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a b s t r a c t

The thermal conductivity of two-dimensional materials like graphene can efficiently be tuned by
introducing holes, in which the density and distribution of the holes are the key parameters. Further-
more, the distribution of holes can induce a variation as high as 74% in the thermal conductivity for
porous graphene with a given density of holes. Therefore, an existing challenge is to find the optimal
distribution of holes that can minimize or maximize the thermal conductivity of porous graphene as the
design space expands dramatically with increasing hole density. We therefore apply an inverse design
methodology based on machine learning to reveal the relationship between hole distribution and
thermal conductivity reduction in monolayer graphene. The methodology reveals that holes that are
randomly distributed transverse to the direction of heat flow, but that exhibit some periodicity along the
direction of heat flow, represent the optimal distribution to minimizing the thermal conductivity for
porous graphene. Lattice dynamics calculations and wave packet simulations reveal that this spatial
distribution effectively causes localization of the phonon modes in porous graphene, which reduces the
thermal conductivity. Overall, this work demonstrates the power of machine learning-based design
approaches to efficiently obtain new physical insights for scientific problems of interest.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene has attracted enormous attention over the past
decade due to its excellent physical properties [1]. However, pris-
tine graphene is gapless which limits its application towards
graphene-based semiconducting devices. To overcome this draw-
back, nano-scale holes have been generated in graphene to open a
finite bandgap [2]. These holes not only modulate the electronic
properties, but also have a significant effect on the thermal trans-
port of graphene. For example, a recent experiment has shown that
the thermal conductivity of porous graphene (with controllable
number of holes) is considerably lower than that of pristine gra-
phene [3]. Developing approaches to reducing the thermal con-
ductivity is critical for various applications, in particular for high
figure of merit thermoelectric materials and devices [4e8].

Theoretical results also show that the thermal conductivity of
porous graphene is significantly lower than pristine graphene.
iang).
These results show that besides the density of holes, the spatial
distribution of the holes also plays an important role in reducing
the thermal conductivity. Most works have considered either
random or periodic distributions of holes. For instance, several
works have examined how to reduce the thermal conductivity by
introducing periodic holes [9,10], while Hu et al. found that the
thermal conductivity of porous graphene is significantly reduced by
randomly distributed holes [11]. Thus, most works have focused on
the effect of a specific hole distribution type on the thermal con-
ductivity of graphene. However, determining the optimal hole
distribution for maximizing or minimizing the thermal conduc-
tivity remains an open question, in particular because the design
space increases dramatically with increasing number of holes.

The machine learning (ML) method is a promising tool to screen
over a large design space, which has primarily been used to predict
properties of new materials [12e18]. However, recent works have
begun to use ML to design functional materials and structures
while accounting for a potentially large design space. For instance,
ML was applied in designing efficient molecular organic light-
emitting diodes [19], solid electrolyte in lithium battery [20],
composites with high toughness [21], and graphene kirigami with
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high yield strain [22]. The ML approach has also been used in
predicting the thermal conductivity for nanomaterials and com-
posite materials [23,24]. Based on the ML approach, specific
structures have been designed to achieve optimal thermal con-
ductivity for composite materials [25], polymers [26], or nano-
structures [27]. Recently, Yamawaki et el. applied the ML approach
to search the optimal distribution of holes in the graphene nano-
ribbons to obtain low thermal conductivity and high thermoelec-
tricity [28], where the holes are one-dimensionally distributed and
the effect of two-dimensional distribution of holes in the graphene
on the thermal conductivity is still unknown.

In this paper, we study the effect of the density and two-
dimensional distribution of holes on the thermal conductivity of
porous graphene by combining molecular dynamics (MD) simula-
tions, ML, and lattice dynamics calculations. We set up a convolu-
tional neural network (CNN) model to learn and predict the
thermal conductivity of porous graphene, and then perform inverse
design to screen millions of candidates to determine the optimal
design of porous graphene that exhibits the lowest thermal con-
ductivity, which is a desirable property for thermoelectric materials
and devices. The inverse design method based on the ML scheme is
able to explore the relationship between the distribution of the
holes and the thermal conductivity for the porous graphene, which
requires only 103 simulations out of the full design space of 106.
The methodology reveals that holes that are randomly distributed
transverse to the direction of heat flow, but that exhibit some
periodicity along the direction of heat flow, represent the optimal
distribution to minimizing the thermal conductivity for porous
graphene. Lattice dynamics calculations and wave packet simula-
tions reveal that this spatial distribution effectively localizes the
phonon modes in porous graphene, thus reducing the thermal
conductivity.
2. Thermal conductivity

Fig. 1 shows the structure of porous graphene with dimensions
160� 45 Å, where the porous region is located at the center of the
structure. The atom clusters in blue indicate candidate sites for
creating holes, where the size of each hole is about 8.8 Å, which is
within the current experimental ability [29]. These atom clusters at
the candidate sites can be removed to create holes. For the partic-
ular structure in Fig. 1, there are 14 candidate sites, so there are
214 ¼ 16384 possible porous structures. The porosity for each
structure is defined as the ratio of the number of holes to the total
number of candidate sites. It should be noted that the thermal
conductivity of graphene depends on the size of the system and the
size of the holes [9,10,30]. The present work focuses on exploring
the relationship between the distribution of holes and the thermal
conductivity of porous graphene, so a fixed size is considered for
graphene.
Fig. 1. The structure of porous graphene. The left and right ends are fixed during the
simulation, while periodic boundary conditions are applied in the vertical direction.
Atom clusters (blue online) in the middle region are candidate sites for creating holes.
(A colour version of this figure can be viewed online.)
The thermal transport was simulated using non-equilibrium
MD, where the temperatures at the heat source and heat sink as
shown in Fig. 1 are constant when the system reaches steady state.
The structure is divided into 20 sections along the length direction.
The first and last sections are fixed during the MD simulations as
the adiabatic regions. The thermal energy is pumped into (out) the
system in the 2nd (19th) section using the Nos�e-Hoover thermostat
at temperatures 320 K and 280 K, respectively [31,32], and the other
sections are simulated within the NVE ensemble. It should be noted
that the Langevin thermostat has been applied in other theoretical
studies, as it can also reproduce the canonical ensemble. The
properties are statistically indistinguishable from these two ther-
mostats when the system reaches the steady state [33].

The thermal conductivity k is calculated as follows

J¼ k
ðTsource � TsinkÞ

Ld
(1)

where J, Tsource and Tsink are the heat flux, heat source temperature
and heat sink temperature in the steady state, respectively and Ld is
the distance between heat source and heat sink. It should be noted
that the value of thermal conductivity obtained here is the effective
thermal conductivity, which has been used to compare the thermal
conductivity for porous materials [34].

All MD simulations were performed using the large-scale atomic
molecular massively parallel simulator (LAMMPS) package [35],
while the OVITO package is used for visualization [36]. The covalent
bonding among carbon atoms is described by the optimized Tersoff
potential, which is able to reproduce the experimental value of
acoustic-phonon velocities [37]. The standard Newton equations of
motion were integrated in time using the velocity Verlet algorithm
with a time step of 0.5 fs.

We first show in Fig. 2 the thermal conductivity for all of the
16384 possible porous structures for the graphene shown in Fig. 1.
Overall, the thermal conductivity of porous graphene decreases
with increasing porosity, but the variation in the thermal conduc-
tivity at a given porosity is rather large. For instance, at the porosity
of 0.5 (7 holes out of the 14 possible hole sites), the largest and
smallest thermal conductivities are 40 Wm�1K�1 and 23
Wm�1K�1, respectively; i.e., the variation is as high as 74%. This
indicates that the thermal conductivity is strongly dependent on
the spatial distribution of the holes, which motivates the present
work to design the optimal spatial distribution of the holes such
that the thermal conductivity can be maximized or minimized. For
the small systems with 14 possible hole sites, we can compute the
Fig. 2. Thermal conductivity versus the density of holes for porous graphene at room
temperature.



Fig. 3. The performance for the CNN with different hyperparameters: (a) RMSE and (b)
R2. (A colour version of this figure can be viewed online.)

Fig. 4. The fitness in predicted thermal conductivity and true thermal conductivity on
the test sets. (A colour version of this figure can be viewed online.)
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thermal conductivity for all possible porous structures. However,
for larger systems, the number of possible porous structures in-
creases dramatically with increasing site number; it would be
impossible to compute the thermal conductivity for all possible
porous structures. We will now apply ML to determine the porous
structures that exhibit the lowest thermal conductivity.

3. Machine learning

3.1. CNN model

In this section, we will train a CNN to predict the thermal con-
ductivity of porous graphene in the context of supervised learning.
The architecture of our CNN is inspired by the classic CNN VGGNet
[38]. Specifically, the kernel size is 3� 3 with a stride of 1 in the
convolutional (Conv.) layer. Each convolutional layer is followed by
a rectified linear unit (ReLU) function and a max-pooling layer of
size 2� 2 with a stride of 2. A fully-connected layer (FCL) is
included at the end of model. As a regression problem, the ReLU
functionwill not appear at the final layer. The goal of the parameter
optimization is to minimize the root mean square error (RMSE)
between the predictions and targets with the Adam optimizer,

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnt

i¼1

�
yit � yip

�2

nt

vuuut ; (2)

where nt is the number of training data, and yt and yp are the true
thermal conductivity obtained from MD simulations and the pre-
dicted thermal conductivity by the CNN model, respectively. For a
CNN model, we denote ‘c’ as the number of kernels in a convolu-
tional layer and ‘f’ as the number of neurons in a FCL. For example,
the model CNN-c16c32c64f64 has 16 kernels in first convolutional
layer, 32 kernels in second convolutional layer, 64 kernels in third
convolutional layer, and 64 neurons in the FCL.

Each training data includes a gray image of size 54� 50 and its
corresponding thermal conductivity value obtained by MD simu-
lations. For the system shown in Fig. 1, there are 16384 training
datas, which are divided into three parts: 90% as training set, 5% as
validation set, and 5% as test set. The validation is used for hyper-
parameter tuning to find architecture with optimal performance.
The test set is used to estimate the prediction performance of the
trained CNN model. In order to evaluate the regression perfor-
mance of the ML model, we also introduce the following quantity
(R2) to measure the quality of the regression performance,

R2 ¼1�
Pnt

i¼1

���yit � yip
���2

Pnt
i¼1

����yit � 1
nt

Pnt
i¼1y

i
p

����
2: (3)

During the tuning, a learning rate of 0.0001 is chosen for the
optimizer with a batch size of 200 and the maximum epochs is set
to 300. We examine the effects of depth of model and the number
of neurons in the FCL on the performance of the CNN. The perfor-
mance comparison between different models on the validation set
is shown in Fig. 3. Similar to VGGNet, deeper networks perform
better than wider networks. The best model architecture is CNN-
c16c32c64f64. The R2 for model CNN-c16c32c64f64 in the
training, validation, and test sets are 0.97, 0.96 and 0.96, respec-
tively. The RMSE for model CNN-c16c32c64f64 in the training,
validation, and test sets are 1.22, 1.26 and 1.25, respectively. These
results indicate that there is no overfitting for the training process.
Fig. 4 shows the performance of the CNNmodel on the test sets. The
RMSE on the test sets is 1.09Wm�1K�1, which is close to the RMSE
value (0.74 Wm�1K�1) of MD, indicating that the CNN model can
accurately predict the thermal conductivity of porous graphene.
Note that the RMSE of MD is obtained from the average RMSEs of 5
randomly selected porous structures, and five simulations (with
different initial velocity distribution) are performed for each porous
structure. The trained model and machine learning code are
available in our online repository at [http://jiangjinwu.org].

3.2. Inverse design

In the previous section, we demonstrated that the CNN can

http://jiangjinwu.org


Fig. 6. Average thermal conductivity of top 100 structures in each generation during
the inverse design of the smaller systemwith 14 candidate hole sites. (A colour version
of this figure can be viewed online.)
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extract major features of porous graphene and accurately predict
the thermal conductivity. Next, we will present an inverse design
scheme based on the CNN (CNN-c16c32c64f64) to efficiently search
for the porous graphene structure with the lowest thermal con-
ductivity. The ML-based inverse design process we describe here
implies that ML can be used to greatly accelerate the search for
optimal designs that give a desired property based on a small
subset of a much larger design space containing all possible designs
[39]. First, we randomly select 100 structures from the library of all
possible structures and calculate their thermal conductivity using
MD simulations, which are used as training data. Based on these
100 training data, the CNN model is trained as the first generation
CNN model. The first generation CNN model is then used to predict
the thermal conductivity of all remaining structures in the library,
so that another 100 structures with lowest thermal conductivity are
predicted. The true thermal conductivity for these 100 new struc-
tures are calculated from MD simulations. The data for these 100
new structures are added into the training set, and the enlarged
training set is used to train the next generation CNN model. The
flow of the search algorithm is shown in Fig. 5. It should be noted
that in the design process, the size of the training sets of the CNN
model increases gradually with the number of iterations. In each
generation of the inverse design process, the CNN model is
initialized at first, and then trained based on the training set to
predict the thermal conductivity of the remaining structures.

To test the applicability of the search scheme, we consider the
smaller system in Fig.1, which has 14 possible porous sites.We have
computed the thermal conductivity for all possible porous struc-
tures in Fig. 2, which represents a brute force approach to finding
the porous graphene structures with the lowest thermal conduc-
tivity. We will show that the above search scheme can efficiently
find these porous graphene structures with the lowest thermal
conductivity. To evaluate the performance of the search scheme, we
use the average thermal conductivity of the top 100 structures with
the lowest thermal conductivity in the training sets of each gen-
eration as the convergence measurement. As a benchmark, random
search approach is introduced for comparison. As shown in Fig. 6,
the average thermal conductivity of random search approach
converges slowly, and it needs to explore the entire design space to
find the optimal structure with the lowest thermal conductivity. In
contrast, the search scheme based on the CNN model is able to find
the top 5 structures in the 3rd generation (only requires 300 MD
simulations), and screen for the top 100 structures in the 7th
generation (700 MD simulations). This indicates that the CNN
model can effectively find the optimal structures with the lowest
Fig. 5. Schematic of the search algorithm based on the CNN model. (A colour version of
this figure can be viewed online.)
thermal conductivity. In our work, one MD simulation for the
smaller graphene system in Fig. 1 takes 2 h of computing time using
4 cores of CPU. Using the CNNmodel to predict or train the thermal
conductivity of one porous structure needs 1ms computing time
using 4 cores of CPU plus one GPU. Therefore, using the CNNmodel
to perform structure design is very effective and fast.

We have demonstrated that the CNN model can be used to
effectively find the optimal designs from a small design space
(16384) where the thermal conductivity of all possible structures is
known. Now we apply the CNN search algorithm to a large design
space where the optimal structures are unknown. We consider a
longer system with 24 possible porous sites, and focus on these
porous structures with porosity of 0.5 (12/24). The entire design
space (12/24) has 24!=ð12!12!Þ ¼ 2704156 possible structures. We
aim to determine the porous structure with the lowest thermal
conductivity among this huge number of possible porous struc-
tures. An efficient design process is required here due to the
inherent challenge in performing such a large number of MD
simulations for all possible structures.

The size of the input image is expanded to 90� 50, to account
for the increase in the length of the porous region, and we include
the random search approach for comparison. Fig. 7 shows that the
search scheme based on the CNN model is able to find the struc-
tures with low thermal conductivity. Specifically, the average
thermal conductivity of top 100 structures (containing 12 holes) in
the training sets is 14.99 Wm�1K�1 for the 8th generation.

In Fig. 8, we plot the top 5 structures with the lowest thermal
conductivity for different generations. It can be seen that the dis-
tribution of the holes is quite random in the initial stage, but it
quickly evolves to some regular distributions, where the holes are
separated in columns perpendicular to the direction of heat flow.
We also present 3 typical structures and their corresponding
thermal conductivity on the right side of Fig. 8. We have thus
demonstrated the ability in finding porous structures with lowest
thermal conductivity for the search scheme based on the CNN.
4. Discussions

4.1. Lattice dynamics calculation

The above-discussed CNN-based inverse design method suc-
cessfully determined porous graphene structures with ultra-low



Fig. 7. Average thermal conductivity of top 100 structures in each generation for the
inverse design of porous graphene with 24 candidate hole sites. (A colour version of
this figure can be viewed online.)

Fig. 8. The porous structure of the top 5 configurations with lowest thermal con-
ductivity found by CNN model. Right: three representative porous structures and their
thermal conductivity value.

Fig. 9. (Color online) The IPR for the three typical structures shown in Fig. 8. The
horizontal lines at 0.0029, 0.0025, and 0.0022 are the average value for the IPR for the
three typical structures. Note that the averaged IPR for the third structure is obviously
smaller than the other two structures. (A colour version of this figure can be viewed
online.)
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thermal conductivity. In particular, the first two typical porous
structures shown in Fig. 8 have significantly lower thermal con-
ductivity than the third typical structure. The reduction of the
thermal conductivity in the porous graphene may be related to the
localization property of the defected structure. To investigate the
mechanisms underlying the ultra-low thermal conductivity of the
porous graphene structure found by the ML approach, we examine
the localization of the phonon modes in the porous graphene. We
calculated the frequencies and eigenvectors (vibrational
morphology) of all phonon modes for these three typical porous
structures. The phonon calculations were performed with GULP
[40].

The localization of the phonon modes can be evaluated through
the inverse participation ratio (IPR), which is defined as follows for
phonon mode k,
P�1
k ¼

X
i¼1

N �X
a¼1

3
u2ia;k

�2
; (4)

where N ¼ 1872 is the total number of atoms for the porous gra-
phene, and uia;k is the a component of atom i in the eigenvector of
mode k. According to this definition, a large IPR value represents a
localized phonon mode, while a small IPR value corresponds to an
extended phonon mode. The phonon mode with a larger IPR value
is more strongly localized in space. Fig. 9 compares the IPR for
phonon modes in the three typical porous graphene structures. We
consider phonon modes with frequency within the range [0, 500]
cm�1, as low-frequency phonons are more important for thermal
transport than high-frequency phonons. These phononmodes with
IPR around 0.01 in Fig. 9 are localized modes, while phonon modes
with IPR around 0.001 are extendedmodes. The IPR for the first two
typical structures are overall higher than the third typical structure.
More specifically, the averaged value for the IPR of these three
typical porous structures are 0.0029, 0.0025, and 0.0022 (solid
black lines). The averaged value for the IPR is obviously larger in the
first two typical porous structures, which indicates that phonon
modes in the first two typical porous structures are overall more
localized as compared with the third typical porous structure.

The eigenvectors of three representative localized phonon
modes are shown in Fig. 10 (a), (b) and (c) for the three typical
porous structures. The representative localized phonon is chosen
for each structure to reflect the vibrational component of atoms in
the porous area. The arrow attached on each atom represents the
atomic vibrational component in the phonon mode. These phonon
modes have large IPR value of 0.0125, 0.0111, and 0.0118, so they are
localized modes. In these phonon modes, atoms within the porous
region have large vibrational component, while other atoms far
away from the porous region have almost no vibrational compo-
nent. In the first two porous structures, the holes are more scat-
tered in the space, so more atoms fall within the porous region. In
contrast, for the third typical porous structure, holes are distributed
in a rather compact manner, leading to smaller area for the porous
region. In other words, the first two typical porous structures have
more degrees of freedom in the porous region than the third typical
porous structure, so there are more localized phonon modes in the
first two typical porous structures. As a result, the effective defected
area in the first two porous structures is more effective in localizing
thermal energy, which leads to lower thermal conductivity in the
first two typical porous structures.



Fig. 10. (Color online) Eigenvectors (vibrational morphology) for representative
localized phonon modes for the three typical structures shown in Fig. 8. The arrow
attached to each atom represents the atomic vibrational component in the phonon
mode. (a) Phonon mode with IPR as 0.0125 and frequency u ¼ 461:5 cm�1 for the first
typical structure. (b) Phonon mode with IPR as 0.0111 and frequency u ¼ 462:5 cm�1

for the second typical structure. (c) Phonon mode with IPR as 0.0118 and frequency u ¼
464:2 cm�1 for the third typical structure. Effective porous areas are enclosed by blue
boxes. (A colour version of this figure can be viewed online.)
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4.2. Wave packet simulation

To further explore the localization effect on the thermal trans-
port, we perform wave packet simulations to investigate the effect
of the porous region on the transport of a wave packet. As shown in
Fig. 11 (a), the left and right parts of the system are perfect gra-
phene, while the typical porous structure sits in the middle of the
whole simulated system as the defected region. The wave packet is
created in the left region of the system and travels toward the
middle defected region. The middle defected region can be any one
of these three typical porous structures shown in Fig. 8. We will
Fig. 11. (Color online) Wave packet simulation for porous graphene. (a) The wave packet is cr
atomic kinetic energy distribution at time 0 ps, 2.0 ps, and 4.0 ps for (b) the first typical po
structure in Fig. 8. Less kinetic energy is localized in the third typical porous structure. The co
be viewed online.)
compare the capability of localizing thermal energy for these three
typical porous structures.

The wave packet is generated using the frequency and eigen-
vector of perfect graphene. The base for the primitive unit cell of
the honeycomb lattice structure are a!1 ¼ ð

ffiffiffi
3

p
=2;�1 =2;0Þa and

a!2 ¼ ð
ffiffiffi
3

p
=2;1 =2;0Þa, with a ¼ 2:46 Å as the lattice constant for

graphene. The corresponding reciprocal lattice base are

b
!

1 ¼ ð1 =2;�
ffiffiffi
3

p
=2;0Þb and b

!
2 ¼ ð1 =2;

ffiffiffi
3

p
=2;0Þb, with

b ¼ 4p=ð
ffiffiffi
3

p
aÞ as the reciprocal lattice constant.

In this set of simulations, the wave packet is constructed based
on the phonon mode at k

!¼ 0:1 b
!

1 þ b
!

2 with the frequency of
407.2 cm�1. The group velocity for this mode is 254.1 Å/ps from the
lattice dynamics calculation. From Fig. 11 (a), the wave packet
travels for a distance of 264.0 Å within 1.21 ps, so the velocity for
the wave packet is about 218.2 Å/ps. The velocity for the phonon
mode in the wave packet simulation is slightly smaller than that
from the lattice dynamics calculation because the system in the
wave packet simulation is mechanically deformed due to the
relaxation of the defected porous region, resulting in a weak
reduction of phonon velocity.

Fig. 11 (b) shows the distribution of the atomic kinetic energy in
the first typical structure during the wave packet simulation. The
color represents the kinetic energy (in eV) of each atom. At the
beginning of the simulation, the wave packet originates in the left
side of the structure, so there is no kinetic energy in the defected
region. The wave packet arrives at the defected region around 2.0
ps. Obvious kinetic energy is localized in the defected region after
4.0 ps, which directly reflects the high localization capability for the
first typical porous structure. Similar as the first typical porous
structure, Fig. 11 (c) shows that obvious atomic kinetic energy is
localized at the second typical porous defected region after a long
simulation time of 4.0 ps. However, Fig. 11 (d) discloses a much
weaker localization effect for the third typical porous structure. The
kinetic energy localized in the defected region is much smaller than
that in the first two typical porous structures. The wave packet
simulations thus verifies the lattice dynamics calculations in the
previous section.We can thus claim that the first two typical porous
eated in the left region at time 0 ps and travels to the porous region at time 1.21 ps. The
rous structure, (c) the second typical porous structure, and (d) the third typical porous
lor bar represents the kinetic energy for each atom. (A colour version of this figure can
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structures have larger effective porous area, which results in a
stronger localization capability. As a result, the first two typical
porous structures have lower thermal conductivity than the third
typical porous structure.

Finally, we also note that there is a small difference in the
average IPR between the first two porous structures in Fig. 8, which
indicates that the phonon modes in the first typical porous struc-
ture are more localized than those of the second typical porous
structure. This difference is attributed to the different distribution
of holes. Furthermore, from the top 5 porous structures explored by
generation 33 in Fig. 8 where the holes exhibit some periodicity
along the direction of heat flow in all five structures, it can be seen
that the specific distribution of holes is another factor to further
reduce the thermal conductivity. Thus, not only the effective porous
area but also the specific distribution of holes within the area is
critical to reducing the thermal conductivity of graphene.

5. Conclusion

In conclusion, the density of the holes and the distribution of the
holes are both important for controlling the thermal conductivity of
porous graphene, as the variation of the thermal conductivity can
be as high as 74% for porous structures with the same porosity of
0.5. We have applied an inverse design approach based on a CNN to
determine, out of a large (106) design space, the optimal porous
graphene structures that have the lowest thermal conductivity.
ThisML-based inverse designmethodology is highly efficient, as we
needed to only simulate about 103 structures out of the total 106

possible structures. Furthermore, the ML approach found porous
structures that successfully lowered the thermal conductivity by
localizing phonon modes within the porous regions within the
graphene sheet. This localization mechanism is further verified by
lattice dynamics calculations and wave packet simulations. The ML
model finds that holes that are randomly distributed transverse to
the direction of heat flow, but that exhibit some periodicity along
the direction of heat flow, represent the optimal distribution to
minimizing the thermal conductivity for porous graphene. Our
work shows ML approach is able to effectively find the optimal
structures exhibiting the correct physics without any physical
insight.
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