until the nanowire aspect ratio exceeds about 15,
which may explain why previous MD simulations have reported
essentially bulk elastic properties for nanowires with cross sec-
tional sizes larger than about 10 nm.

For DFT calculations, periodic boundary conditions are often
considered in the axial direction to mimic an infinitely long nanowire.
However, these axial direction boundary conditions neglect surface
effects that occur on the two axial surfaces; furthermore, DFT
calculations typically use hydrogen bonds to passivate the silicon
transverse surfaces, which further mitigates any surface effects.

Because of the seeming importance of nanowire aspect ratio
on the effective elastic properties, we discuss this effect further by
comparing the obtained SCB results in Figs. 3 and 4 with a well-
known surface elastic theory that forms the basis for many of
such theories that have recently appeared in the literature [35].

3.2. Comparison to linear surface elastic model

We compare the SCB results in Figs. 3 and 4 to the analytic
surface elastic solution derived by He and Lilley [35], which
includes the effects of both surface stress and surface stiffness
on the effective Young’s modulus of nanowires; we also note the
similarity of the He and Lilley model to concurrent work by Wang
and Feng [71]. Specifically, the He and Lilley model is representa-
tive of many such theoretical surface elastic models because it
utilizes the surface elastic relationship of Gurtin and Murdoch
[53] for the surface constitutive model through the Young–
Laplace equations.

To utilize the He and Lilley model to compare against the SCB
results, numerical values for the surface stress and surface elastic
constants (surface stiffness) are required. Therefore, we utilize the
surface elastic constants derived from the Tersoff T3 potential,
which formed the basis for both the BCB and SCB models we have
utilized. These surface elastic constants for the T3 potential were
recently evaluated by Izumi et al. [72], who reported the follow-
ing values: t0 ¼�0:88 N/m and C0 ¼�8:07 N/m for unrecon-
structed {100} surfaces of silicon.

The analytic solutions for fixed/fixed and fixed/free nanowires
as derived by He and Lilley [35] can be written as

Eeff

E

� �
fixed=fixed

¼
H0L2

4Ea4
½1� 4 tanhð

ffiffiZp =4ÞffiffiZp �
, ð30Þ

and

Eeff

E

� �
fixed=free

¼
4H0L2

Ea4 coshð
ffiffiffiZp Þ½1� tanhð

ffiffiZp ÞffiffiZp �
, ð31Þ

where H0 ¼ 2at0, a is the square cross sectional length of the
nanowire, Z¼H0L2=ðEIÞn is the nondimensional surface effect factor
and ðEIÞn is the effective bending modulus which is defined as

ðEIÞn ¼ EI1þ
1

2
C0a3þ

1

6
C0a3, ð32Þ

where I1 ¼ a4=12 is the moment of inertia of the square cross
section.

We note that (30)–(32) suggest that the surface effects will
impact the elastic properties in a different manner depending
upon the boundary condition that is used to fix the nanowires.
This hypothesis was confirmed by both the analytic results of He
and Lilley [35], as well as by Park et al. using multiscale resonance
calculations [44,46].

We compare the results of the analytic models and the SCB
calculations for the fixed/fixed nanowires in Fig. 5. The trends
observed between the SCB results and the analytic solution are
similar. First, both show, for a cross sectional size, a decrease in
effective Young’s modulus with increasing nanowire length, or
increasing aspect ratio. Second, the agreement between the He
and Lilley predictions and the SCB predictions improve with an
increase in the nanowire cross sectional dimensions.

The similarities between the SCB and the analytic model with
regard to their strong aspect ratio and size-dependence arise from
the fact that the He and Lilley model has an effective dependence
on L2=a3, or the square of the aspect ratio divided by the nanowire
cross sectional length. Therefore, while the actual magnitudes of
the size and aspect ratio-dependence of the analytic model as
compared to the SCB results vary depending on the other scaling
factors that multiply or add to the L2=a3 term, both solutions
show the same trends, at least for the fixed/fixed case.
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While the SCB results are generally similar to the analytic
solution for the fixed/fixed boundary conditions, a much different
story is found for the fixed/free boundary conditions. As seen in
Fig. 6 for the fixed/free silicon nanowires with a constant cross
sectional lengths of 15 and 30 nm, the SCB predicts an essentially
size-independent, or constant effective Young’s modulus with
decreasing cross sectional size. However, the analytic solution
shows greatly divergent results.

Specifically, the He and Lilley solution predicts a significant
increase in effective Young’s modulus with increasing nanowire
length, or aspect ratio. While (30) and (31) show that the He and
Lilley model does predict a boundary condition dependence in the
effective elastic properties, the predicted stiffness increase of
nearly a factor of 14 for the 15 nm cross sectional silicon
nanowire has not been observed in any experimental or compu-
tational results to-date. For the nanowires with a 30 nm cross
sectional length, the He and Lilley solution still predicts a
significant stiffening with increasing nanowire length, though
the predicted increase is only a factor of 2.5 when the aspect ratio
increases to 32 (length¼960 nm).

The fact that the analytic surface elastic solution shows
reduced accuracy, or seemingly unphysical results for the fixed/

free boundary conditions can be explained as follows. As dis-
cussed earlier for fixed/free boundary conditions, the SCB model
allows the nanowire to elongate axially in order to alleviate the
compressive silicon surface stresses. The nanowire therefore
exists in a slightly tensile state of strain, which explains the
slightly higher effective elastic properties as seen in Fig. 3 as
compared to the bulk value.

In contrast, the He and Lilley analytic model does not account
for surface-stress-driven axial elongation. The major issue then is
that the He and Lilley model does not account for residual stresses
in the bulk of the nanowire that must develop in response to the
surface-stress-driven axial elongation of the fixed/free nanowires.
Furthermore, changes in the surface stress and surface elastic
properties that occur due to deformation that is induced by
surface stresses are not accounted for due to the constant nature
of the surface properties. Despite this, the He and Lilley model
predicts an elastic stiffening for the fixed/free boundary condi-
tion, albeit significantly higher than is predicted by the SCB
model. These results collectively indicate that while the surface
elastic models are useful in bringing physical insights to under-
standing how surface effects impact the elastic properties of
nanowires, they are not always accurate for all boundary condi-
tions, a finding that was previously made by Yun and Park [48].

4. Conclusions

In conclusion, we have utilized the recently developed multi-
scale, finite element-based surface Cauchy–Born model to bring
insights into the reasons underlying the disparity between the
elastic properties reported theoretically and experimentally for
silicon nanowires. Specifically, we have found that there is a
substantial difference in the aspect ratios of nanowires that have
been considered experimentally, where the nanowire aspect
ratios often exceed about 100, as compared to those that have
been considered theoretically or computationally, where the
nanowire aspect ratios are typically smaller than 10.

By using the surface Cauchy–Born model to study silicon
nanowires with cross sectional sizes between 12 and 30 nm, with
aspect ratios between 8 and 32 for each geometry, we have found
that significant elastic softening is observed, which is in line with
previous experimental studies. The significance of this finding is
that the elastic softening we have observed does not manifest
itself strongly until the nanowire aspect ratio exceeds about 15,
which may explain why previous MD simulations have reported
essentially bulk elastic properties for nanowires with cross
sectional sizes larger than about 10 nm.

By using the multiscale surface Cauchy–Born model, we have
also found significant elastic softening for silicon nanowires with
30 nm cross sectional sizes, which is far larger than the bulk
elastic properties that are reported using atomistic simulations
for short aspect ratio nanowires with cross sectional sizes smaller
than 10 nm. The strong aspect ratio dependence is also predicted
by existing analytic models, although the models can predict
unreasonably high or low effective Young’s modulus for certain
boundary conditions.
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