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Abstract

We present a multiscale, finite deformation formulation that accounts for surface stress effects on the coupled thermomechanical
behavior and properties of nanomaterials. The foundation of the work lies in the development of a multiscale surface Helmholtz free
energy, which is constructed through utilization of the surface Cauchy–Born hypothesis. By doing so, temperature-dependent surface
stress measures as well as a novel form of the heat equation are obtained directly from the surface free energy. The development of tem-
perature-dependent surface stresses distinguishes the present approach, as the method can be utilized to study the behavior of nanom-
aterials by capturing the size-dependent variations in the thermoelastic properties with decreasing nanostructure size. The coupled heat
and momentum equations are solved in 1D using a fully implicit, monolithic scheme, and show the importance of capturing surface stress
effects in accurately modeling the thermomechanical behavior of nanoscale materials.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Nanomaterials such as nanowires have been studied
intensely in recent years due to their unique and often supe-
rior mechanical, electrical and optical properties that arise
because of their nanometer size scale [1–3]. Because of
these unique properties, nanowires will be utilized as struc-
tural materials, bio-sensors, force and mass detectors, as
circuitry and interconnects in future nanoscale devices,
and as the basic building blocks of nanoelectromechanical
systems (NEMS) [4–9].

The physical properties of nanowires are fundamentally
different from those of the corresponding bulk materials
because of the dominant influence of nanoscale free sur-
faces; free surface effects impact all physical properties of
nanowires, including their mechanical [10], optical [11]
and thermal [12,13] properties. In the case of the thermal
and optical properties, the small cross-section of the nano-
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wires induces strong quantum confinement effects which
cause a large variance in those properties, for example
the coefficient of thermal expansion or the optical bandgap,
at nanometer length scales.

For mechanical and elastic properties, nanoscale free
surface effects such as surface stresses [14] arise because sur-
face atoms have a different bonding environment than
atoms that lie within the material bulk; therefore, the elastic
properties of surfaces differ from those of the bulk material,
and the effects of the difference between surface and bulk
elastic properties on the effective elastic properties of the
nanowire become magnified with decreasing structural size
and increasing surface area to volume ratio [10,15–20].

A large number of analytic models for the size-dependent
elastic properties of nanomaterials have been recently devel-
oped [21–28]. Generally, these are enhanced continuum
models that use a bulk/surface decomposition to study sur-
face effects with varying nanostructure size. Due to assump-
tions utilized to make the analyses tractable, the coupled
effects of geometry, surface area to volume ratio and system
size on the mechanical properties of nanowires have not
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been quantified, nor have surface stress effects arising
directly from atomistic principles been included in the anal-
yses, which are generally in two-dimensions.

Similarly, a large number of multiscale computational
models for studying the properties of nanomaterials
through various approaches to atomistic/continuum cou-
pling have been recently developed [29–38]. However, with
few exceptions [31,39–43], these methods are incapable of
capturing atomic-scale surface stress effects; furthermore,
the inclusion of thermal effects in multiscale modeling of
nanomaterials, with limited exceptions [44–47], has also
been rarely studied, while dissipative effects have also rarely
been considered [46].

In the present work, we develop a multiscale, finite
deformation formulation to study the coupled thermome-
chanical behavior of nanomaterials. The approach is
grounded through development of a multiscale Helmholtz
free energy, where the Helmholtz free energy is made mul-
tiscale through utilization of the Cauchy–Born hypothesis
[29]. The starting point of the approach is thus identical
to that of Xiao et al. [44,45], Liu and Li [46] and Tang
et al. [47,48], who developed a multiscale Helmholtz free
energy based on the Cauchy–Born approximation.

Upon development of the multiscale Helmholtz free
energy, the present work deviates from that of previous work
[44–46]. In particular, we incorporate thermally-dependent
nanoscale free surface effects into the standard energy equa-
tion through development of a surface Helmholtz free energy
function. By doing so, the resulting energy equation that
contains the size-dependent nanoscale thermal effects can
be coupled with a mechanical model, the surface Cauchy–
Born model of Park et al. [40,41], which results, for the first
time, in a coupled thermomechanical system of equations
that naturally captures the size-dependent variations in the
thermoelastic properties due to nanoscale free surface
effects. These free surface effects are captured because the
surface Helmholtz free energies accurately model the varia-
tion in the thermoelastic properties of surfaces atoms due
to their reduced number of bonding neighbors as compared
to bulk atoms, and lead to size-dependence in the elastic
modulus and coefficient of thermal expansion, which is crit-
ical in the analysis of nanomaterials [13].

We also solve the coupled heat and momentum equa-
tions using a fully implicit monolithic scheme [49] after dis-
cretization of the governing equations using a Galerkin
finite element approximation. A simple 1D numerical
example is presented that illustrates the importance of
accurately capturing nanoscale surface stress effects in
modeling the dynamic, thermomechanical behavior of
nanoscale materials.

2. Multiscale finite temperature modeling

2.1. Overview of Cauchy–Born theory

The Cauchy–Born (CB) hypothesis is based on Green
elastic theory, in which continuum stress and moduli are
derived assuming the existence of a strain energy density
function U. In order to satisfy material frame indifference,
the strain energy density U must be expressed as a function
of the right stretch tensor C, i.e. U(C), where C = FTF and
F is the continuum deformation gradient.

The foundation of CB modeling is based upon creating a
link between atomistics and continua; to enable this link, a
strain energy density can be constructed for crystalline
materials by considering the bonds in a representative vol-
ume of the crystal [29,50]. For the case of a centrosymmet-
ric crystal modeled using only pair interactions, the strain
energy density is defined in terms of the interatomic poten-
tial U as [50]

UðCÞ ¼ 1

2

1

X0

Xnb

i¼1

UðrðiÞðCÞÞ: ð1Þ

In (1), nb is the total number of bonds to a representative
bulk atom, X0 is the representative atomic volume in the
undeformed configuration and r(i) is the deformed bond
length, which follows the relationship

rðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
ðiÞ
0 � CR

ðiÞ
0

q
; ð2Þ

where R0 is the undeformed bond vector. From the strain
energy density given in (1), one can obtain standard contin-
uum stress measures such as the second Piola–Kirchoff
(PK2) stress (S) as

SðCÞ ¼ 2
oUðCÞ

oC
¼ 1

X0

Xnb

i¼1

U 0ðrðiÞÞ orðiÞ

oC

� �
: ð3Þ

Depending on the stress measure that is desired, the first
Piola–Kirchoff (PK1) stress P can be found through the
relationship P = SFT.

The strain energy density (1) is exact in describing the
change in energy per volume of a bulk atom in a correspond-
ing defect-free atomistic system subject to homogeneous
deformation. Furthermore, the continuum stress measure
in (3) is derived using atomistic information; thus the CB
hypothesis is said to be hierarchically multiscale in nature.
We note that the CB model can also be utilized in conjunc-
tion with more complicated interatomic interactions such as
embedded atom (EAM) potentials [29,41,42,51] for FCC
metals, Tersoff-type potentials for silicon [47,52,53], or car-
bon nanotubes [54,55].

There are two major assumptions underlying the CB
hypothesis. The first is that, as mentioned above, the
underlying atomistic system is constrained to deform
homogeneously according to the stretch tensor C. This
restriction can be relaxed to accommodate lattice defects
or material plasticity through development of the quas-
icontinuum, or non-local CB model [29]. The second major
assumption is that all points at which the Cauchy–Born
hypothesis is applied are assumed to lie in the bulk because
U(C) does not account for surface effects. Therefore, in
order to capture nanoscale free surface effects such as sur-
face stresses, we will, in a later section, augment the bulk
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energy density in (1) with a surface energy density which
accounts for the non-bulk potential energy that atoms lying
along the surfaces of a body exhibit [40–43].
2.2. Multiscale Helmholtz free energy

The goals of this section are to develop a heat equation
that is valid at the nanoscale along with continuum stress
measures that are temperature-dependent and derived from
atomistic principles. To derive both of these, we introduce
the Helmholtz free energy [56], which can be written as

A0 ¼ U þ kBT
X

j

ln 2 sinh
�hxj

2kBT

� �� �
; ð4Þ

where h is Planck’s constant, where �h ¼ h=2p, xj is the
vibrational frequency, j includes all the non-zero vibra-
tional modes of the system, T is the temperature, U is the
potential energy and kB is the Boltzmann coefficient.

Because of the computational expense required to eval-
uate the individual vibrational frequencies xj for all atoms
in the system, LeSar et al. developed the local harmonic
approximation (LHA) [57], in which the atomic vibrational
frequencies are decoupled from each other, leading to the
modified Helmholtz free energy

A0 ¼ U þ nkBT
Xna

I¼1

ln
hD1=2n

2pkBT

� �
; ð5Þ

where na is the total number of atoms in the system, n is the
number of degrees of freedom for each atom and D is the
determinant of the n � n dynamical matrix D, which can
be written as

Dij ¼
1

m
o2U

oxioxj
; ð6Þ

where m is the mass of atom i.
The LHA approximation is made during the calculation

of the dynamical matrix D; it is made by neglecting the off
diagonal terms that couple the vibrational modes of differ-
ent atoms in the system. Thus, the resulting diagonalization
of D makes the approximation harmonic, in that the modes
of vibration are independent of the neighboring atoms. The
LHA has been carefully evaluated by various researchers
[48,56,58–60]; generally, the consensus has been that the
LHA is valid up to about one half the melt temperature
for a given material, though that value can change depend-
ing on the anharmonicity of the interatomic potential.

At this point, the Helmholtz free energy in (5) is still
exclusively in terms of atomistic degrees of freedom; to
make the free energy multiscale, we apply the CB hypoth-
esis [29] following previous approaches [44–47] to arrive at
the multiscale Helmholtz free energy density

A0ðCÞ
X0

¼ UðCÞ þ nkBT
X0

Xna

I¼1

ln
hD1=2nðCÞ

2pkBT

� �
; ð7Þ
where U(C) is the strain energy density previously defined
in (1) and D is the determinant of the dynamical matrix
D. We can rewrite (7) as

q0W ¼ UðCÞ þ nkBqvT ln
hD1=2nðCÞ

2pkBT

� �
; ð8Þ

where q0 is the mass density in the undeformed configura-
tion, W is the Helmholtz free energy per unit mass and qv is
the number of atoms per unit volume in the undeformed
configuration.

The importance of deriving the multiscale Helmholtz
free energy in (8) is that we can, using standard continuum
mechanics arguments (for example in (3)), derive the stress
and modulus, as well as the governing energy equation.
2.3. Thermomechanical stress measures

In the present work, we utilize the Lennard–Jones (LJ)
6–12 potential energy and assume second nearest neighbor
atomic interactions; the LJ potential can be written as

UðrÞ ¼ 4�
r
r

� �12

� r
r

� �6
� �

; ð9Þ

where � has units of energy and r has units of length. Fur-
thermore, because the multiscale Helmholtz free energy in
(8) is written in terms of the stretch tensor C, we can derive
the PK2 stress S by following the relation:

S ¼ 2
oðq0WÞ

oC
: ð10Þ

In applying (10), we find that the PK2 stress has both
mechanical and thermal components. In particular, the
mechanical part of the PK2 stress Sm can be written as

Sm ¼ 2
oUðCÞ

oC
¼ 1

X0

Xnb

i¼1

U 0ðrðiÞÞ orðiÞ

oC

� �
; ð11Þ

while the thermal part of the PK2 stress is obtained by

St ¼ 2
o

oC
nkBqvT ln

hD1=2nðCÞ
2pkBT

� �� �
¼ kBqvT

D

oD
oC

: ð12Þ

Because they also began with a Helmholtz free energy
based on the CB model, similar expressions were derived
by Xiao et al. [44,45], Liu and Li [46] and Tang et al.
[47,48].
2.4. Heat equation derivation

Once the Helmholtz free energy is known as in (8), the
governing heat equation for coupled finite deformation
thermoelasticity can be derived using the Helmholtz free
energy following Parkus [61] as

� o

oX A
kJF �1

Ai F �1
Bi

oT
oX B

� �
¼ q0T

o
2W

oT oEAB

_EAB þ
o

2W

oT 2
_T

� �
;

ð13Þ
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where k is the thermal conductivity, J is the determinant of
F and EAB are the components of Green strain tensor E.
Enforcing mass conservation requires that qJ = q0 with q
being the mass density in the deformed configuration, while
all heat sources have been ignored. We note the assumption
of the Fourier heat conduction law in obtaining (13).

We introduce the relationships

_EAB ¼
1

2
ð _F iAF iB þ F iA

_F iBÞ; ð14Þ

and

o2W
oToEAB

_EAB ¼
1

2

o2W
oToF iA

F �1
Bi ð _F jAF jB þ F jA

_F jBÞ; ð15Þ

which allow us to rewrite (13) giving a general heat equa-
tion as

� o

oX A
kJF �1

Ai F �1
Bi

oT
oX B

� �

¼ q0T
1

2

o
2W

oToF iA
F �1

Bi ð _F jAF jB þ F jA
_F jBÞ þ

o
2W

oT 2
_T

� �
: ð16Þ

We make three comments here. First, no assumption as to
the form of the Helmholtz free energy W or the atomistic
potential energy U have been made in deriving (16). Sec-
ond, Eq. (16) has been in existence for many years, for
example Eq. (5.28) in Parkus [61]. Finally, thermoelastic
dissipation which occurs due to the change in mechanical
deformation, i.e. the _F terms in (16), are fully accounted
for.

Continuing forward with our derivation, we now make
assumptions as to the particular form of the Helmholtz free
energy and the potential energy by utilizing the LJ 6–12
potential described in (9) to rewrite (8) as

q0W ¼ W 1ðFÞ þ TW 2ðFÞ � C1T lnðT Þ; ð17Þ

where

W 1ðFÞ ¼ UðCÞ; ð18Þ
C1 ¼ nkBqv; ð19Þ

and

W 2ðFÞ ¼ C1 ln
hðDðFÞÞ1=2n

2pkB

 !
: ð20Þ

As a result, the general 3D form of the modified heat equa-
tion (16) can be written as, for the LJ 6–12 potential with
second nearest neighbor interactions

� o

oX A
kJF �1

Ai F �1
Bi

oT
oX B

� �

¼ 1

2
T

oW 2ðFÞ
oF iA

F �1
Bi þ

oW 2ðFÞ
oF iB

F �1
Ai

� �
F jB

_F jA � C1
_T : ð21Þ

In the present work, the focus is on developing our ideas
in 1D, so we now proceed to derive the specific 1D form of
(21).
2.5. Remarks on the assumption of linear thermoelasticity

At this juncture, due to the complex nature of the gen-
eral nonlinear heat equation given in (16), various simplifi-
cations can be made. A common assumption is that of a
linear thermoelastic constitutive relationship [49], for
example

S ¼ CE� Y a
1� m

HI; ð22Þ

where I is the identity tensor, C is the material tensor, E is
the Green strain tensor, Y is the Young’s modulus, m is the
Poisson’s ratio, a is the coefficient of thermal expansion
and H = T � T0. Using this, the modified form of the heat
equation in (16) is given as [49]

r � h ¼ Y a
1� m

T _eþ qCp
_T ; ð23Þ

where ė is the time derivative of the sum of the diagonal
components of E, Cp is the heat capacity, h is the heat flux
vector in the undeformed configuration, where the heat flux
vector h can be mapped back to the deformed configura-
tion via the relationship h = JF�1q, where q is the heat flux
vector in the deformed configuration.

Note that, due to the assumption of linearity in (22) and
(23), all the material properties are constant, and thus are
not size-dependent, which makes the assumption of linear-
ity invalid for the analysis of nanomaterials. Exceptions to
the assumption of material linearity can be found in the
work of Xiao et al. [44,45], Liu and Li [46] and Tang
et al. [47,48] through the development of the multiscale
Helmholtz free energy using the Cauchy–Born hypothesis.
However, we are aware of no work that has accounted for
surface effects and thus the size-dependence of the material
properties of nanomaterials.
2.6. 1D heat equation

In evaluating (7) for a 1D chain of atoms, X0 ¼ 1
4
ha3,

where ha is the undeformed bond length, qv ¼ 4
ha3, and

n = 1, which enables us to obtain an analytic expression
for the strain energy density U assuming the LJ 6–12 poten-
tial in (9) with second nearest neighbor atomic interactions
as

U ¼ 16�

ha3
1þ 1

212

� �
r12

ha12

1

F 12
� 1þ 1

26

� �
r6

ha6

1

F 6

� �
; ð24Þ

where F is the deformation gradient in 1D. The determi-
nant of the local dynamic matrix is also found analytically
to be

DðF Þ ¼ 8�

m
1þ 1

214

� �
156r12

ha14

1

F 14
� 1þ 1

28

� �
42r6

ha8

1

F 8

� �
:

ð25Þ

For simplicity, we introduce several constants
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A ¼ 1þ 1

212

� �
16�

ha3

r12

ha12
; ð26Þ

B ¼ � 1þ 1

26

� �
16�

ha3

r6

ha6
; ð27Þ

R ¼ 4kB

ha3
ln

h
2pkB

ð8�
m
Þ1=2

� �
; ð28Þ

D ¼ 1þ 1

214

� �
156r12

ha14
; ð29Þ

E ¼ � 1þ 1

28

� �
42r6

ha8
; ð30Þ

so that we can express the Helmholtz free energy density as

q0W ¼
A

F 12
þ B

F 6
þ RT � 4kB

ha3
T ln T

þ 4kB

ha3
T ln

D

F 14
þ E

F 8

� �1=2
 !

: ð31Þ

From (31), we obtain the PK1 stress as

P ¼ � 12A

F 13
� 6B

F 7
� 4kB

ha3

7Dþ 4E � F 6

D � F þ E � F 7

� �
T : ð32Þ

By substituting (31) into (13) and differentiating, we obtain
the following 1D heat equation:

4kB

ha3
_T � k

o

oX
1

F
oT
oX

� �
þ 4kB

ha3

7Dþ 4E � F 6

D � F þ E � F 7

� �
T _F ¼ 0:

ð33Þ
We emphasize again that Eq. (33) is important because: (1)
aside from the assumption of Fourier heat conduction, the
material properties are not constant, and depend on tem-
perature, size and deformation. (2) Eq. (33) is dissipative,
which is key to modeling thermoelastic dissipation in
nanomaterials [49,62,63]. (3) Eq. (33) is nonlinearly cou-
pled to the momentum equation through the deformation
gradient F as well as its time rate of change _F , and thus
is valid for finite deformations.

3. Coupled heat/momentum equations and weak forms

3.1. Momentum equation weak form

The 1D momentum equation is

q0€u ¼
dP m

dX
þ dP t

dX
; ð34Þ

where body forces and velocity-dependent damping have
been ignored, Pm is the mechanical part of the first Pio-
la–Kirchoff stress from (11) and Pt is the thermal part of
the first Piola–Kirchoff stress from (12), where P = SFT,
q0 is the material density in the undeformed configuration,
ü is the acceleration, and F is the deformation gradient.

To develop the total lagrangian weak form for the
momentum equation (34), we utilize the standard Galerkin
approximation for both the displacement u and the test
function du, i.e.
uðX ; tÞ ¼ NðX ÞuðtÞ; ð35Þ

and

duðX ; tÞ ¼ NðX ÞduðtÞ; ð36Þ

where X specifies the material, or Lagrangian coordinates.
Multiplying (34) by the test function du and integrating
over the domain givesZ

du
dP m

dX
þ dP t

dX
� q0€u

� �
dX ¼ 0: ð37Þ

Performing the standard integration by parts, we obtain
the final momentum equation weak form as

duT

Z
q0NTNdX

� �
€u ¼ duTNTN 0P t

� �
jC0

þ duTNTN 0P m

� �
jC0

� duT

Z
BTP m dX

� �

� duT

Z
BTP t dX

� �
; ð38Þ

where N0 is unit normal in the undeformed configuration
and B is the derivative of the shape function vector, i.e.
B ¼ dN

dX . We assume that the thermal portion of the external
force is zero, such that (38) can be written as

M€u ¼ fext
m � f int

m � f int
t : ð39Þ

Again, we emphasize the coupling to the temperature field
through the thermal part of the Piola–Kirchoff stress Pt.

3.2. Heat equation weak form

The 1D heat equation can be written in Lagrangian
form as

4kB

ha3
_T � k

o

oX
1

F
oT
oX

� �
þ 4kB

ha3

7Dþ 4E � F 6

D � F þ E � F 7

� �
T _F ¼ 0:

ð40Þ

To derive the weak form for (40), we make the standard FE
approximations for the temperature field:

T ðX; tÞ ¼ NðX ÞTðtÞ; ð41Þ

while the variations dT(X,t) follows the same interpolation
as the temperature field that is defined in (41).

We first multiply Eq. (40) by the thermal test function
dT, while integrating over the domain dX to giveZ

dT
4kB

ha3

� �
dT
dt

dX �
Z

dTk
o

oX
1

F
oT
oX

� �
dX

þ
Z

dT
4kB

ha3

� �
7Dþ 4E � F 6

D � F þ E � F 7

� �
T

dF
dt

dX ¼ 0: ð42Þ
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The final weak form for the heat equation can be written as

dTT

Z
4kB

ha3

� �
NTNdX

� �
_T

þ dTT

Z
k
F

� �
BTBdX

� �
T

þ dTT

Z
4kB

ha3

� �
7Dþ 4E � F 6

D � F þ E � F 7

� �
dF
dt

NTNdX
� �

T

¼ dTT k
F

� �
NTBN 0

� �
jC0

T; ð43Þ

or in more general form

MTT
_Tþ KTT Tþ KuT ð _F ÞT ¼ fext

T ; ð44Þ

where KuT is the thermomechanical coupling matrix.
4. Surface stress effects

4.1. A brief overview of surface stresses

Surface stresses constitute an important effect on the
behavior and properties of nanomaterials, and arise in
nanomaterials due to the fact that surface atoms have
fewer bonding neighbors than those that lie within the
material bulk. Consider the 1D atomic chain seen in
Fig. 1 in which each atom interacts with both its nearest
and next nearest neighbors. This interaction distance
implies that atoms designated as bulk in Fig. 1 all have four
bonding neighbors.

However, atoms at a free surface have fewer bonding
neighbors. In this case, atom s0 has only three bonding
neighbors, while atom s1 has only two. Because they have
fewer bonding neighbors, these atoms are not at equilib-
rium, and relax to lower their potential energies. Another
way of looking at this is that, in the initial undeformed con-
figuration, the bulk atoms will each experience a zero net
force. However, because the surface atoms do not have a
full complement of bonding neighbors, they will each expe-
rience a non-zero net force in the undeformed initial config-
uration, which causes them to relax to find the minimum
energy configuration of the 1D chain.

Surface stresses have been observed to be the cause for
unique, non-bulk behavior and properties that have been
observed in nanomaterials, including such phenomena as
phase transformations, shape memory and pseudoelastic
behavior [64–66]; further information on surface stress
effects, their theoretical underpinnings and their effects on
the behavior and properties of nanomaterials can be found
in the excellent reviews of Cammarata [14] and Haiss [67].
Fig. 1. Illustration of bulk and surface atoms in a 1D atomic chain.
4.2. 1D formulation

The incorporation of surface stress effects into the cou-
pled thermomechanical formulation occurs through the
modification of the Helmholtz free energy density in (8) fol-
lowing the surface Cauchy–Born (SCB) model developed
by Park et al. [40,41]. We write the Helmholtz free energy
in (8) corresponding to the 1D atomic chain visualized in
Fig. 1 and thus incorporating surface effects as

Atotal ¼
Z

Xbulk
0

q0Wbulk dX0 þ
Z

Cs0

q0Ws0 dCs0

þ
Z

Cs1

q0Ws1 dCs1; ð45Þ

where Atotal is the total Helmholtz free energy of the system
including both bulk and surface effects, Wbulk is defined in
(8), and the two surface Helmholtz free energy densities can
be written as

q0Ws0 ¼ cs0ðCÞ þ nkBqa0T ln
hD1=2n

s0 ðCÞ
2pkBT

 !
; ð46Þ

q0Ws1 ¼ cs1ðCÞ þ nkBqa1T ln
hD1=2n

s1 ðCÞ
2pkBT

 !
; ð47Þ

where qa is now the number of atoms per unit area of a gi-
ven surface layer. The surface energy densities can be writ-
ten as

cs0 ¼
1

2

1

Cs0
0

Xnbs0

i¼1

UðrðiÞðCÞÞ; ð48Þ

cs1 ¼
1

2

1

Cs1
0

Xnbs1

i¼1

UðrðiÞðCÞÞ; ð49Þ

where Cs0
0 is the representative area for an atom in sur-

face layer 0, Cs1
0 is the representative area for an atom in

surface layer 1, nbs0 is the number of bonds for an atom
in surface layer 0 and nbs1 is the number of bonds for an
atom in surface layer 1. Note that the surface energy den-
sities are normalized by an area instead of a volume; this is
necessary such that the surface energy densities scale cor-
rectly with changes in surface area to volume ratio as dic-
tated by (45). Further details on the surface energy
density and surface stresses can be found in Park et al. [40].

Upon obtaining the surface Helmholtz free energies in
(46) and (47), the thermal and mechanical portions of the
surface stress can be calculated as, following (10):

Ss1
m ¼ 2

ocs1ðCÞ
oC

¼ 1

Cs1
0

Xnbs1

i¼1

U 0ðrðiÞÞorðiÞ

oC

� �
; ð50Þ

Ss0
m ¼ 2

ocs0ðCÞ
oC

¼ 1

Cs0
0

Xnbs0

i¼1

U 0ðrðiÞÞorðiÞ

oC

� �
; ð51Þ

Ss1
t ¼ 2

o

oC
nkBqa1T ln

hD1=2n
s1 ðCÞ

2pkBT

 ! !
¼ kBqa1T

Ds1

oDs1

oC
; ð52Þ
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Ss0
t ¼ 2

o

oC
nkBqa0T ln

hD1=2n
s0 ðCÞ

2pkBT

 ! !
¼ kBqa0T

Ds0

oDs0

oC
: ð53Þ

As can be seen in (50)–(53), the bulk and surface atoms
have different values of mechanical stress due to the differ-
ence in the bulk energy density U(C) and the surface energy
density c(C). Furthermore, the bulk and surface atoms
have different values of thermal stress, which occur because
the values of the determinants of the surface dynamical
matrices Ds are different from those of the bulk atoms.
Both of these scenarios are physically reasonable and
meaningful, as these differences occur due to the fact that
atoms at the surfaces of a nanostructure have a different
bonding environment than do atoms in the bulk; these dif-
ferences lead to different stress carrying capabilities and
vibrational frequencies, leading to the difference in
mechanical and thermal stresses between bulk and surface
atoms.
4.3. Coupled equations including surface effects

The spatial decomposition of the bulk and non-bulk
regions of the domain that result due to the consideration
of surface stress effects is illustrated in Fig. 2. There, it is
shown that the bulk region now covers the majority of
the domain, except for a small region near the free surfaces.
The size of the non-bulk region, in this case 1.5ha, where ha

is the lattice spacing, is dictated by the range of the inter-
atomic potential, which in the present case extends to near-
est and second nearest neighbor interactions.

The 1D mechanical weak form is modified due to the
surface stresses to be

duT

Z
q0NTNdX

� �
€u ¼ duTNTN 0P t

� �
jC0

þ duTNTN 0P m

� �
jC0

� duT

Z X N 0

X 00

dN

dX

T

P m dX

 !

� duT

Z X N 0

X 00

dN

dX

T

P t dX

 !

� duT dNT

dX
ðP s0

m þ P s0
t Þ

� �
jCs0

� duT dNT

dX
ðP s1

m þ P s1
t Þ

� �
jCs1
: ð54Þ
Fig. 2. Spatial decomposition of bulk and surface r
Note that while the bulk stresses are integrated over a vol-
ume (or the length dX in 1D), the surface stresses are inte-
grated over an area. Because area degrades to a point in
1D, the integration is removed from the evaluation of the
surface stresses in (54). The modified equation of motion
can be written as

M€u ¼ fext
m � f int

m � f int
t � fs0

m � fs1
m � fs0

t � fs1
t ; ð55Þ

with the terms resulting from the surface stresses appearing
as force vectors in the final equation of motion; note that
these forces are non-zero only for elements that lie on the
surfaces of the nanostructure.

The incorporation of surface stress effects also has sim-
ilar effects on the weak form for the 1D heat equation,
which takes the form

dTT

Z X N 0

X 00

4kB

ha3

� �
NTNdX þ 2kB

ha2
NTNjCs0

þ 2kB

ha2
NTNjCs1

 !
_T

þ dTT

Z
k
F

� �
BTBdX

� �
T

þ dTT

Z X N 0

X 00

4kB

ha3

� �
7Dþ 4E � F 6

D � F þ E � F 7

� �
dF
dt

NTNdX

 !
T

þ dTT 2kB

ha2

� �
7D0 þ 4E0 � F 6

D0 � F þ E0 � F 7

� �
dF
dt

NTN

� �
jCs0

T

þ dTT 2kB

ha2

� �
7D1 þ 4E1 � F 6

D1 � F þ E1 � F 7

� �
dF
dt

NTN

� �
jCs1

T

¼ dTT k
F

� �
NTBN 0

� �
jC0

T;

ð56Þ
where

D0 ¼ 2þ 1

214

� �
156r12

ha14
;

D1 ¼ 1þ 1

214

� �
156r12

ha14
;

E0 ¼ � 2þ 1

28

� �
42r6

ha8
;

E1 ¼ � 1þ 1

28

� �
42r6

ha8
:

ð57Þ

Eq. (56) can be written in a more general form as

ðMTT þMs0
TT þMs1

TT Þ _Tþ KTT Tþ ðKuT þ Ks0
uT þ Ks1

uT ÞT ¼ fext
T :

ð58Þ
egions for FEM implementation of SCB model.
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5. Fully implicit monolithic solution algorithm

As derived above, the FE discretization of the heat
equation gives an equation of the form

MTT
_TþMsurf

TT
_Tþ KTT Tþ KuT ð _F ÞTþ Ksurf

uT T ¼ fext
T ; ð59Þ

where we have lumped all the surface stiffness terms in (58)
into Ksurf

uT and all the surface mass terms in (58) into Msurf
TT in

(59).
Due to the tight, nonlinear coupling to the momentum

equation in (59) through the KuT and Ksurf
uT terms, an exact

solution to the coupled system of equations in (59) and (55)
can be obtained through fully implicit monolithic solution
in which the mechanical and thermal degrees of freedom
are solved for simultaneously. One way to self-consistently
solve the tightly coupled thermomechanical problem is to
utilize the implicit, full Lagrangian approach of De and
Aluru [49]. Following that approach, the FE discretized
momentum equation (55) is solved using a Newmark
scheme with an implicit trapezoidal rule, giving:

M€utþDt ¼ f tþDt
ext � f tþDt

m � f tðTÞtþDt � f tþDt
surf ; ð60Þ

€utþDt ¼ 4

Dt2
ðutþDt � ut � _utDtÞ � €ut; ð61Þ

_utþDt ¼ _ut þ Dt
2
ð€ut þ €utþDtÞ; ð62Þ

where we have lumped all the forces due to surface stresses
in (55) into fsurf in (60). The temperature can then be up-
dated using a backward Euler integrator as

_TtþDt ¼ 1

Dt
ðTtþDt � TtÞ: ð63Þ

To self-consistently obtain the new displacement ut+Dt and
the new temperature Tt+Dt, we first obtain the mechanical
residual Rm and the thermal residual Rt as

Rmðu;TÞ ¼M€uþ f int
m þ f int

t ðTÞ þ fsurf � fext
m ; ð64Þ

Rtð _u;TÞ ¼MTT
_TþMsurf

TT
_Tþ KTT Tþ KuT Tþ Ksurf

uT T� fext
T :

ð65Þ

The matrix equation for the linearization of (64) and (65)
giving the self-consistent solutions to DT and Du are writ-
ten as

oRm

ou
oRm

oT

oRt

ou
oRt

oT

 !
Du

DT

� �
¼ �

Rmðu;TÞ
Rtð _u;TÞ

� �
: ð66Þ

Solving (66) iteratively until convergence of DT and Du

gives the updated displacement ut+Dt and temperature Tt+Dt

accounting for the nonlinear coupling between the two
variables of interest. After solving (66), the updated accel-
eration and velocity can be found from the new displace-
ment via (61) and (62), while the updated rate of change
of temperature can be found from (63).

Note that if surface stresses are not considered, the same
algorithm can be used, while setting fsurf = 0 in (60) and
Ksurf

uT and Msurf
TT to be zero in (59).
6. Numerical examples

6.1. Verification: expansion of 1D chain due to surface

stresses

We first verify the proposed approach by calculating the
expansion of a 1D, 201 atom fixed/free atomic chain due to
surface stresses, and in the absence of temperature. The
chain was fixed at the left end, while the right end was free
to move in response to both surface stresses. The equiva-
lent SCB model was composed of 20 linear finite elements;
for both simulations, the LJ potential parameters utilized
were as follows: r = 2.277 Å, � = 6.649 � 10�20 J. Second
nearest neighbor interactions were considered in the MD
calculation, while the same interaction distance was utilized
in setting up the bulk and surface unit cells for the SCB
calculation.

This example is presented to illustrate the accuracy of
the SCB model in capturing surface stresses within a
dynamic formulation, and to set the stage for later verifica-
tion examples illustrating that the inclusion of temperature,
through the formulation presented within this work, leads
to variations as compared to the 0 K case. It is first impor-
tant to emphasize that if only first nearest neighbors are
considered, the 1D chain does not deform because all
atoms are in force equilibrium.

However, when second nearest neighbors are consid-
ered, there is a force imbalance on the surface atoms, and
the 1D chain deforms accordingly. The comparison
between the SCB end node displacement at the end atom
displacement of the 1D chain are shown in Fig. 3; as can
be seen, the SCB result matches the MD result. Thus, sur-
face stress effects resulting from undercoordinated surface
atoms are captured accurately using the SCB formulation
in the absence of temperature.

6.2. Verification: thermal expansion of a 1D chain

We next verify that the proposed multiscale approach
can accurately capture thermal expansion of a 1D chain
at finite temperature. This is done by calculating the ther-
mal expansion of a 1D, 201 atom fixed/free atomic chain
that is identical to the example previously presented except
that non-zero temperatures are now included in the formu-
lation. The chain was fixed at the left end, while the right
end was free to move in response to both surface stresses
and thermal expansion. The equivalent SCB model was
composed of 20 linear finite elements; for both simulations,
the LJ potential parameters utilized were as follows:
r = 2.277 Å, � = 6.649 � 10�20 J. Second nearest neighbor
interactions were considered in the MD calculation, while
the same interaction distance was utilized in setting up
the bulk and surface unit cells for the SCB calculation.

The MD simulations were performed by constant tem-
perature through usage of the Berendsen thermostat [68];
the Berendsen thermostat is implemented by rewriting the
usual MD equation of motion in the following form:
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Fig. 3. Displacement time history of free end of 1D chain at 0 K.
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Fig. 4. Displacement time history of free end of 1D chain at 100 K.
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mi _vi ¼ F i þ mic
T 0

T
� 1

� �
vi; ð67Þ

where c is a friction coefficient, T0 is the target temperature
for the MD system, and T is the current temperature. In the
1D MD simulations, c was chosen to be 0:025

ffiffiffiffiffiffiffiffiffiffi
k=m

p
, or

2.5% of the atomic vibrational frequency. In the corre-
sponding SCB calculations, the temperature was assumed
to be uniform throughout the domain, and corresponded
to the T0 utilized for the MD calculations.

The results for the thermal expansion of the free end of
the chain are seen in Fig. 4 for the temperature at 100 K,
and in Fig. 5 for the 300 K case. There are common fea-
tures for both temperatures, for example the fact that the
MD results show greater numerical noise than the SCB
results; this is due to the fact that an implicit time integra-
tion algorithm, as described in the previous section, was
used for the SCB calculation while an explicit, velocity Ver-
let algorithm was used for the MD simulations.

Despite the numerical noise, it is clear that for both tem-
peratures, the vibrational period for the 1D chain is the
same for both the MD and SCB calculations, with the
peaks and valleys occurring at the same times in both sim-
ulations. Furthermore, for both temperatures, the SCB cal-
culation captures the amplitude of the chain expansion
(about 3.2 Å for the 100 K case, about 11 Å in the 300 K
case) correctly, while also correctly predicting the increase
in thermal expansion at the elevated temperature. We note
that the thermal expansion is not a linear function of tem-
perature due to the nonlinearity of the LJ potential, which
is captured in the SCB calculation. Finally, the SCB calcu-
lation also captures the increase in vibrational period at
elevated temperatures due to the larger thermal expansion
of the free end.
6.3. 1D thermoelastic vibration

We consider a 1D thermoelastic vibration problem,
which consists of the following boundary conditions [69]:
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Fig. 5. Displacement time history of free end of 1D chain at 300 K.
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Fig. 7. Displacement time history at bar quarter point for bulk and
surface Cauchy–Born systems.
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uð0; tÞ ¼ uðL; tÞ ¼ 0; T ð0; tÞ ¼ T ðL; tÞ ¼ 298; ð68Þ

along with the initial conditions

uðx; 0Þ ¼ 0; vðx; 0Þ ¼ sin
p
L
ðx� x0Þ

� �
; T ðx; 0Þ ¼ 298;

ð69Þ

where x0 is the coordinate of the left-hand side of the 1D
chain.

The problem considered amounts to a 1D bar that is
fixed at both ends and is prescribed a temperature of
298 K at the ends. The initial conditions are a constant
temperature in the bar interior of 298 K, and an initial
velocity in the form of a sine wave that has a maximum
value at the center of the bar x = L/2, and decays to zero
at the boundaries. The amplitude of the velocity sine wave
was chosen such that the maximum displacement ampli-
tude at the center of the 1D chain would be 0.025 Å, which
is 1% of the equilibrium lattice spacing; the maximum
strain of 1% at the chain center is designed to test the finite
deformation formulation presented in this work. The prob-
lem was solved both the bulk Cauchy–Born (BCB) model,
which neglects surface stress effects, as well as the current
finite temperature surface Cauchy–Born (SCB) model to
delineate the effects of surface stresses in a simple 1D
setting.

The LJ potential parameters utilized were as follows:
r = 2.277 Å, � = 6.649 � 10�20 J. These potential parame-
ters led to a domain of length L = 511.17 Å, which was dis-
cretized using 100 linear finite elements and solved using the
monolithic approach with a time step of Dt = 1.3 � 10�4 ns.

The BCB and SCB results for temperature and displace-
ment are given in Figs. 6–8. The displacement shown in
Fig. 6 is a time history of the displacement at the center
of the 1D bar, and we make the following observations.
First, note that the maximum magnitude of the displace-
ment is 0.025 Å, which is 1% of the lattice spacing, and thus
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constitutes a finite strain of 1% as previously discussed.
Second, there is a distinct pattern of decrease in the dis-
placement amplitude for both the BCB and SCB results
over time, which occurs due to the fact that the simulations
occurs at finite temperature; a value of 0 K for the temper-
ature would result in no observed dissipation. While the
BCB and SCB displacement histories at the bar center
match closely, we observe a slight elongation of the oscilla-
tion period for the SCB case.

A greater disparity between the BCB and SCB results is
observed when tracking the displacement time histories at
the quarter point of the bar, or x = L/4, as seen in
Fig. 7. First, it is noted that the displacement history for
the BCB case is symmetric with time, or oscillates about
zero displacement, with dissipation due to the thermoelas-
tic coupling. Interestingly, the surface stresses clearly cause
the SCB displacement history to be asymmetric as observed
in Fig. 7. This asymmetry is not observed in Fig. 6 because
the surface stress effects are cancelled at the bar center.

A comparison of the temperature at x = L/4 is shown in
Fig. 8. The BCB result is as expected; the temperature oscil-
lates around the prescribed initial value of 298 K as the
amplitude of the oscillations decrease due to the thermo-
elastic dissipation. However, the temperature profile for
the SCB case is clearly different. First, the temperature pro-
file is extremely rough. Second, the temperature increase
that is observed in the SCB case clearly exceeds that seen
in the BCB results.

The reason this occurs can be observed by analyzing the
temperature time history. Note that the SCB temperature
history initially tracks the BCB temperature history in
Fig. 8. However, around a time of 0.002 ns, the SCB tem-
perature history begins to diverge from the BCB tempera-
ture history, as a rapid temperature decrease is observed.
This decrease in temperature corresponds to the time at
which the deformation caused by the surface stresses has
propagated in from the surface and reached the point
x = L/4; this time of departure (0.002 ns) between the
BCB and SCB results is also observed in the displacement
history at x = L/4 in Fig. 7. Note that the time of maxi-
mum temperature (around 0.01 ns) in Fig. 8 occurs slightly
before the time of minimum displacement in Fig. 7 suggest-
ing the strong thermomechanical coupling that is present in
the system.

We make one final important observation regarding sur-
face stress effects on the thermomechanical behavior of
nanomaterials based on the results shown in Figs. 9–11,
which show the complete displacement and temperature
histories for the bar center point and quarter point respec-
tively. As can be seen in Fig. 9, the bar midpoint displace-
ment history does not appear to change appreciably if
surface stress effects are considered as the midpoint is a
point of symmetry for the bar.

In contrast, the bar quarter point displacement histories
are shown in Fig. 10, where a noticeable difference due to
surface stresses can be observed, as may have been pre-
dicted based on the results of Fig. 7. In the BCB case,
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Fig. 10. Complete displacement time history at bar quarter point for (top)
bulk and (bottom) surface Cauchy–Born systems.
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the displacement oscillations decay to an essentially zero
value over the course of time due to the thermomechanical-
ly-driven dissipation. In the SCB case, it is also observed
that the displacement oscillations do decay in magnitude;
however, the displacement of the bar quarter point in the
SCB case never decays to zero.

This unusual thermomechanical behavior results from
the fact that the surface stress effects are not diminished
because the surface atoms are perpetually undercoordinat-
ed; this occurs because the ends of the bar are both fixed in
this 1D example, and thus the surface atoms are not
allowed to move to find their minimum energy configura-
tions, as would occur if one of the ends of the bar were free
[41]. Because of this and because the finite temperature
causes thermal expansion of the bar, the final displace-
ments of the left side of the bar (x < L/2) are negative,
while the final displacements on the right side of the bar
(x > L/2) are positive.

The effect of the bar quarter point displacement on the
temperature is observed in Fig. 11; the temperature in both
the BCB and SCB cases decays to the initial value of 298 K
over the course of time. More interestingly, the thermal
oscillations are observed to decay slightly faster in the
SCB case. This occurs due to the fact that the mean dis-
placement of the bar quarter point is not zero, as it is in
the bulk case. This non-zero mean displacement thus drives
a stronger coupling to the thermal field, and results in the
increased dissipation in the SCB case as seen in Fig. 11.

7. Conclusion

In conclusion, we have presented a multiscale, finite
deformation formulation for the thermoelastic analysis of
nanomaterials. The analysis differs from previous appro-
aches in that surface stress effects on the dynamic, thermo-
elastic behavior are fully accounted for through an
extension to the previously developed surface Cauchy–Born
model. The key to the proposed approach is the develop-
ment of appropriate Helmholtz free energy representations
for the bulk and surface atoms, which leads naturally to
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the derivation of the modified momentum and heat equa-
tions that correctly account for surface stress effects and thus
size-dependence on the thermoelastic behavior and proper-
ties of nanomaterials.

We first verified the method by calculating the thermal
expansion of a fixed/free 1D atomic chain; the SCB model
correctly predicted the vibrational periods, and the increase
in thermal expansion at elevated temperatures. The SCB
model was then utilized to illustrate that surface stresses
have a strong impact on the thermomechanical behavior
of nanomaterials. The displacement and temperature pro-
files of a 1D bar including surface stress effects were
observed to vary markedly from that of a 1D bar modeled
as a bulk material neglecting surface effects. We note that
because the Lennard–Jones potential we have utilized in
this work greatly underpredicts the values of surface stres-
ses, the effects of surface stresses are expected to be signif-
icant in 3D nanosystems such as nanowires if realistic
interatomic potentials such as the embedded atom method
are utilized. We are currently pursuing this line of research.
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