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Electrostatically Driven Creep
in Viscoelastic Dielectric
Elastomers
We utilize a nonlinear, dynamic finite element model coupled with a finite deformation
viscoelastic constitutive law to study the inhomogeneous deformation and instabilities
resulting from the application of a constant voltage to dielectric elastomers. The constant
voltage loading is used to study electrostatically driven creep and the resulting electro-
mechanical instabilities for two different cases that have all been experimentally
observed, i.e., electromechanical snap-through instability and bursting drops in a dielec-
tric elastomer. We find that in general, increasing the viscoelastic relaxation time leads
to an increase in time needed to nucleate the electromechanical instability. However, we
find for these two cases that the time needed to nucleate the instability scales with the
relaxation time. [DOI: 10.1115/1.4025999]

1 Introduction

Dielectric elastomers (DEs) are a class of soft, active materials
that have attracted significant attention in recent years [1–6]. They
have been found to provide excellent overall performance in
actuation-based applications, including high specific elastic
energy density, good efficiency, and high speed of response (on
the order of milliseconds). Furthermore, DEs are typically light-
weight, flexible, and inexpensive materials which makes them
ideal candidates for high performance, low cost applications
where fabrication of the DEs into a wide range of shapes and
structures can easily be realized [7]. While DEs have been found
to exhibit good performance with respect to a variety of actuation-
relevant properties, the key source of the technological excitement
surrounding DEs stems from the fact that, if sandwiched between
two compliant electrodes that apply voltage to the elastomer, the
DE can exhibit both significant thinning and in-plane expansion.
This unique large deformation-based actuation capability has led
to many potential applications for DEs, including medical devices,
artificial muscles, and the potential to harvest energy from sources
as diverse as human muscle motion and ocean waves [1,2,5].

However, it has been understood for some time that viscoelastic
effects play a crucial role in determining the large-deformation
response of the DEs [8]. Viscoelastic effects are important
because the dominant failure mode of DEs is strongly dependent
on both the stretch rate and the amount of prestrain [9]. This is
because at higher stretch rates and frequencies, viscoelastic effects
stiffen the material, which limits the force generation, efficiency,
and actuation speed, while simultaneously introducing the delete-
rious effects of creep, hysteresis, and stress relaxation. Corre-
spondingly, there has recently been an increasing effort in the
research community to study, both experimentally and theoreti-
cally, viscoelastic effects on the behavior of DEs [3,8–18].

A key issue that has not been studied in detail is the creep
response of DEs to a constant electrostatic (i.e., voltage) load,
particularly in the context of electromechanical instabilities that
can result in DEs. For example, a recent analytical study on elec-
trostatically driven creep in viscoelastic DEs was performed by
Wang et al. [14]. However, due to the simplicity of the analytical
model, the authors did not consider electromechanical instabil-
ities for interesting and important DE failure modes such as elec-

tromechanical snap-through [9,19] and cracklike initiation and
propagation [20].

The objective of this paper is to utilize a recently developed non-
linear, finite deformation viscoelastic finite element (FE) model of
DEs [16] to study the creep response of DEs under constant electro-
static (voltage) loading. We do this in the context of focusing on
the effects of viscoelasticity on the characteristics of two electrome-
chanical instabilities that have been observed experimentally to
cause failure in DEs: snap-through instability [9,21], and cracklike
propagation emerging from a bursting drop in a DE [20].

2 Field Theory and Finite Element Model

The electromechanical field theory [22], and the resulting FE
equations, have previously been discussed in detail in previous
publications [16,23,24], so we give only a brief overview here.

The numerical results we present in this work are based upon a
FE discretization of the electromechanical field theory recently pro-
posed by Suo et al. [22], and recently reviewed by Suo [25]. In this
field theory at mechanical equilibrium, the nominal stress SiJ satis-
fies the following weak form of the momentum balance equation:
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where ni is an arbitrary vector test function, Bi is the body force
per unit reference volume V, q is the mass density of the material,
and Ti is the force per unit area that is applied on the surface A in
the reference configuration.

For the electrostatic problem, the nominal electric displacement
~DI satisfies the following weak form of the governing equation:

�
ð

V

~DI
@g
@XI

dV ¼
ð

V

qg dV þ
ð

A

xg dA (2)

where g is an arbitrary scalar test function, q is the volumetric charge
density, and x is the surface charge density, both with respect to the
reference configuration. It can be seen that the strong form of the
electrostatic weak form in (2) corresponds to Gauss’s law.

As the governing field equations in (1) and (2) are decoupled,
the electromechanical coupling occurs through the material laws.
Due to the fact that the DE is a rubberlike polymer, phenomeno-
logical free energy expressions are typically used to model the de-
formation of the polymer chains. In the present work, we utilize
the form [26,27]

WeqðC; ~EÞ ¼ leqW0 �
1
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where W0 is the mechanical free energy density in the absence of
an electric field, e is the permittivity, ~E is the nominal electric
field, J¼ det(F), where F is the continuum deformation gradient,
C�1

IJ are the components of the inverse of the right Cauchy–Green
tensor C, K is the bulk modulus, and leq is the equilibrium shear
modulus. We distinguish the free energy Weq in (3) as the equilib-
rium free energy as the nonequilibrium terms that appear later
capture the viscoelastic effects.

We model the mechanical behavior of the DE using the Arruda–
Boyce rubber hyperelastic function [28]. The mechanical free
energy W0 in (3) is approximated by the following truncated series
expansion:

W0ðI1Þ
l
¼ 1

2
ðI1 � 3Þ þ 1
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1050N2
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7000N3
ðI4

1 � 81Þ þ 519

673750N4
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where N is a measure of the cross-link density, I1 is the trace of C,
and where the Arruda–Boyce model reduces to a neo-Hookean
model if N !1. We emphasize that previous experimental studies
of Wissler and Mazza [29] have validated the Arruda–Boyce model
as being highly accurate for modeling the large deformation of DEs.

The FE equations that result from the discretization of Eqs. (1) and
(2), accounting for finite nonlinear viscoelasticity using the approach
of Reese and Govindjee [30], were derived by Park and Nguyen [16].
The resulting coupled electromechanical FE equations are
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where a is the acceleration, U is the voltage, M is the lumped FE
mass matrix, b¼ 0.25 is a constant needed for the classical Newmark
time integration algorithm [31], Dt is the time step, K

eq
mmþq1p0 is the

equilibrium mechanical stiffness matrix, Kneq
mm is the viscoelastic

(nonequilibrium) contribution to mechanical stiffness that is calcu-
lated following the finite viscoelasticity formulation of Reese and
Govindjee [30], Kem¼Kme is the electromechanical stiffness cou-
pling, and Kee is the purely electrostatic stiffness.

Finally, the mechanical stiffness matrix K
eq
mmþq1p0 in (5) can be

written

K
eq
mmþq1p0 ¼ Kgeo þKmat þKp (6)

where Kgeo and Kmat are the standard geometric and material con-
tributions to the stiffness matrix, and where Kp is a new contribu-
tion to the stiffness matrix that comes from the Q1P0 formulation
of Simo et al. [32], and that is required to alleviate the material
incompressibility and prevent the FE formulation from exhibiting
volumetric locking, or an overly, artificially stiff mechanical
response. Details regarding the explicit forms of all stiffness con-
tributions in Eq. (5) can be found in [23,24] and [16].

To summarize, the FE formulation we use in the present work:
(1) Accounts for finite, nonlinear viscoelasticity, which is impor-
tant for accurate predictions of creep [30,33]; and (2) alleviates
volumetric locking which occurs due to the incompressible nature
of DEs using the seminal Q1P0 formulation of [32]. Having estab-
lished the governing equations and FE model, we now proceed to
applying them to problems involving electrostatically driven creep
in DEs.

3 Numerical Results

We considered two different problems, as illustrated in Fig. 1.
The specific problems are the electromechanical snap-through
instability [9,21,23] in Fig. 1(a), and a bursting drop in a solid

Fig. 1 Schematic of the two problems considered, with mechanical and electrostatic boundary conditions shown. (a) Single fi-
nite element for electromechanical snap-through problem. (b) Quarter symmetry model for bursting drop in a DE. Note that all
schematics are shown in two dimensions as all z displacements are set to zero in this work to mimic a plane strain problem.

Table 1 Values of the material parameters needed to evaluate
the equilibrium free energy Weq in Eq. (3), the Arruda–Boyce
hyperelastic function in Eq. (4), and the nonequilibrium visco-
elastic formulation

Material parameter Value

N 5.0
leq 1.0 Pa
e 1.0 F/m
K 10,000.0 Pa
lneq 1.0 Pa
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[16,20] as shown in Fig. 1(b). These problems were chosen as a dif-
ferent type of electromechanical instability (snap-through, cracklike
propagation) has been observed experimentally for each case.

In each case, a constant voltage U was applied starting at time
t¼ 0 to simulate an electrostatically driven creep process, and the
DE was then allowed to relax to equilibrium. We note that the
critical values for the voltage U needed to induce electromechani-
cal instabilities for all both problems have previously been estab-
lished [20,21], and so constant voltages both smaller and larger
than the critical voltage were applied in both cases.

All FE simulations considered the generalized three-
dimensional geometry, and were conducted using eight-node hex-
ahedral elements using the open source simulation code, Tahoe
[34]. For the bursting drop problem in Fig. 1(b), the out of plane
(z) displacement was set to zero to mimic a plane strain condition.

A key parameter that was varied for each problem below is the
viscoelastic relaxation time sr¼ g/lneq, where g is the shear vis-
cosity, and lneq is the nonequilibrium shear modulus. In all cases

Fig. 2 Illustration of different stages of electromechanical
snap-through instability. (a) Undeformed configuration. (b)
Prior to snap-through instability. (c) Final configuration after
snap-through instability has occurred. _D_VEC is the magni-
tude of the displacement vector.

Fig. 3 Time evolution of thickness-direction stretch ky for an applied normalized voltage of U 5 0.7, or smaller than the critical
voltage needed to cause the snap-through instability, for different viscosities g. (a) Not time normalized. (b) Normalized by the
viscoelastic relaxation time sr.

Fig. 4 Time evolution of thickness-direction stretch ky for a constant normalized voltage of U 5 0.8, or above the critical voltage
needed to cause snap-through instability, for different viscosities g. (a) Not time normalized. (b) Normalized by the viscoelastic
relaxation time sr.
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lneq¼ 1, and the viscosity g was varied, except for the bursting
drop problem, over three orders of magnitude to create a corre-
sponding three order of magnitude range of viscoelastic relaxation
times sr. The material properties and parameters we used for the
FE simulations to evaluate the free energy in Eq. (3) and the Arru-
da–Boyce model in Eq. (4), as well as the nonequilibrium visco-
elastic parameters, are provided in Table 1.

3.1 Electromechanical Snap-Through Instability. The first
example we consider is that shown in Fig. 1(a), which is used to
study viscoelastic effects on the well-known electromechanical
snap-through instability [9,21,23]. In this problem, it is known
that above a critical normalized voltage of about U¼ 0.75 [23],

the electrostatic Maxwell stress becomes larger than the mechani-
cal stress in the DE, causing a rapid decrease in thickness of the
DE of nearly 90% and a substantial increase in the cross sectional
area of the DE, as illustrated in Fig. 2. For this problem, a single
eight-node hexahedral element was used subject to the electrome-
chanical boundary conditions shown in Fig. 1(a).

We plot in Fig. 3 the vertical stretch ky ¼ Ly=L0 as a function
of time as the shear viscosity g is varied between 5 and 500. Spe-
cifically, the cases shown in Fig. 3 demonstrate the behavior of
the DE if the applied voltage of U¼ 0.7 is smaller than the critical
voltage Ucrit¼ 0.75. In Fig. 3(a) it can be seen that as g is
increased, the DE takes a longer amount of time to creep to the
same stretch ky, though all asymptotically reach the equilibrium
value of ky¼ 0.77. However, Fig. 3(b) shows that if the time is
normalized by the viscoelastic relaxation time, then all curves col-
lapse to the same stretch value ky at the same normalized time.

Figure 4 shows the results for when the applied voltage of
U¼ 0.8 is larger than the critical voltage for instability of
Ucrit¼ 0.75. As can be seen in Fig. 4(a), as g increases, the time
needed for the snap-through instability to occur increases substan-
tially, where the occurrence of the snap-through instability can be
observed through the nearly instantaneous decrease in stretch ky

near a critical stretch of about ky¼ 0.5 to a final value of about
ky¼ 0.1, or a decrease in thickness of nearly 90%. This applied
voltage of U¼ 0.8 is larger than the critical voltage to induce
creep for the equilibrium (l¼leq) case, which is why the defor-
mation in Fig. 4 has an initial creep stage followed by the snap-
through instability.

However, Fig. 4(b) demonstrates that if the time is normalized
by the viscoelastic relaxation time sr, that all curves collapse, with
the onset of the snap-through instability occurring at the same nor-
malized time of about t/sr¼ 6.65. This demonstrates that for the
snap-through instability problem, aside from increasing the criti-
cal voltage needed to induce the snap-through instability [16], the
major effect of viscoelasticity is to proportionately increase the
time needed for the snap-through instability to occur in direct pro-
portion to the viscoelastic relaxation time sr.

3.2 Bursting Drops in a Confined Dielectric Elastomer.
Our second and final example considers a numerical study of elec-
trostatically driven creep, or specifically cracklike initiation and
propagation from a bursting drop in a constrained DE, similar to
the recent experiment of Wang et al. [20]. In that experiment, a

Fig. 5 Illustration of electrostatically driven crack initiation
and propagation in a DE containing a conductive drop. Note the
formation and propagation of a crack from the top of the hole.
_D_VEC is the magnitude of the displacement vector.

Fig. 6 (a) Crack propagation distance Dy as a function of time for different shear viscosities g. (b) Crack propagation distance
Dy as a function of normalized time.
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constrained DE film was created with a small hole containing a
conductive liquid, i.e., a salt solution. Upon application of a volt-
age, the hole was found to change shape from a sphere to an elon-
gated ellipsoid, followed by bursting of the drop in the hole via
crack nucleation and propagation from the top of the hole, where
this process is illustrated in Fig. 5. This problem was recently
computationally studied by Park and Nguyen [16], including vis-
coelasticity, but under continuous electrostatic loading, with the
key finding that increased viscoelastic relaxation times led to a
higher electric field needed to initiate the crack, with a subsequent
decrease in crack propagation speed.

In contrast, our goal in the present work is to determine how
viscoelasticity impacts crack initiation and propagation that
results from a constant electrostatic (applied voltage) loading,
analogous to an electromechanical creep test. The results from
this study are shown in Fig. 6. In Fig. 6(a) we see that as the vis-
cosity g, and thus the relaxation time sr, increases for the same
applied voltage, a longer time is required for the crack to reach its
maximum propagation distance Dy.

However, as shown in Fig. 6(b), if the time is normalized by
the relaxation time sr, we find that the times for crack initiation all
overlap. This leads to the conclusion, as previously observed for
the electromechanical snap-through problem, that viscoelasticity
again simply scales, in a linear proportion to the relaxation time,
the amount of time it takes for an electrostatically nucleated crack
to initiate, propagate, and travel its maximum distance.

4 Conclusion

In conclusion, we have used a nonlinear, dynamic viscoelastic
finite element model to study electrostatically driven creeplike
electromechanical instabilities in viscoelastic dielectric elasto-
mers. We focused on two examples of electrostatically driven
electromechanical instabilities that have been observed experi-
mentally, i.e., the well-known snap-through instability, and the
case of a cracklike defect that nucleates and propagates from a
bursting drop in a dielectric elastomer. Our main finding is that
when the relevant instability time is normalized by the visco-
elastic relaxation time, that a universality in terms of the time
needed to nucleate the instability is observed.
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