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1. Introduction: motivation for long timescale  
atomistic simulations

In 1934, G I Taylor made what is now a historical specula-
tion: that atomistic defects called ‘dislocations’ are respon-
sible for the ductile ‘plastic’ deformation of metals [1]. Were 
the scientists of that time to have had recourse to molecu-
lar dynamics (MD) algorithms and modern computers, this 
would not have been mere speculation, and direct evidence of 

dislocation-mediated plasticity would be at hand. This argu-
ably artificial scenario underscores the power of conventional 
MD simulations to provide microscopic insights into material 
behavior that sometimes may not be easily discernible exper-
imentally4. Indeed, conventional MD, which simply consists 
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Abstract
Modeling physical phenomena with atomistic fidelity and at laboratory timescales is one of 
the holy grails of computational materials science. Conventional molecular dynamics (MD) 
simulations enable the elucidation of an astonishing array of phenomena inherent in the 
mechanical and chemical behavior of materials. However, conventional MD, with our current 
computational modalities, is incapable of resolving timescales longer than microseconds 
(at best). In this short review article, we briefly review a recently proposed approach—the 
so-called autonomous basin climbing (ABC) method—that in certain instances can provide 
valuable information on slow timescale processes. We provide a general summary of 
the principles underlying the ABC approach, with emphasis on recent methodological 
developments enabling the study of mechanically-driven processes at slow (experimental) 
strain rates and timescales. Specifically, we show that by combining a strong physical 
understanding of the underlying phenomena, kinetic Monte Carlo, transition state theory and 
minimum energy pathway methods, the ABC method has been found to be useful in a variety 
of mechanically-driven problems ranging from the prediction of creep-behavior in metals, 
constitutive laws for grain boundary sliding, void nucleation rates, diffusion in amorphous 
materials to protein unfolding. Aside from reviewing the basic ideas underlying this approach, 
we emphasize some of the key challenges encountered in our own personal research work and 
suggest future research avenues for exploration.
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4 While MD simulations are of importance in a diversity of disciplines, such 
as chemistry, physics and biology among others, we will primarily focus on 
materials with a further emphasis on mechanical aspects.
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of numerically solving the Newtonian equations of motion for 
a set of atoms, has unrivaled predictive power in providing a 
microscopic window to the chemical, mechanical and physi-
cal behavior of materials. MD can be used to elucidate atom-
istic structures and mechanisms that aid in the interpretation 
of the experiment, or even reveal behavior that is unavailable 
to test in a laboratory setting. Archival literature, and now 
even textbooks [2, 3], are rife with examples of the success 
achieved by MD in understanding physical phenomena from 
an atomistic viewpoint.

In principle, MD can be used to obtain any thermody-
namic or kinetic quantity, without introducing approximations 
beyond the assumption of classical mechanics and what may 
be involved in deriving an interatomic potential. However, 

when we integrate the equations of motion mV

r i
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d

d
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MD, the resolution of individual atomic vibrations requires an 
integration time-step of the order of femtoseconds (10−15 s).  
Even the fastest processors of our times can, at present, 
achieve total simulation times of microseconds (10−6 s). The 
time-integration is inherently sequential in nature, and accord-
ingly, direct parallelization does not help much in resolving 
the ‘timescale bottleneck’ of conventional MD6. The time-
scale limitation of conventional MD restricts its usefulness to 
phenomena that occur within micro to nanosecond timescales. 
Thus, many interesting physical processes that occur at much 
longer timescales than microseconds, i.e. creep, diffusion, 
protein unfolding, grain boundary dynamics, etc, are inacces-
sible by conventional MD.

In the past, researchers have attempted simulation accel-
eration via application of higher temperatures [4], high stress 
[5], and high strain rate [6]. Unfortunately, all these treat-
ments may conceal important behavior and mechanisms dur-
ing deformation. Accessing long timescales in atomistics has 
therefore become an intensely studied research topic within 
the past decade, and notable success has been achieved using 
different approaches. Complete success, however, has still 
been elusive, and all approaches have their respective strengths 
and limitations. Among many, the autonomous basin climbing 
(ABC) method is one of the attempts to circumvent the time-
scale issue of traditional MD [7, 8]. This algorithm was origi-
nally applied to the study of supercooled liquids, viscosity, 
and glass transition (more details can be found in a previous 
review [8]). In this review, we provide a general summary of 
principles underlying the ABC approach, with emphasis on 
recent methodological developments enabling the study of 
mechanically-driven processes at slow (experimental) strain 
rates. We first, very briefly, review other long timescale atom-
istic approaches in section 2. The central concept of the ABC 
approach and other associated methods are described in sec-
tion 3. In section 4, we survey a few representative case stud-
ies using ABC-based methods. Finally, based on our personal 
experience with the ABC approach, we outline some key 
issues, possible solutions and indicate some future directions.

2. A brief review of long timescale atomistic 
methods

Over the past few decades, there have been various attempts 
to extend the timescale of atomistic simulations beyond 
those that can be accessed with traditional MD. These 
approaches can be categorized into two groups. The first 
are those based on potential energy surface (PES) explora-
tion, where different techniques are developed to efficiently 
explore the PES.

The second set of approaches can generically be grouped 
as accelerated MD approaches. In this category, different 
techniques are utilized to accelerate traditional MD, thereby 
extending the timescales that can be accessed using molecular 
simulation. Because this review is a focus on one particular 
long timescale method (ABC), our objective here is to  provide 
a brief overview of representative methods in both catego-
ries, while noting that more comprehensive discussions on 
long timescale atomistic techniques can be found elsewhere,  
i.e. [9–11].

2.1. Potential energy surface exploration

A general approach to determining the evolution of an atomis-
tic system without explicitly solving and integrating Newton’s 
equations of motion is through PES exploration, where trans-
ition state theory (TST) provides a link between the time evo-
lution of the system to the topology of the underlying PES. 
We show in figure  1 a one-dimensional PES with different 
local energy minima that can be accessed by climbing over 
the various energetic barriers E i( )∆ . In general, the PES is 
3N-dimensional, where N is the number of atoms in the sys-
tem. Various approaches have been proposed that enable effi-
cient and accurate exploration of the 3N-dimensional PES.

One approach is metadynamics [12], which was originally 
developed as a free energy surface sampling technique, but 
has evolved to function as a general PES exploration tech-
nique that can resolve saddle points, local energy minima, 
and the connecting energetic barriers. Metadynamics works 
by adding Gaussian functions to the PES to force the sys-
tem out of local energy minima and into neighboring energy 
wells. In order to reduce the infinite number of configurations 
that can be explored on the PES, metadynamics utilizes so-
called ‘collective variables’, which are functions of the system 
configuration that are used to bias the PES search directions. 
Examples of such collective variables are coordination num-
bers, potential energies, box shapes, and path variables [13]. 
Metadynamics is limited in the number of atoms that can be 
modeled due to its need to store all previously used Gaussian 
functions, which is necessary to prevent the system from 
 re-exploring previously found potential energy basins.

Other approaches to finding neighboring local minima, 
and thus to explore the PES, include the activation–relaxation 
technique (ART) [14, 15] and the dimer method [16]. ART 
is a method of searching the saddle points associated with 
a selected basin on the PES. ART works by applying a per-
turbation to a relaxed system, which forces the system up a 
potential energy well to locate the saddle point. The system is 

5 V is the interatomic potential.
6 We remark, however, that parallelization has had a very positive impact on 
bridging lengths scales and thus now large system sizes consisting of  
billions of atoms can be handled.
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then set back to the relaxed energy minimum, at which point 
another perturbation is applied [14, 17]. ART has been used 
with success in various applications [18], but does exhibit 
shortcomings due to increasing computational expense for 
complex non-equilibrium processes, where it can encounter 
difficulties related to computational expense in finding a final, 
desired system configuration [19].

In the dimer method [16], one rotates a dimer (two replicas 
with constant distance) to find the lowest curvature mode of 
the PES at the current position. The approach subsequently 
forces the dimer to move up the PES along this direction to 
find the saddle point. Similar to ART, once a saddle point is 
reached, the system is set back to the original local energy 
minimum, and displaced along another random direction to 
find other saddle points.

The discrete path sampling method of Wales [20, 21] is 
another approach to PES exploration. This approach has been 
used, for example, for applications involving different aspects 
of protein folding and unfolding [22, 23]. The equilibrium 
mapping approach [24] uses branch-following and bifurcation 
algorithms to generate a diagram that contains information 
regarding the possible stable and unstable equilibrium states 
on the PES.

The approaches that have been discussed above all deal 
with finding a pathway between a specified initial configura-
tion, and a resulting, generally unprescribed final configura-
tion. Intrinsic to these PES exploration techniques is the fact 
that the concept of time, i.e. the real physical time a system 
would expend in going from the initial to the final configura-
tion, is not addressed. Instead, the output of these PES explo-
ration simulations is typically the energy barriers that have 
been crossed in going from the initial to the final configura-
tion. Thus, once the pathway between two configurations on 
the PES has been determined, connections to time t can be 
made through TST [25, 26], i.e.

∑ ν=
=

−∆ −( )/t exp ,
i

N
E k T

1

1i b (1)

where Ei∆  is the energy barrier separating energy minima 
i  −  1 and i, N is the total number of energy minima explored, 
ν is a frequency prefactor that is typically chosen to be on the 
order of 1012 s−1 for crystalline solids, T is the temperature 
and kb is the Boltzmann constant. Through this TST connec-
tion, one can calculate the amount of time needed for a spe-
cific energetic transition to occur, or for the system to reach a 
specific final configuration.

An important comment to make is that equation (1) makes 
clear that the calculated time t needed to cross an energy bar-
rier on the PES is dependent on the accuracy of the energy bar-
rier Ei∆ . In other words, errors in computing this value may 
lead to either under or over prediction of the barrier crossing 
time. Due to this feature, besides methods that explore the 
PES by finding neighboring energy minima, methods exist 
that enable accurate calculation of each energy barrier that is 
crossed during the PES exploration. Perhaps the most widely 
used approach to calculating the value of the energy barri-
ers by finding the minimum energy pathway (MEP) is the 
nudged elastic band method (NEB) [27]. One of the artifacts 
that plague ABC and other PES exploration methods is that 
often the saddle points are discovered in a sequence that is 
not physically relevant. Accordingly, it is usually necessary 
to employ a technique such as kinetic Monte Carlo (KMC). 
KMC can be applied to select the most probable path a sys-
tem may take, starting from some initial minimum state to 
the various minima identified during the ABC-based PES 
exploration.

2.2. Extended timescale atomistic methods

Apart from PES exploration techniques, extensive efforts have 
been dedicated to accelerating traditional MD. Much of this 
effort has been performed by Voter and co-workers, who have 
developed a range of approaches to extend the timescale in 
MD simulations, including parallel-replica dynamics [11], 
hyperdynamics [28], and temperature-accelerated dynamics 
[9, 29].

Figure 1. Schematic of a one-dimensional potential energy surface.

J. Phys. D: Appl. Phys. 49 (2016) 493002
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In parallel-replica dynamics, the system is first replicated 
on M processors. Each replica is evolved forward indepen-
dently using thermostatted MD. After a transition is detected 
in any of the replicas, the parallel simulations of all replicas 
are terminated, and the transition time can be calculated as 
the summation of the trajectory time over all replicas [30]. An 
extensive discussion of parallel-replica dynamics was recently 
given by Perez et al [11].

In hyperdynamics, a bias potential is added to the PES in the 
areas close to local minima. In this way, the height of the barriers 
between different states is reduced. A boost factor can be obtained 
due to the bias potential, which can be used to scale the trans-
ition time [28]. However, the bias potential must be zero at the  
dividing surfaces between two minima, and must also satisfy 
the constraint that the bias potential does not erroneously alter 
the dynamical evolution of the system, which introduces chal-
lenges and significant computational cost in effectively apply-
ing the bias potential in hyperdynamics applications. Because 
of this, other researchers have pursued different approaches to 
adding the bias potential. For example, in the accelerated MD 
approach, the bias potential is applied to the entire PES when 
the system potential energy is below a certain threshold, which 
has been used to study the configurational space of biological 
materials in an efficient manner [31]. Simple versions of hyper-
dynamics using local bias potentials, such as the bond-boost 
[32] and strain-boost [33] methods, have also been proposed 
to increase the efficiency and accuracy of hyperdynamic-type 
approaches, and recent approaches using hyperdynamics to 
study fracture in crystalline materials containing millions of 
atoms have recently been performed [34].

Temperature-accelerated dynamics accelerates the trans-
itions by increasing the temperature in the MD simulation, 
after which an extrapolation to the low-temperature regime 
is performed assuming Arrhenius behavior while filtering out 
the transitions that could not have occurred at the required 
temperature [29]. While large time boosts can be achieved, 
the temperature-accelerated dynamics method appears to be 
most effective for systems where the lowest energy barrier of 
interest is relatively high [11].

A final point we would like to make before discussing the 
ABC method is that many of the PES or accelerated MD meth-
ods, and applications of the methods, have originated to solve 
problems involving diffusion, chemical reactions, glass trans-
itions, etc, i.e. where mechanically-driven system evolution is 
not the primary physics of interest. In contrast, significantly 
fewer studies have been performed on mechanically-driven 
systems, i.e. when considering externally applied stresses or 
forces. It is this particular subset of long timescale applica-
tions that we intend to focus upon in this review.

3. ABC sampling method and ABC-based 
approaches

3.1. Original ABC PES sampling method

The ABC method was originally proposed by Yip et al in 2009 
[7, 35]. It has since been applied to a wide range of phenomena 
which require atomistic resolution at timescales far beyond 

those accessible via traditional MD, including trapped self-
interstitial atom clusters [36], strain-rate effects on yield stress 
[37], interstitial emission at grain boundaries [38], diffusion 
[19], and viscous relaxation [8]. The original ABC method, 
which is an activation–relaxation method used to explore and 
reconstruct the PES, is illustrated in figure 2. Specifically, the 
ABC PES sampling process involves the following steps:

 I. An initial structure at an energy minimum, i.e. Emin
1( )  in 

figure 2(a), is chosen.
 II. A penalty function ri( )φ  with a particular shape is added 

to the system, where i denotes the local penalty function 
number. The width and height of the penalty functions 
determines the sampling resolution of the PES; these 
parameters are often dependent on the specific physical 
problem of interest, as discussed later. The penalty func-
tions typically assume Gaussian-like shapes, i.e.

r r rexp 2 ,i
i
min

2 2( ) [ ( ) / ]φ ω σ= − − (2)

which are centered at the minimum energy configuration ri
min. 

The parameters ω and σ control the strength and width of the 
penalty function. These penalty functions modify the potential 
energy r( )Ψ  as

Er r r ,
i

p

i
1

( ) ( ) ( )∑φΨ = +
=

 (3)

where r are the 3N-dimensional atomic configurations and p is 
the total number of penalty functions.
 III. The system is relaxed using static energy minimization 

(i.e. using conjugate gradient energy minimization) to 
find the next minimum energy configuration ri

min
1+  on the 

penalty function-modified PES.
 IV. Repeat starting from step II until the target physical 

phenom enon is observed.

The above outline and figure  2 make clear that there are 
similarities and differences with metadynamics [12, 13]. For 
example, metadynamics was designed as a dynamic sam-
pling tool for exploring the free energy surface. In contrast, 
the ABC method is limited to the PES exploration method as 
static energy minimization is used to relax the system between 
penalty function increments. Another key difference is that the 
penalty functions in metadynamics are typically constrained 
by a choice of collective variables [12]; these are used because 
of the computational expense inherent in considering entropic 
effects, and also to reduce the dimensions of the free energy 
landscape search. In contrast, the ABC method does not uti-
lize collective variables, and thus represents an unconstrained 
PES search methodology. The practical implications of this 
difference are that the ABC method can, in theory, find all 
transitions on the PES, though not all of them may be impor-
tant or relevant, whereas metadynamics will only find those 
transitions that are of relevance to the collective variables.

The discussion above corresponds to the original ABC 
method of Kushima et al [7, 35]. Since 2009, multiple groups, 
including those involved with this review article, have identified 
and attempted to ameliorate deficiencies that have been identi-
fied with the basic ABC PES exploration method. These issues 

J. Phys. D: Appl. Phys. 49 (2016) 493002
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include: (1) computational expense related to storing penalty 
functions for PES exploration; (2) resolving the one-dimensional 
nature of the PES search that is intrinsic to the ABC method; 
(3) improving the accuracy of energy barriers obtained through 
the ABC PES exploration; (4) choosing the most probable ABC 
pathway or trajectory. We now describe each of these in detail.

3.2. Self-learning metabasin escape algorithm

One of the key computational bottlenecks facing the basic 
ABC method is the increasing number of penalty functions 
that must be stored as more and more of the PES is explored. 
The reason for this is illustrated in figures  2(b) and (c). 
Specifically, in figure  2(b), a sufficient number of penalty 
functions are applied such that the system exists in the energy 
well defined by the minimum Emin

1( ) , and into the neighboring 
energy well defined by the local minimum Emin

2( ) . Additional 
penalty functions are applied to the energy well with Emin

2( )  
until the system is able to exit to the neighboring energy well 
with minimum Emin

3( ) . In going from Emin
1( )  to Emin

3( ) , all of the 
penalty functions that are applied need to be stored, or else 
the system could fall back into the energy well containing the 
local minimum Emin

1( )  in going from Emin
2( )  to Emin

3( ) . In general, 
keeping previously applied penalty functions are necessary to 
prevent the system from falling into and re-exploring energy 
basins that have already been explored, though this means that 

the computational expense associated with the PES search 
increases dramatically as more of the PES is explored.

To mitigate this problem, Cao et al [40] formulated a self-
learning strategy to improve the PES exploration efficiency, 
termed the self-learning metabasin escape (SLME) method. 
Starting from an initial configuration that is a local energy 
minimum, a small random penalty function is applied to the 
system. Starting from the second penalty function, after adding 
each penalty function to the system, an overlap check is car-
ried out. If the distance between the center of the newly added 
penalty function and any of the previous penalty functions is 
less than the sum of their half-widths, these two penalty func-
tions will be replaced by a new, single penalty function with 
a height equal to the sum of the two penalty functions and a 
width of Wn, which can be written as [40]

W
s s W W

W Wmax
2

, , .n
i j i j

i j[ ]| |=
| − |+| |+| |

| | | | (4)

The center of the new penalty function will be shifted to

s
W s

W W

W s

W W

h

h h

h

h h
.n

i i i

i i j j

j j j

i i j j
=

| |
| | +| |

+
| |

| | +| |
 (5)

In the expressions above, s and h represent the center and the 
height of the penalty functions, respectively. The new penalty 
function will be treated as the current penalty function, and 
the previously identified two overlapping penalty functions 

Figure 2. Illustration of basin filling with penalty functions in the ABC method. (a) Penalty function 1φ  added to PES, with the center of 
the penalty functions at ri

min; ((b) and (c)) continue adding additional penalty functions to push the system to neighboring energy wells. 
Adapted from [39] with permission. Copyright 2014 Elsevier.

J. Phys. D: Appl. Phys. 49 (2016) 493002
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can then be removed from memory. Figure  3 demonstrates 
three typical cases of how overlapping penalty functions can 
be combined, i.e. (a) two largely overlapping penalty func-
tions; (b) two slightly overlapping penalty functions; (c) the 
combination of a larger and smaller penalty function. The 
SLME approach was shown to lead to significant decreases 
in computational expense, thus enablings the ABC method to 
find significantly more local energy minima on the PES in a 
shorter amount of time, as shown by Cao et al [40].

3.3. Extended ABC (ABC-E)

Another modification of the basic ABC algorithm was devel-
oped by Fan et  al [19] which is called the extended ABC 
(ABC-E). In ABC-E, after a new energy basin is identi-
fied, the system is sent back to the initial energy basin and 
a Gaussian penalty function is added on the saddle point to 
block the identified pathway. Penalty functions are then added 
until another saddle point is found, at which point the system 
is again placed back into the initial energy basin while the 
newly found saddle point is blocked with penalty functions. In 
this way, a series of distinct exits or transition pathways from 
a single energy basin can be identified. Identifying the exit 
pathways in order of the increasing activation barrier enables 
them to be sorted according to their relative importance and 
contribution to the process kinetics.

Thus, the ABC-E, and the ABC–SLME represent the 
two major algorithmic improvements to the original ABC 
method. Aside from the distinctions already discussed, 

another key difference between them is that ABC-E may 
provide more accurate estimations of transition time 
because it is not a one-dimensional PES searching tool 
[19], in contrast with the ABC–SLME. However, there 
exists a trade-off in computational expense, with ABC-E 
being more expensive than ABC–SLME. This, and the 
other choices discussed above, leads to trade-offs in terms 
of sampling rigor and computational efficiency, which are 
summarized in table 1.

3.4. Rate constants

Regardless of the specific ABC PES methodology that is uti-
lized, the output from an ABC PES search are all the energy 
barriers that are crossed, as well as all of the local energy 
minima. However, one shortcoming that is intrinsic to all of 
the discussed ABC methods is an overestimation of the energy 
barriers connecting neighboring energy minima, which thus 
causes an overestimation of the corresponding transition 
times. One approach to mitigating this issue is to utilize pen-
alty functions with smaller heights. However, this requires 
more penalty functions to exit a given local energy well, and 
thus results in significantly enhanced computational cost. 
Alternatively, minimum energy pathway strategies, which are 
superior in calculating energy barriers, such as the NEB [27] 
and finite temperature spring (FTS) [41, 42], can be adopted. 
After refining the energy barriers obtained from ABC using 
NEB or FTS, the transition times can be calculated through 
TST using equation (1).

Figure 3. (a) Two sequential fully overlapping penalty functions (green, dotted curve and blue, dashed curve) give a strong indication of 
inefficient sampling. The combined penalty function (red, solid curve) doubles the local curvature to assist the system in moving away 
from the stuck configuration. (b) Combination of two penalty functions (green, dotted and blue, dashed curves) at the maximal separation. 
The new penalty function (red, solid curve) has a half-width that is 3/2 times that of the original values. (c) The combination between two 
penalty functions of different sizes. (d) The original energy E and the penalty function φ with self-learned half-width w s ssad| |=| − | and 
height h E Es ssad( ) ( )= − . (e) Their augmented energy Ψ still has a dip at the original local minimum. (f) The augmented energy Ψ using 

a smaller half-width w s s2

3 sad| |= | − |, curves downwards, which is desirable for fast relaxations. Reprinted with permission from [40]. 
Copyright 2012 by the American Physical Society.
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However, the ABC PES searches are not deterministic in 
the sense that starting from the same local energy minimum 
on the PES, different ABC trajectories based on different 
parameters, namely the penalty function width σ and strength 
ω, may identify different minimum energy pathways, or dif-
ferent sequences of local energy minima. Thus, KMC [26] 
is used to ascertain the most probable pathway that the sys-
tem follows in going from one physical state to another. This 
method is used to calculate the corresponding possibilities for 
the system to cross every barrier (that has been identified) and 
to determine the most probable transition trajectory to cross 
the various energy barriers. With all the barrier information 
calculated from ABC or an MEP method like NEB, TST 
is then applied to estimate the rate constant for each event 
(crossing a barrier):

k E k Texpij b[ / ]∝ −∆ (6)

where kij is the rate constant for the single event, E∆  is the 
barrier energy calculated from ABC/MEP, kb is Boltzmann 
constant, and T is the temperature. The rate constant divided 

by the summation of the rate constants of all possible events 
from the current state yields the possibility of this single 
event. One of the possible transitions is randomly chosen 
based on the relative possibilities by comparing a randomly 
generated number in the range of (0,1] to an array of par-
tial summations of the possibilities, as illustrated in figure 4. 
Starting from the new state, with the corresponding rate con-
stants in the rate matrix, the same action is taken to find the 
next transition state.

We hope that the preceding discussion has demonstrated 
that the best strategy for extracting useful information from 
numerical simulations is to use several tools synergistically, 
while exploiting the advantages of each. In this respect, ABC 
is complementary to other techniques, such as MEP searches, 
harmonic transition state theory, and KMC, which are less 
efficient in PES sampling, but advanced in terms of detailed 
analysis of the transition pathways. We note that while sig-
nificant advances in ABC methodology have emerged, there 
still exist key limitations of the ABC method; these will be 
discussed in further detail in section 6.

Table 1. Comparison of different ABC PES sampling approaches.

Original ABC [7] ABC-E [19] ABC–SLME [40]

Simple  
description

Starting from current energy 
minimum, Gaussian penalty 
functions are added to push 
the system to climb out of 
the current energy well

After a new minimum is identified using ABC, 
a penalty function is added on the saddle point 
to block the identified path. The system is then 
set back to the initial state to find other possi-
ble transition pathways out of the energy basin

If the new added penalty 
function overlaps with ex-
isting ones, the overlapping 
penalty functions will be re-
placed by a new, larger one

NEB is used 
to accurately 
 calculate the en-
ergy barriers

Yes Yes No

Sampling effi-
ciency

Intermediate Slowest Fastest

Time estimation Less accurate More accurate Less accurate

Figure 4. KMC algorithm: Starting from the state i, a random number (r) in the range of (0,1] is compared with the partial summation of 
possibilities and it turns out P P P r P P P... ...j j1 2 1 1 2+ + + < < + + +− . Thus,the system will jump to state j. State j become the current 
state and the same action will be taken with state j. Reprinted from [43] with permission. Copyright 2015 Elsevier.

J. Phys. D: Appl. Phys. 49 (2016) 493002



Topical Review

8

4. ABC for slow strain rate and long timescale 
atomistic simulations

As previously discussed, in conjunction with other tech-
niques, the ABC method has shown substantial promise in 
studying atomistic processes that occur at long timescales. 
However, an important area that has, until recently, remained 
underdeveloped and underexplored is the specific question of 
how the ABC method of PES exploration can be utilized to 
study problems in which constant forces, or mechanical load-
ing, are applied, or where the strain rate ˙( )ε  that is applied to 
the system is on laboratory timescales, i.e. ˙ 10 2≈ −ε  s−1, and 
where the total amount of time that needs to be simulated is 
on the order of seconds or longer. In this section, we describe 
multiple methodologies that have recently emerged that use 
the ABC PES exploration method as an essential component 
to performing atomistic modeling at experimental strain rates 
and timescales.

4.1. Method 1: no mechanical loading or constant stress 
loading

The first approach can be used to study atomistic systems 
without loading or with constant stress [43, 44]:

 I. For a given set of boundary conditions, the ABC method 
is used to sample the PES—this determines the local 
energy minima of the PES as well as the saddle points, 
thus yielding the energy barriers between different local 
minima.

 II. The energy barriers obtained from ABC are approximate 
since the determination of the saddle points can be in 
error based on the resolution of the ABC sampling. 
Accordingly, to extract accurate energy barriers, NEB is 
applied to all of the pairs of local energy minima that are 
obtained from the ABC PES search.

 III. With the energy barriers in hand, KMC is used to find 
the most probable pathway between the different PES 
minima.

 IV. Following the pathway provided in step III, TST is used 
to calculate the transition time between two steps.

This approach uses the ABC method to find the pathway 
between the initial and final configurations, but exploits other 
techniques to get accurate energy barriers, and thus accurate 
transition times that are needed to move from one local energy 
minimum to another. This approach can thus be used to find 
processes that occur at timescales slower than those accessible 
to classical MD, but cannot be used for problems where the 
external loading is a prescribed strain rate.

4.2. Method 2: ABC–SLME method with constant clamping 
forces

A different set of mechanical boundary conditions that is 
important to model for long timescale simulations is that of a 
constant clamping force. Clamping forces are most often used 
in steered MD (SMD) studies of protein unfolding to mimic 
the experimental approach of applying forces to proteins via 

optical tweezers, or an atomic force microscope [45–49]. 
The methodology described here has been used in conjunc-
tion with the ABC–SLME approach to sampling the PES to 
study the mechanically-driven unfolding of various proteins 
[50–52].

 I. Apply constant force to specific parts of the molecular 
system, i.e. the termini of a protein.

 II. Apply a penalty function, followed by an energy minimi-
zation.

 III. Repeat step II until the protein has unfolded.

The reason this approach is able to access the exper-
imentally observed unfolding times of seconds is due to 
the continued application of penalty functions, where it is 
important to note the utility of the ABC–SLME approach 
here in enabling the PES exploration by significantly reduc-
ing the memory requirements for storing penalty functions 
in previously explored portions of the PES. In other words, 
for the small clamping forces that are applied (100 pN or 
smaller), the protein is likely to become stuck in various 
potential energy basins, and would remain stuck if it were 
not for the applied penalty functions. The penalty functions 
which are continuously applied to boost the system out of 
energy basins can be interpreted as thermal activation that 
assists the mechanical (clamping) force in enabling the sys-
tem to escape from energy wells that it would otherwise 
become stuck in. The heights of all energy barriers Ei∆  that 
are crossed over can be used in equation (1) to determine 
the total unfolding time.

4.3. Method 3: ABC-E combined with on-the-fly KMC

The ABC-E method was designed for problems, such as diffu-
sion, in which there are multiple competing physical processes, 
and thus energetic pathways on the PES, that are connected 
to the same energetic configuration. The ABC-E method can 
be applied to identify the competing states around the initial 
state [19]. The simulation steps are shown in the flowchart in 
 figure 5, where the detailed description is as follows:

 I. Starting from a local energy minimum, ABC is used to 
find a neighboring energy well.

 II. Record the newly found state, and apply a large penalty 
function on the saddle point and set the system back to 
the previous minimum energy configuration just prior to 
crossing the saddle point.

 III. Continue ABC to find another connected energy basin.
 IV. Judge whether a new state or a previously visited state 

is found: (a) if it is a new state, calculate the possibility 

factor T( )α  (the possibility factor T
exp

exp

E

k T

N
Ei
k T

new

b

states
obs

obs

b

( )
( ) ⎛

⎝
⎜

⎞
⎠
⎟

α =
−

∑
−

; 

in this equation, Enew is the energy of a newly identified 
barrier and Ei

obs is the energy of the observed barriers), if 
T T 0( ) ( )α α< , stop sampling, otherwise go to step II; (b) 

if it is a previously visited state, put the system back to the 
previous state and add an additional blocking penalty on 
the saddle point. Restart step IV.
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 V. Apply NEB to refine all the saddle points identified in the 
ABC sampling.

 VI. Apply KMC to select one final transition state from all 
the states identified in ABC.

 VII. Starting from the selected state, go back to step I.

4.4. Method 4: Controlling strain rate via connection to the 
PES

In many problems in which the mechanical properties of 
atomistic systems are studied, a constant, but unrealistically 
large strain rate is applied [53–55]. To incorporate the effects 
of strain rate, Cao et al [39, 56, 57] proposed an approach 
coupling the ABC–SLME method with Monte Carlo, as 

illustrated in figure  6. In this approach, the connection 
between the strain rate and the energy barriers crossed on 
the PES is obtained by utilizing an expression for strain rate 
[58] that was derived from transition state theory assuming 
constant temperature:

( )
γ

µ
=

Ω
−

−∗⎡
⎣⎢

⎤
⎦⎥

nv
k T Q T TS

k T
˙ exp ,0

b c

b
 (7)

where n is the number of independent nucleation sites, v0 is 
the attempt frequency, μ is the shear modulus, Ω is the activa-
tion volume, Q* is the energy barrier and Sc is the activation 
configurational entropy, which has previously been calcu-
lated, for example, for crystalline FCC metals for the specific 
case of dislocation nucleation [59].

Figure 5. Algorithmic flowchart of method 3 (ABC-E) [19].

J. Phys. D: Appl. Phys. 49 (2016) 493002
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Then, by defining a characteristic temperature-dependent 

prefactor γ =
µΩ

T˙ expk Tnv S

k0
b 0 c

b( )( )  [60, 61], we can rewrite equa-

tion (7) as

γ γ= −
∗⎡

⎣⎢
⎤
⎦⎥

Q T

k T
˙ ˙ exp .0

b

( )
 (8)

Equation (8) thus plays the essential role of being a physical 
link between the SLME trajectories and the strain rates from 
MD to experimental values, which depends on only a single 
unknown temperature-dependent prefactor T0̇( )γ .

The connection between energy barriers, the PES, and ena-
bling the study of atomistic systems at slow, constant strain 
rates is illustrated in figure 6, and its connection to the way 
in which deformation is applied experimentally to structures 
can be understood as follows. Experimentally, constant strain 
rate loading is performed by deforming the structure, and then 
waiting a certain amount of time before applying the next load 
increment, during which the system is able to relax. For high 
strain rate loading, the relaxation time given to the system 
before another deformation increment is applied is minimal. 
Thus, the system has only a small amount of time to explore 
its PES, implying that it will only be able to cross small 
energy barriers Q* between each deformation increment. In 
contrast, for slow strain rate loading, the system has more time 
to explore its PES between loading increments, and thus may 
be able to climb over larger energy barriers Q*. The ability 
to cross over large energy barriers Q*, and thus access slow, 
experimentally-relevant strain rates, is made possible by the 
development of the ABC–SLME algorithm for efficient PES 
exploration [40].

The method can be detailed, as illustrated in figure 6 as:

 I. Begin from a relaxed structure with strain nγ .
 II. Apply a strain increment γ∆ .
 III. Minimize the structure using conjugate gradient energy 

minimization while keeping the strain fixed. The system 
is then in the state n 1

cgγ + .

 IV. Starting from the minimized state n 1
cgγ + , ABC–SLME is 

used to determine the potential energy tree structure, as 
shown in figure 6. The tree structure is truncated to only 
enable energetic transitions below Q*, as shown in the 
green box in figure 6.

 V. A Monte Carlo algorithm is employed to find the most 
likely equilibrium configuration ( n 1γ + ), at which point the 
algorithm repeats itself until a desired amount of strain 
has been applied to the system.

It is important to note that the PES is strain-dependent, and 
thus changes after each strain increment is applied. This is 
captured in this method, as shown in figure 6, by repeating the 
PES exploration after each new strain increment is applied.

4.5. Method 5: strict strain-rate controlled ABC

An alternate approach to applying a constant strain rate to an 
atomistic system was recently proposed by Fan et al [62]. The 
steps in this approach, as outlined in figure 7, are:

 I. Choose a desired strain rate(ε̇).
 II. For a given strain ( iε ), the current PES is sampled by ABC 

and a neighboring energy basin is identified.
 III. NEB is then used to accurately calculate the energy bar-

rier connecting the two energy wells.
 IV. TST is used to calculate the transition time ( ti∆ ) between 

the initial and final states using equation (1).
 V. The transition time (calculated in the previous step via 

equation (1)) is multiplied by the prescribed strain rate ε̇ 
to find the corresponding strain increment t˙i i1ε ε∆ = ∆+ .

 VI. Apply the strain increment ( i i i1 1ε ε ε= ∆ ++ + ) to the 
system and go back to step II.

It should be noted that the strain in method 5 is being imposed 
on the system in discrete steps of variable magnitude depend-
ing on the height of the energy barrier that is found, and 
thus multiple PES’ are identified rather than a single one. 
As discussed by Fan et al [62], errors could emerge if the 

Figure 6. Algorithmic flowchart of the constant strain rate approach of Cao et al [39, 56]. Reprinted with permission from [56]. Copyright 
2013 by the American Physical Society.
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calculated strain increment ε∆  is too large. This is because, 
in essence, the calculation steps are reversed from method 4 
in that the strain increment is calculated based on the energy 
barrier that is crossed, rather than finding the new energy 
barrier based on the specified strain increment. Because of 
this reversal, only small strain increments can be applied to 
the system. Using increments that are too large would lead to 
errors because of the corresponding changes to the underly-
ing PES.

Thus, because method 5 is restricted to smaller strain incre-
ments, it is more computationally expensive than the approach 
in method 4. This is not particularly problematic at fast, 
MD-accessible strain rates, but can introduce computational 
challenges at smaller strain rates due to the fact that, as seen 
in equation (1), crossing larger energetic barriers E∆  would 
lead to very small time increments t∆ , which means that many 
strain increments are needed to deform the system an appreci-
able amount for slower strain rates. However, this approach 
ensures that the strain increment applied in the next step fits 
the defined strain rate.

On the other hand, method 5 is likely to be more accurate 
in its calculations of time than method 4 for two reasons. First, 
the use of NEB in method 5 results in accurate calculation of 
the height of the energy barriers that are crossed, which leads 
to more accurate calculations of the time spent climbing each 
energy barrier, as the NEB was not used by Cao et al [39, 56] 
in their development of method 4. Second, the strain incre-
ments are calculated based on the prescribed strain rate, such 
that the strain rate is accurately controlled.

An additional point to note is that both methods 4 and 5 cur-
rently assume that the prefactor that is used in equation (1) is 
a constant that is independent of strain. This is likely to cause 
some errors in the strain rate simulations, as other researchers 
have shown that the prefactors are not constant, and in fact can 
be calculated directly from information that can be obtained 
during the PES exploration. Such work has been performed 
recently by Stevenson and Wales [63, 64].

To conclude this section, in our opinion no approach is 
at present clearly superior than another in dealing with long 
timescale problems. Furthermore, physical intuition about the 

Figure 7. Algorithmic flowchart for method 5 [62].
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problem of interest is clearly beneficial to both choosing an 
approach and understanding the results obtained. In the next 
section, we give examples of recent studies based on the ABC 
approach that deal with various long timescale problems.

5. Applications of ABC—a review of some  
representative case studies

After its introduction in 2009, the initial applications of 
the ABC method were in the study of the viscosity of two 
types of supercooled liquids, SiO2 and a binary Lennard–
Jones (BLJ) system [7, 35]. Soon thereafter, Lau et al [65, 
66] applied this approach to study the deformation in sol-
ids under constant strain mechanical loading. These initial 
efforts were reviewed in a recent review article [8]. Given 
the aforementioned review, we will not discuss these early 
applications of ABC any further, and instead focus on more 
recent examples that are predicted on the slow strain-rate 
methodologies described in section  4. Further simulation 
details of interest, i.e. interatomic potentials utilized and 
their physical justification, can be found in the specific refer-
ences for each application below.

5.1. Applications of method 1: diffusion and grain boundary 
sliding

Yan et al [43] and Gouissem et al [44] used method 1 described 
in section 4 to address two problems: diffusion in amorphous 
materials and grain boundary sliding. Diffusive transport of 
Li-ions in the silicon (Si) anode is one of the key mechanisms 
that controls the deformation during lithiation, the rate of the 
charge–discharge cycle, and eventual mechanical failure. The 
atomistic mechanisms underpinning the diffusive transport 
of Li-ions in amorphous Si are, however, poorly understood. 
Conventional MD, if used to obtain atomistic insights into the 
Li-ion transport mechanism, suffers from several disadvan-
tages; in particular, the relaxation times of Li ion diffusion 
in many of the diffusion pathways in amorphous Si are well 
beyond the short timescales of conventional MD.

Yan et al [43] studied Li diffusion in both an amorphous 
(figure 8) and crystalline (not shown in the figure) Si matrix. 
These simulations were performed by implementing the ABC 
algorithm into the open-source atomistic simulation code 
LAMMPS [67] such that the well-developed parallel comput-
ing capabilities and extensive interatomic potential database 
of LAMMPS could be employed in the ABC PES explora-
tion, and the diffusion coefficients of Li in both crystalline 
and amorphous Si were evaluated. For crystalline Si, the dif-
fusion pathway and diffusion coefficient matched prior den-
sity functional theory calculations. For amorphous Si, after 
ABC sampling, 257 minima were found. NEB calcul ations 
between every two minima were carried out and a 257 257×  
barrier matrix, which contains the energy barrier between 
all pairs of local energy minima, was generated, after which 
KMC was applied to find the most probable diffusive path-
way at 300 K [43]. The most probable diffusive pathways 
naturally emerge from this approach, and the diversity of dif-
fusivities obtained in the experiments can be replicated, as 
shown in figure 8(b).

Grain boundary sliding is the key deformation and damage 
mechanism for high temperature deformation of crystalline 
materials, thus impacting applications ranging from nuclear 
reactors to aircraft. Despite decades of research, both theor-
etical and experimental, a definitive atomistic understand-
ing of this phenomenon has been elusive. To date, there is 
only speculation regarding the constitutive behavior of grain 
boundary sliding. Clearly, for such a rate-dependent process, 
MD is of limited use, and while the overall creep behavior 
can be determined experimentally, the specific constitutive 
response of grain boundary sliding appears to be unknown. 
Gouissem et al [44] applied method 1 to study grain boundary 
sliding in a bi-crystal under constant stress with the objec-
tive of developing physically reasonable constitutive laws 
based on atomistic simulations. In particular, that work aimed 
to answer important questions such as (i) is there a threshold 
stress for grain boundary sliding? and (ii) what is the form of 
constitutive law for grain boundary sliding? The simulation 
setup is shown in figure 9(a), where a constant shear stress is 

Figure 8. (a) Diffusion of a Li atom in a Si matrix; (b) resulting diffusion coefficient distribution. Reprinted from [43] with permission. 
Copyright 2015 Elsevier.
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applied to the moving zones of an Al bi-crystal. After the ABC 
sampling process, NEB and KMC were applied to obtain the 
most realistic mode of deformation, after which h-TST was 
used to calculate the transition time. From the grain bound-
ary displacement and transition time, the corresponding grain 
boundary sliding velocity was evaluated. Thus, as figure 9(b) 
shows, the grain boundary sliding velocity can be obtained as 
a function of applied shear stress. The key conclusion of that 
work, as amply demonstrated in figure 9(b), is that slow strain 
rate ABC results and high strain rate MD results give very 
different sliding rates as a function of applied shear stress. 
Specifically, it was deduced that the grain boundary sliding 
constitutive law has a hyperbolic sine character and is highly 
non-Newtonian.

In both of these studies, ABC, in conjunction with a range 
of techniques, including NEB, KMC, and h-TST, were used 
to provide mechanistic details of atomistic deformation that 
cannot be obtained from classical MD simulations.

5.2. Applications of method 2: force-induced protein  
unfolding

For biologically-related problems, such as clamping force-
induced protein folding and unfolding, it is a significant chal-
lenge for MD simulations to capture the entire unfolding 
process at experimental timescales. Because of this, the MD 
simulations of protein unfolding typically occur at clamping 
forces that are significantly larger and timescales that are sig-
nificantly shorter than those seen experimentally. Because of 
this discrepancy in simulated and experimental timescales, 
atomistic resolution of the unfolding pathways and intermedi-
ate configurations that can directly be compared with experi-
ments are generally lacking.

To this end, Park and co-workers [50–52] have applied 
method 2 of section 4 to study force-induced unfolding of the 
proteins ubiquitin, prion, and GFP. To illustrate the utility of 
this approach, we focus the present discussion on the unfold-
ing of ubiquitin [50].

Figure 10 shows the unfolding times for ubiquitin as meas-
ured experimentally, and calculated using both method 2 as 
described above, and also SMD simulations. Importantly, 
figure 10 shows that the experimentally measured unfolding 
times are on the order of seconds, using clamping forces that 
are 200 pN and smaller. As can be seen, the SMD simulations 

are only able to simulate timescales up to about 10−7 s, or the 
microsecond timescale. In contrast, the ABC–SLME simula-
tions are able to access both the high and low clamping force 
regimes, and agree well with both the high force SMD simu-
lations, and the low force experiments. Most importantly, the 
ABC–SLME simulations capture the experimentally meas-
ured unfolding times of seconds when the clamping forces 
decrease below 200 pN. The ABC simulations also revealed 
new unfolding mechanisms and intermediate configura-
tions that were not predicted experimentally, and revealed 
that the intermediate states were most likely not observed 
experimentally because their lifetimes are about two orders 
of magnitude smaller than the experimental temporal resolu-
tion [50].

5.3. Applications of method 3: diffusion of point defects in 
HCP Zr

Fan et  al [19] adopted method 3 of section  4 (ABC-E) to 
study the anisotropic diffusion of point defects in HCP Zr. 
ABC-E allows the sampling of multiple transition pathways 
from a given minimum. Combined with on-the-fly KMC, 
Fan et  al demonstrated multiple migration mechanisms for 
both interstitials and vacancies. They demonstrated that the 

Figure 9. (a) Grain boundary sliding system set up; (b) grain boundary sliding constitutive law. Reprinted from [44] with permission. 
Copyright 2015 Elsevier.
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for ubiquitin as obtained experimentally, using the ABC–SLME 
method, and also steered MD simulations [50].
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self-interstitial atom diffusion kinetics show a maximum 
anisotropy at intermediate temperatures (400–700 K).

Fan et  al [19] also performed an interesting and direct 
comparison with ART to determine the respective capabilities 
of ABC-E and ART in finding low energy saddle points. They 
did this through studying vacancy hopping in HCP Zr, where 
all of the 12 pathways are known a priori. In doing so, they 
found that ABC-E was able to both predict the correct order 
of all 12 pathways in terms of energetic preference, but also at 
much lower computational expense than ART, which was able 
to capture 10 of the 12 different pathways, thus demonstrat-
ing the capability of the ABC-E method as a computationally 
efficient and important sampling approach.

5.4. Applications of method 4: strain-rate and  
temperature-dependent deformation mechanisms in  
amorphous solids

After developing method 4 as described in the previous sec-
tion, Cao et al studied strain-rate and temperature effects on 
the shear transformation zones (STZs) in two-dimensional [56] 
and three-dimensional bulk amorphous solids [39], as well as 
on surface shear transformation zones in two-dimensional 
finite thickness amorphous solid films [57]. The structure and 
properties of STZs are important aspects to study because they 
are the unit carriers of plasticity in amorphous solids [68], 
playing a similar role as dislocations in crystalline solids.

One of the key findings of these works is shown in 
 figure 11. In (a), the deformation map for the two- dimensional 
amorphous BLJ solid is shown as a function of strain rate 
and normalized temperature, where the MD strain rate cor-
responds to 10−5, and room temperature corresponds to about 
0.3 Tg, where Tg is the glass transition temperature. As can 
be seen in (b), at room temperature and high MD strain rates, 
the STZs exhibit volume preserving, shear deformation. In 

contrast, as the strain rate drops about 10 orders of magnitude, 
corresponding to an experimentally-accessible strain rate, the 
characteristics of the STZs change markedly. Specifically, the 
STZ area increases about 33%, its displacement field decays 
much more rapidly in space, less stress is needed to nucleate 
the STZ, its characteristic quadrupolar symmetry is lost, and 
perhaps most interestingly, the deformation mechanism inside 
the STZ changes from shear to tension [56]. This example 
illustrates the powerful and interesting predictions of funda-
mental mechanical properties that can be made if slower strain 
rates can be used in atomistic computation.

5.5. Applications of method 5: strain-rate-dependent  
mechanical response of metals

Method 5 for applying a constant strain rate has also been 
used in multiple applications. In the work in which method 
5 was developed, Fan et  al [62] studied the mechanisms of 
dislocation–defect interactions in HCP Zr for shear strain 
rates ranging from ˙ 10 6= −ε  s−1 to ˙ 106=ε  s−1. In doing so, 
as shown in figure 12, they found a novel strain-rate-dependent 
trigger mechanism. Specifically, at high strain rates and low 
temper atures, edge dislocations and SIA clusters were found 
to exhibit a recovery mechanism, while at low strain rates and 
high temperatures, a climb mechanism was observed. The high 
strain rate deformation mechanism was confirmed by classical 
MD simulations, while the low strain rate response is a new 
observation. This work is an example of how these slow strain 
rate atomistic methods yield new insights into the strain-rate-
dependent deformation mechanisms in different materials.

Using a simple model of a metallic nano-pillar that is often 
the subject of experimental works, Yan et  al [69] attempted 
to circumvent the timescale bottleneck of conventional MD 
and provide novel physical insights into the rate-dependence 
of the mechanical behavior of nanostructures. Inspired by the 

Figure 11. Two-dimensional BLJ strain-rate and temperature-dependence of deformation mechanism. (a) Summary of transition from 
strain-driven to thermally activated STZ nucleation as a function of strain rate and temperature, while also showing the dependence on the 
STZ nucleation stress, and the change in STZ area ∆S as computed using a Voronoi decomposition. (b) Change in Voronoi area ∆S of each 
atom between the undeformed configuration and STZ nucleation at T=0.33Tg for strain rates of (b) 2.4×10−5 and (c) 5.0×10−14. Reprinted 
with permission from [56]. Copyright 2013 by the American Physical Society.
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approach reported in [62], Yan et al [69] modified the approach 
described in method 5, and applied it to a study of Ni nanoslab 
compression. In the work of Fan et al [62], ABC was used to 
find a single new local energy minimum. In contrast, for the 
work of Yan et al [69], ABC sampling was continued until mul-
tiple local energy minima were found, at which point NEB was 
utilized to accurately calculate the energy barriers connecting 
the initial energy minimum to all the possible final configu-
rations identified by ABC. KMC was then used to select the 
trans ition pathway, and h-TST was used to calculate the trans-
ition time ( t∆ ) between the initial and selected final states.

The study of Ni nano-slab compression focused on investi-
gating the deformation behavior and mechanisms under both 
experimentally-relevant (slow) and MD (fast) strain rates. 
While the high-strain rate deformation proceeds in an unre-
markable manner, where the nano-slab shortens its length 
along with the formation of an expected defect sub-structure, 
the slow-strain-rate results, which are relevant to most appli-
cations and laboratory experiments, exhibit a dramatically 
different behavior. Specifically, liquid-like deformation at 
slow strain rates is observed, as shown in figure 13(b). In situ 
experiments [70] appear to qualitatively confirm the observa-
tions that nanostructures, indeed, are more likely to exhibit the 
deformation pattern captured with the slow-strain-rate time-
scaling approach in this research.

6. Key unresolved issues

The previous section, which highlighted a range of application 
areas, showed examples of how ABC can be a powerful tool in 
enabling the study of the behavior of atomistic systems over 
long timescales and at slow strain rates, both of which are not 
accessible to classical MD simulations. However, similar to 
any other numerical technique, there are still important unre-
solved issues with the ABC methods. In this section we there-
fore discuss these issues and offer, where relevant, possible 
solutions or paths forward.

6.1. Computational efficiency

The first and perhaps most important issue with the ABC meth-
ods is that of computational expense and efficiency. Ideally, 
these methods could be used interchangeably with classical 
MD, and thus could be used for atomistic systems containing 
hundreds of thousands, if not millions, of atoms. However, we 
are currently far from this objective. The key factor causing 
the computational expense of the ABC method can be shown 
through equation (3), where, to calculate the penalty function-
modified potential energy r( )Ψ , a summation over all applied 
penalty functions p is required. This is problematic because, 
for the ABC method to explore the PES most efficiently, all 
previously applied penalty functions must be kept such that 
energy wells that have already been explored are not explored 
multiple times. While this makes the PES search more effi-
cient, it also means that the computational expense associated 
with ABC increases as more of the PES is explored. Thus, the 
speed of the PES exploration is fairly good at the beginning of 
a typical ABC simulation, but decreases noticeably as more of 
the PES is explored.

Various issues have been developed to resolve this issue, 
which has limited the system sizes that can be studied using 
the ABC methodologies described in this work to a few tens of 
thousands of atoms. One obvious approach is to parallelize the 
ABC methodology, for example using an open source simula-
tion code like LAMMPS, which has been done by both the 
Sharma and Park groups. However, because the ABC method 
also includes energy minimization after each penalty func-
tion is applied, the benefits of parallelization quickly decrease 
beyond a few nodes.

Another approach to alleviate this issue is to reduce the 
information stored in the memory, which can be realized 
in multiple ways. (1) By combining penalty functions, the 
ABC–SLME approach can significantly reduce the number 
of stored penalty functions and allow the system to explore 
more of the PES before the computational overhead becomes 
intractable [40]. (2) The PES exploration can be done in only 
localized regions of interest. For example, if the volume of 
the system where the phenomena of interest is localized or 
can be identified a priori, then only those portions of the PES 
associated with the atoms in the localized volume could be 
penalized [62, 69]. (3) Another approach would be to limit the 
number of penalty functions that are stored in memory; there 
would be some risk to this approach in that the system could 
still return to a previously explored energy well if the penalty 
functions were removed, but this could also be done by basing 
the decision to remove previously stored penalty functions on 
a criteria based on the distance away from previously explored 
energy wells on the PES.

6.2. PES resolution and penalty function parameter selection

Another issue of ABC is the resolution of the PES that is 
achieved, which, as shown in figure 14, depends on the heights 
and widths (or sizes) of the penalty functions. As shown in 
 figure 14, if larger penalty functions p1φ  (red balls) are used, 
the PES that is effectively described is 1Φ . In contrast, if 

Figure 12. Strain-rate and temperature-dependence of recovery and 
climb mechanisms in dislocation–cluster interactions in HCP Zr. 
Reproduced with permission from [62]. Copyright 2013 National 
Academy of Sciences.
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smaller penalty functions p2φ  (blue balls) are applied to the 
PES, the effective PES that is described is 2Φ .

If 2Φ  is the effective PES, then small-scale atomic motion, 
like the diffusion of atoms, can be captured. However, if the 
larger penalty functions leading to the effective PES described 
by 1Φ  are chosen, then only larger, more collective atomic 
motions, such as planar defects, may be captured, where we 
note that figure  14 is meant to be conceptually illustrative 
rather than quantitatively accurate. Therefore, the choice of 
the penalty function parameters can impact the physical phe-
nomena that are observed in the simulations. This choice also 
impacts the computational efficiency. If the penalty functions 
are too large, the resolution may not be fine enough to capture 
the deformation, while if the penalty functions are too small, 
it will take a long time to explore a meaningful portion of the 
PES.

Unfortunately, there is currently no rigorous approach to 
quickly choosing the appropriate penalty function size and 
shape, and thus physical intuition and experience with both 
the ABC method as well as the physics of the problem of 
interest are required. This is particularly important for strain 
and strain-rate dependent phenomena, where the underlying 
PES evolves and changes with each strain increment, and 
thus where the penalty function parameters would need to 
dynamically evolve for each strain increment. Therefore, an 
approach that could identify the appropriate penalty function 
param eters based solely on the interatomic potential would be 
greatly beneficial.

This requirement is somewhat satisfied by the ABC–SLME 
method [40] as the penalty functions that result from the 
combination of multiple penalty functions are constrained in 
certain ways. Specifically, the ABC–SLME initializes new 
penalty function parameters after a true local energy minimum 
is explored. The penalty function width and height are deter-
mined by measuring the displacement and energy difference 

between a new local minimum and the corresponding saddle 
point. In this way, the penalty function parameters are self-
determined and automatically updated according to the under-
lying PES.

6.3. Entropic effects

As has been established, the goal of the ABC method is to 
sample the PES. In doing so, this means that entropic effects, 
which contribute to the free energy of the system, are not 
accounted for, and thus the ABC method works best for prob-
lems in which the entropic effects do not dominate. This may 
be valid for lower temperature cases, or for applications where 
the PES barriers are sufficiently high such that entropy can 
be neglected, as the PES is temperature-independent. We note 
that while we have determined the ability of the ABC meth-
ods to access slow strain rate phenomena in amorphous solids 
[39, 56, 57], we have not, to-date, evaluated the performance 
of the ABC methodologies for soft amorphous materials like 
polymers.

In reality, the system moves from one basin to another with 
a rate that is dependent on the energy barrier between the two 
basins, as well as temperature, and thus entropic effects can 
be included via TST. For example, Fan et al [71] investigated 
the temperature dependence of an average vacancy cluster 
size of a bcc Fe system using TST and KMC based on con-
figurations identified in ABC. The prediction of the cluster 
sizes using ABC and KMC was found to match exper imental 
measurements. In this way, entropic effects can be some-
what accounted for through the KMC approach to choosing 
the trajectory along the PES. For other biologically-relevant 
problems, like protein unfolding, the difference between the 
free energy surface and the PES cannot be neglected. In these 
cases, umbrella sampling has been used to convert the infor-
mation from the PES to that of a free energy [50, 51]. Such 

Figure 13. Ni compression under different strain rates. (a) Fast, MD-like strain rate. (b) Slow, experimentally-relevant strain rate. 
Reproduced with permission from [69]. Copyright 2016 American Chemical Society.
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approaches can extend the validity of the ABC methodol-
ogy, though a generic free energy-based search methodology 
would certainly be a long-term preferable alternative.

6.4. One-dimensional PES exploration

In the original ABC and ABC–SLME sampling, due to the 
manner in which the penalties are applied, the system does 
not return back to the energy well it has visited. In this way, 
the original ABC and ABC–SLME approaches [71, 72] ignore 
the appearance of other possible jumps from the current state. 
However, because this results in an incomplete catalog of pos-
sible transition states, it results in an overestimation of the 
transition times.

The time overestimation problem could be fixed through 
extending the searching dimensions, for example, ABC-E [19] 
(or other related methods like the dimer approach [16]). In 
this algorithm, after a new minimum is identified using ABC, 
a penalty is added on the saddle point to block the identi-
fied path. The system is then sent back to the initial state to 
find other possible minima around the initial state. The way 
ABC-E is adopted to search multiple transition paths is quite 
similar to ART [14] and the dimer approach [16].

There are advantages and disadvantages for both searching 
methods. A benefit of the one-dimensional search is that more 
states on the PES are explored, which may enable the observa-
tion of a dominant transition pathway or physical mechanism, 
while neglecting other, potentially less important, transition 
paths. These one-dimensional searching methods are also 
more efficient. However, ignoring the existence of other pos-
sible (i.e. higher energy) exit pathways has been shown to lead 
to overestimations of the calculated transition time out of an 
energy well [19, 72, 73].

ABC-E and other similar searching algorithms, such as 
dimer or ART, can identify multiple possible transition path-
ways out of a given energy well, which in our experience is 

particularly important for diffusion-based problems, where 
there are many competing states and pathways. However, 
the additional computational expense entailed in cataloging 
multiple transition pathways can be prohibitive. For example, 
in recent studies of the annihilation of dislocation dipoles, 
the ART method was unable to complete the simulations, 
while ABC was able to observe the dislocation dissociation 
processes [74, 75]. These issues again illustrate the need for 
more efficient ways to perform ABC-based explorations of 
the PES.

6.5. Length scale limitations

As we have discussed in this review, the various ABC methods 
have been effective in addressing the timescale issues that tra-
ditionally arise in classical MD simulations. However, in doing 
so, because of the limitations in the number of atoms (i.e. tens 
of thousands) that can be considered, the ABC methods are, at 
present, length scale limited. This length scale limitation also 
limits the types of problems that can be tackled using ABC, 
and thus the physical phenomena that are most often studied 
(as shown in this review) are those with localized unit pro-
cesses, like diffusion and localized plastic deformation.

One approach that may be beneficial to extending the 
length scales of the ABC simulations is to use coarse-grained 
atomistic potentials, i.e. [76]. Using such potentials would 
enable the study of significantly larger length scales and sys-
tem sizes with the same number of degrees of freedom, while 
potentially opening up the study of more complex system 
mechanics.

7. Concluding remarks

In this review, we discuss the application of a class of 
approaches centered around the so-called ABC method to 
circumvent the timescale bottleneck of traditional MD, with 

Figure 14. PES exploration with different penalty function resolutions. Note that the figure is meant to be conceptually illustrative rather 
than quantitatively accurate.
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particular emphasis on mechanically-driven problems at 
experimentally relevant strain rates and timescales. Our con-
clusion is perhaps no different than that for other competing 
approaches: there is currently no magic solution to bridging 
timescales. However, when armed with good physical intu-
ition, the ABC method, when appropriately complemented 
with other algorithms and techniques (as described in the 
review) can yield useful information and novel insights into 
the rate-dependent mechanical behavior for materials science 
problems of interest.
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