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A B S T R A C T

There has been significant recent interest in creating, modeling, and exploiting the novel
functionality afforded by odd elastic solids, which are a specific class of active matter whose
behavior cannot be described by a free energy function. As a result, the mechanical behavior
of such solids can be described by a non-symmetric elasticity tensor which means they can be
mechanically active, and thus do work on their surroundings through quasistatic deformation
cycles without energetic gain or loss terms explicitly appearing in the solid’s equation of state.
However, previous incarnations of such solids have required the usage of active elements
coupled with robotic machinery powered by independent external energy sources to operate. As
such, it is unclear whether the non-symmetric elasticity of these solids can be developed using
only passive elements that do not require the usage of energy sources, and furthermore how
nonreciprocity in elastic media enables non-symmetric elasticity in elastic solids or mechanical
activity. In this work, we propose the notion of chiral, nonreciprocal elasticity, which represents
a generic route to enabling 2D, isotropic elastic solids exhibiting non-symmetric elasticity.
Chiral, nonreciprocal elasticity describes elastic behaviors that result from coupling chirality
with nonreciprocity—specifically, (1) the modulation of the elastic properties depending on the
mode and direction of deformation and (2) the nonreciprocal coupling of different deformation
fields, both of which enable the solid to exhibit a non-symmetric elasticity tensor. To motivate
this, we introduce an isotropic 2D chiral metamaterial made of passive chiral elements that,
by exploiting local geometric asymmetry, behaves in a chiral, nonreciprocal elastic fashion.
We derive, based on the mechanics of a discrete model of this chiral element, the resulting
continuum field equations and constitutive relationships that capture the chiral, nonreciprocal
elastic behavior. Then, we establish a thermodynamic framework of energy balance and
conservation of chiral, nonreciprocal elastic solids, based on which we demonstrate the ability
of the proposed chiral metamaterial to act as a source of mechanical work when used in specific
quasistatic deformation cycles, though no energy is dissipated by its passive elements. Finally,
we demonstrate through numerical finite element simulations the practical implementation
of the deformation cycles, while elucidating the specific conditions needed for the chiral
metamaterial to exhibit linear, chiral nonreciprocal elastic behavior throughout the deformation
cycle, and thus reveal mechanical activity.

. Introduction

A passive, elastic solid operating under thermodynamic equilibrium interacts with its surroundings through reversible processes,
nd thus its deformations must be path-independent, which requires knowledge of only the initial and final equilibrium states (De-
root and Mazur, 1962). Deviation from this passive behavior often requires an active solid that is capable of violating energy
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conservation either by irreversible interactions with its surrounding environment, or through the motion or activity of internal
mechanisms and energy sources. Therefore, motivated by the activity of motile organisms that range from animal flocks to bacterial
swarms (Kumar et al., 2014; Patteson et al., 2018; Bowick et al., 2022), there has been significant interest in designing and obtaining
biomimetic active solid metamaterials, which can violate thermodynamic equilibrium, and thus do work on their surroundings.
Specifically, understanding the activity of living active matter has led to the development of self-propelled colloids (Theurkauff et al.,
2012; Palacci et al., 2013), active filaments and molecular motors (Schaller et al., 2010; Sumino et al., 2012; Sanchez et al., 2012),
self-propelled polar disks and rods (Deseigne et al., 2010; Kudrolli et al., 2008) and robot swarms (Rubenstein et al., 2014; Fruchart
et al., 2021). This has also led to various routes enabling active solid metamaterials to achieve thermodynamic non-equilibrium (Das
et al., 2020; Shankar et al., 2020; Asadchy et al., 2020; Nassar et al., 2020b). Most of these routes involve the use of space–time
modulators to break time reversal symmetry (Asadchy et al., 2020; Taravati and Caloz, 2017; Correas-Serrano et al., 2016; Hadad
et al., 2015; Shaltout et al., 2015; Estep et al., 2014; Fang et al., 2012a,b; Trainiti et al., 2019; Huang and Zhou, 2019; Lu and
Norris, 2020), dynamics to achieve activity and non-reciprocity (Trainiti et al., 2019; Huang and Zhou, 2019; Nash et al., 2015;
Zhao et al., 2020), mechanisms of feedback/control to generate nonreciprocal linear or angular momentum (Rosa and Ruzzene,
2020; Sirota et al., 2020; Brandenbourger et al., 2019), or mechanisms of local sensing, actuation and control to create motion,
generate work, and violate thermodynamic equilibrium (Chen et al., 2021b). These routes have led to the development of active
robotic metamaterials (Brandenbourger et al., 2019), gyroscopic topological metamaterials (Nash et al., 2015), and metamaterials
for realizing non-Hermitian (Li et al., 2019a; Scheibner et al., 2020; Ghatak et al., 2019; Gong et al., 2018; Li et al., 2019b; Kunst
and Dwivedi, 2019; Yao et al., 2018) and nonreciprocal (Taravati and Caloz, 2017; Correas-Serrano et al., 2016; Hadad et al., 2015;
Shaltout et al., 2015; Estep et al., 2014; Sounas et al., 2013; Jin and Argyropoulos, 2019; Coulais et al., 2017; He et al., 2018)
physical systems.

There is also significant interest in developing continuum constitutive models that can describe the behavior of active material
ystems (Markovich et al., 2019; Sabrina et al., 2015; Scheibner et al., 2020; You et al., 2020; Tjhung et al., 2017). In active matter,
he active interactions between the material blocks may drive the material system out of thermodynamic equilibrium. The averaging
f these active interactions at the continuum level may result in force or torque dipoles that give rise to active stresses, which can
e symmetric (Markovich et al., 2019; Voituriez et al., 2005), chiral (Markovich et al., 2019; Tjhung et al., 2017; Soni et al.,
015; Sabrina et al., 2015), or non-symmetric (Condiff and Dahler, 1964; Naganathan et al., 2014, 2016). These active stresses can
roduce spontaneous motion of the system particles, and thus can drive the system to break thermodynamic equilibrium. Recently,
dd viscosity was introduced to describe the behavior of active, chiral fluids with asymmetric active stresses that can break parity
nd time-reversal symmetries (Banerjee et al., 2017) or can achieve odd (or Hall) viscous behaviors (Avron, 1998). In chiral fluids,
orque dipoles that produce non-conservative angular momenta can be developed, which give rise to energy gain/loss (Banerjee
t al., 2017; Shankar et al., 2020). In analogy, the concept of odd elasticity was recently introduced to describe the behavior of
ctive solids as elastic continua with non-symmetric elasticity tensors (Scheibner et al., 2020), whose mechanical behavior cannot
e described by a free energy function. As a result, odd elastic solids can be active through quasistatic deformations, as the non-
ymmetric elasticity tensor enables energy non-conservation, which, importantly, can be achieved without energy gain/loss terms
xplicitly appearing in the solid’s equations of motion.

Odd elastic solids have been proposed theoretically based on active springs with nonreciprocal forces (Scheibner et al., 2020),
nd experimentally based on active elements of metabeams with piezoelectric patches (Chen et al., 2021b). Whereas these
reviously proposed odd elastic solids can exhibit asymmetric elasticity, and thus be mechanically active at zero-frequency, achieving
symmetric elasticity required the presence of external (independent) energy sources such as batteries (Scheibner et al., 2020), or
lectrical circuitry (Chen et al., 2021b) along with controllers to actuate and control the motion of the utilized active components
uch that they can develop nonreciprocal forces/torques. An important question thus arises, which we resolve here—given this
eed for active elements with external sources of energy and momentum to obtain asymmetric elasticity, and thus odd elastic active
olids, can such solids be developed using only passive elements that do not require external sources of energy or momentum
o operate? Furthermore, and of equal importance, whereas it was revealed that Parity symmetry is broken by non-symmetric
lasticity (Scheibner et al., 2020; Chen et al., 2021b), which results in nonreciprocal behaviors that can drive activity in material
ystems (Fruchart et al., 2021; You et al., 2020), it is not clear how nonreciprocity in elastic media enables non-symmetric elasticity,
r – in general – activity in elastic solids at zero-frequency.

Here, we propose the notion of chiral, nonreciprocal elasticity - a generic route to enabling 2D isotropic solids that behave linear
elastically and exhibit a non-symmetric elastic response. Chiral, nonreciprocal elasticity describes elastic behaviors that result due
to combining nonreciprocity, which causes the mechanical response and the elastic properties of the solid to differ depending on
he direction of the applied loading (Shaat, 2020; Coulais et al., 2017), with chirality, where the structure of the solid cannot

be superimposed on its mirror transformation through any translation or rotation (Lakes, 2001). Because chirality enables the
reciprocal coupling of different deformation fields (e.g., dilation to rotation/twist and dilation to shear) that would otherwise require
anisotropy to achieve (Fernandez-Corbaton et al., 2019; Wu et al., 2019; Liu and Hu, 2016), the addition of non-reciprocity in the
chiral interactions enables chiral, nonreciprocal elastic solids to have non-symmetric elasticity tensors and be mechanically active—
specifically, mechanical work can be developed by using chiral, nonreciprocal elastic solids through closed quasistatic deformation
cycles, and thus such solids can act as sources of mechanical work. In addition to the asymmetric elasticity manifested in odd
elasticity, chiral, nonreciprocal elasticity also provides a new route to making solids whose elastic response is non-symmetric without
external sources of energy, circumventing the aforementioned limitations of the existing odd elastic, active metamaterials (Trainiti
et al., 2019; Nash et al., 2015; Rosa and Ruzzene, 2020; Sirota et al., 2020; Brandenbourger et al., 2019; Chen et al., 2021b; Li
2

et al., 2019a; Scheibner et al., 2020). We first introduce chirality within the context of 2D isotropic elasticity, and then introduce the
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formalism of chiral, nonreciprocal elasticity. We then introduce a 2D isotropic chiral metamaterial made of passive chiral elements
that is chiral, nonreciprocal elastic, and derive, based on the mechanics of a discrete model of the chiral element, the continuum
field equations and constitutive relationships that capture the chiral, nonreciprocal elastic behavior of the chiral metamaterial. Next,
we develop a thermodynamic framework of energy balance and energy conservation of chiral, nonreciprocal elastic solids, based
on which we demonstrate the ability of the chiral metamaterial to violate static thermodynamic equilibrium by developing work
through specific quasistatic deformation cycles though no energy is dissipated/consumed by its passive, chiral elements. Finally, we
show through numerical finite element simulations, the practical implementation of the deformation cycles, while elucidating the
specific conditions needed for the chiral metamaterial to exhibit linear, chiral nonreciprocal behavior throughout the deformation
cycle, and thus reveal mechanical activity.

2. Chiral, nonreciprocal elasticity

Before introducing the specific notion of chiral, nonreciprocal elasticity, we first introduce and define chirality within the context
f 2D linear elasticity. A tensor is chiral if it breaks the reflection–rotation symmetry such that its parity inversion is not equivalent
o its rotation in the spatial space (Scheibner et al., 2020). In 3D, even-rank tensors, e.g., Cauchy elasticity tensors 𝐶𝑖𝑗𝑘𝑙, obey the

reflection–rotation symmetry, and thus they are always achiral (Scheibner et al., 2020; Lakes, 2001). However, in 2D, even-rank
tensors can be chiral with broken reflection–rotation symmetry (Scheibner et al., 2020). Chiral solids are distinct from their achiral
counterparts with their ability to exhibit coupling between different deformation modes, e.g., coupled dilation–rotation, coupled
dilation–twist, and coupled dilation–shear (Liu et al., 2012; Frenzel et al., 2017, 2019; Nassar et al., 2020a; Fernandez-Corbaton
et al., 2019; Wu et al., 2019; Liu and Hu, 2016). Whereas these coupled deformations can also be exhibited by anisotropic solids,
here we demonstrate that the existence of such coupled deformations in 2D isotropic solids is possible only through chirality, while
elucidating the chiral elasticity tensor of 2D isotropic, chiral solids. We then demonstrate the chiral, nonreciprocal elasticity tensor
that enables mechanical activity of 2D isotropic solids.

2.1. Chiral elasticity tensor

Consider a 2D isotropic elastic solid whose motion can be described by the two in-plane displacements 𝑢𝑖 (𝐱)→(𝑢𝑥 (𝐱) and 𝑢𝑦 (𝐱)),
where 𝐱 is the spatial position in the 2D domain of the elastic solid. The equations of motion of the solid can be written, as follows:

𝜏𝑗𝑖,𝑗 + 𝑓𝑖 = 𝜌𝑢̈𝑖 (1)

where ■,𝛼 = 𝜕■∕𝜕𝛼, ■̈ = 𝜕2■∕𝜕𝑡2, 𝜏𝑖𝑗 are the components of the stress tensor, and 𝑓𝑖 are the components of the external body force
vector.

To get insight into the fact that the classical elasticity tensor is achiral, the fourth-rank elasticity tensor 𝐶𝑖𝑗𝑘𝑙 is transformed to
a rank-two elasticity tensor 𝐶𝛼𝛽 by employing the following kinematical fields of the 2D isotropic solid (Scheibner et al., 2020):

𝛾1 = 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥
𝛾3 = 𝑢𝑥,𝑥 − 𝑢𝑦,𝑦
𝛾4 = 𝑢𝑥,𝑦 + 𝑢𝑦,𝑥

(2)

where the 2D isotropic solid can exhibit deformations including dilations (volumetric strains) 𝛾1 and 𝛾3, rotation 𝛾2, and shear 𝛾4.
Classical elasticity assumes the existence of a free energy function of 𝛾1, 𝛾2, 𝛾3, and 𝛾4 such that the energy per unit volume 𝑤 can
be expressed, as follows:

𝑤 = 1
4

(

𝐵̂1𝛾21 + 𝐶̂𝛾22 + 𝐵̂2𝛾23 + 𝜇̂𝛾24
)

(3)

where 𝐵̂1 and 𝐵̂2 are bulk elastic moduli of the volumetric straining of the solid with 𝛾1 and 𝛾3, respectively, while 𝐶̂ and 𝜇̂ are
torsional and shear elastic moduli, respectively.

According to Eq. (3), the constitutive law can be obtained in the following form 𝜎𝛼 = 𝐶𝛼𝛽𝛾𝛽 , where 𝜎𝛼 = 2𝜕𝑤∕𝜕𝛾𝛼

⎧
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⎪

⎨
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⎪
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⎪
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⎪

⎪
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⎪

⎪

⎭

, 𝑖.𝑒., 𝜎𝛼 = 𝐶𝛼𝛽𝛾𝛽 (4)

The stress vector 𝜎𝛼 in Eq. (4) can be related to the stress tensor 𝜏𝑖𝑗 , as follows:

𝜎1 = 𝜏𝑥𝑥 + 𝜏𝑦𝑦
𝜎2 = 𝜏𝑦𝑥 − 𝜏𝑥𝑦
𝜎3 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦

(5)
3

𝜎4 = 𝜏𝑥𝑦 + 𝜏𝑦𝑥
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The 2D elasticity tensor 𝐶𝛼𝛽 in Eq. (4) is achiral, as its parity inversion is equal to its rotation in the spatial space. This can
be verified by inverting the elasticity tensor 𝐶𝛼𝛽 about one spatial coordinate (Scheibner et al., 2020), where 𝐶𝛼𝛽 being a diagonal
tensor is the same before and after the spatial inversion.

The elasticity tensor 𝐶𝛼𝛽 can be chiral when coupling is realized between two different kinematical fields. For 2D isotropic solids,
coupling can be achieved between dilation 𝛾1 and rotation 𝛾2 and between dilation 𝛾3 and shear 𝛾4 such that the energy density
unction 𝑤 becomes:

𝑤 = 1
4

(

𝐵̂1𝛾21 + 𝐶̂𝛾22 + 𝐵̂2𝛾23 + 𝜇̂𝛾24 + 2𝐴̂𝛾1𝛾2 + 2𝐾̂𝛾3𝛾4
)

(6)

here 𝐴̂ is an elastic modulus of dilation–rotation coupling, and 𝐾̂ is an elastic modulus of dilation–shear coupling. Accordingly,
he constitutive law 𝜎𝛼 = 𝐶𝛼𝛽𝛾𝛽 can be obtained, and thus the elasticity tensor 𝐶𝛼𝛽 becomes:

𝐶𝛼𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂1 𝐴̂ 0 0
𝐴̂ 𝐶̂ 0 0
0 0 𝐵̂2 𝐾̂
0 0 𝐾̂ 𝜇̂

⎤

⎥

⎥

⎥

⎥

⎦

(7)

ccording to the chiral elasticity tensor shown in Eq. (7), the chiral modulus 𝐴̂ enables dilatational deformations when the chiral
olid is subjected to torques/rotations, and rotations when the solid is subject to applied pressure/dilation, while the chiral modulus
̂ enables shear deformations due to normal stresses/strains and normal strains due to shear stresses/strains. Importantly, these
hiral deformations are reciprocal, meaning that – for example – if dilatational deformation 𝐷1 resulted from an applied rotation
𝑅1, the same rotation 𝑅1 would result from an applied dilatational deformation 𝐷1.

The chirality of the elasticity tensor 𝐶𝛼𝛽 in Eq. (7) can be verified by implementing inversion and rotation of the tensor about
one spatial coordinate, e.g., 𝑥-axis. After the inversion about 𝑥-axis 𝐶𝛼𝛽 → 𝑃𝛼𝑟𝐶𝑟𝑞𝑃𝑞𝛽 , 𝐶𝛼𝛽 becomes:

𝐶𝛼𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂1 −𝐴̂ 0 0
−𝐴̂ 𝐶̂ 0 0
0 0 𝐵̂2 −𝐾̂
0 0 −𝐾̂ 𝜇̂

⎤

⎥

⎥

⎥

⎥

⎦

(8)

hile after the rotation about 𝑥-axis 𝐶𝛼𝛽 → 𝑅𝛼𝑟𝐶𝑟𝑞𝑅𝑞𝛽 , 𝐶𝛼𝛽 becomes:

𝐶𝛼𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂1 𝐴̂ 0 0
𝐴̂ 𝐶̂ 0 0
0 0 𝐵̂2 + 𝑡 𝐾̂ + 𝑑
0 0 𝐾̂ + 𝑑 𝜇̂ − 𝑡

⎤

⎥

⎥

⎥

⎥

⎦

(9)

here

𝑃𝛼𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑅𝛼𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 cos 𝜃 sin 𝜃
0 0 −sin 𝜃 cos 𝜃

⎤

⎥

⎥

⎥

⎥

⎦

𝑡 = −
((

𝐵̂2 − 𝜇̂
)

sin2𝜃 − 2𝐾̂cos 𝜃 sin 𝜃
)

𝑑 = −
((

𝐵̂2 − 𝜇̂
)

cos 𝜃 sin 𝜃 + 2𝐾̂sin2𝜃
)

(10)

According to Eqs. (8) and (9), the elasticity tensor 𝐶𝛼𝛽 is achiral if and only if 𝐴̂ = 0 and 𝐾̂ = −𝑑∕2, and it is chiral otherwise.

.2. Chiral, nonreciprocal elasticity tensor

As discussed above, the elasticity tensor in Eq. (7) is chiral, except for specific values of the chiral elastic constants 𝐴̂ and 𝐾̂.
n this section, we propose a novel form of the elasticity tensor that captures the coupled effects of chirality with nonreciprocity.
ecently, the concept of nonreciprocal elasticity (Shaat, 2020) was introduced to demonstrate a new class of elastic materials that
an modulate their elastic properties depending on the direction of the applied load/deformation. Therefore, these materials can
reak both time-reversal symmetry and deformation symmetry of various physical systems (Coulais et al., 2017; Asadchy et al.,
020). Fig. 1(a) shows an illustration of this directional nonreciprocal elasticity, where the elastic modulus of the material is different
hen inverting the applied force/deformation along the same direction. The verification of the directional nonreciprocity can be
one by acting on the material with a deformation field that is spatially inverted, while measuring the elastic modulus/stiffness of
he solid material before and after the inversion of the deformation field. The material is reciprocal if the elastic modulus is the
ame before and after the field inversion, and it is nonreciprocal otherwise.

Here, we propose a new type of nonreciprocity that is distinct from the aforementioned directional nonreciprocity through
he coupling with chirality. This new ‘‘chiral, nonreciprocal elasticity ’’ depends on the coupling between two different deformation
ields, and thus for 2D isotropic solids it is contingent on chirality. The chiral, nonreciprocal elasticity can be realized by adding
4
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Fig. 1. The concept of Chiral, Nonreciprocal Elasticity. (a) Illustration of directional nonreciprocity. A solid material is tested under spatially inverted dilation
(volumetric strain) ±𝛾1, where the elastic modulus 𝐵±

1 = 𝜎±1 ∕ ± 𝛾1 is different when inverting the applied strain ±𝛾1. (b) and (c) Illustration of Form I of chiral
nonreciprocity. (b) The elastic modulus 𝛽1 achieves non-symmetric coupling between dilation 𝛾1 and rotation 𝛾2, where the positive dilation +𝛾1 causes positive
rotation +𝛾2 (left), while the positive rotation +𝛾2 causes negative dilation −𝛾1 (right). (c) The elastic modulus 𝛽2 achieves non-symmetric coupling between
dilation 𝛾3 and shear 𝛾4, where the positive dilation +𝛾3 causes positive shear +𝛾4 (left), while the positive shear +𝛾4 causes negative dilation −𝛾3 (right). (d)
Illustration of Form II of chiral nonreciprocity. A chiral, nonreciprocal elastic solid is tested under dilation 𝛾1, where the elastic modulus is 𝐵̂1 = 𝜎1∕𝛾1 when
acting on the solid with dilation 𝛾1 only, while it becomes 𝐵̂1 + 𝜆1 when acting on the solid with both dilation 𝛾1 and rotation 𝛾2.

nonreciprocity to a chiral solid, such that the chiral elasticity tensor 𝐶𝛼𝛽 in Eq. (7) is modified, and thus the constitutive law
𝜎𝛼 = 𝐶𝛼𝛽𝛾𝛽 becomes:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎±1
𝜎±2
𝜎±3
𝜎±4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂±
1 + 𝜆±1 𝐴̂± + 𝛽±1 0 0

𝐴̂± − 𝛽±1 𝐶̂± + 𝜆±2 0 0
0 0 𝐵̂±

2 + 𝜆±3 𝐾̂± + 𝛽±2
0 0 𝐾̂± − 𝛽±2 𝜇̂± + 𝜆±4

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

±𝛾1
±𝛾2
±𝛾3
±𝛾4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(11)

where the superscripts ‘±’ indicate the change in the elastic modulus value by the spatial inversion of the applied load or deformation
acting on the solid. 𝜆𝑖 → 𝜆1, 𝜆2, 𝜆3, and 𝜆4 and 𝛽𝑖 → 𝛽1 and 𝛽2 are elastic moduli that appear in the elasticity tensor after the
addition of nonreciprocity. In the rest of the paper, the superscripts ‘±’ are eliminated for writing convenience, while accounting
for the change in values of the elastic moduli upon changing the direction of the applied stress/deformation.

2.2.1. First form of chiral, nonreciprocal elasticity
In addition to the direction-dependence of the elastic moduli, the elasticity tensor in Eq. (11) indicates two forms of chiral,

nonreciprocal elasticity. The first form of chiral, nonreciprocal elasticity (Form I) can be defined by the contrast in the elastic
moduli of the chiral coupling between two deformation fields, and this – in turn – makes the elasticity tensor 𝐶𝛼𝛽 asymmetric as
its skew-symmetric part depends on the moduli 𝛽1 and 𝛽2. For instance, in Eq. (11), the dilation 𝛾1 is coupled with the rotation 𝛾2
such that the dilatational stress 𝜎1 can produce rotation, and the torsional stress 𝜎2 can produce dilation. If the elastic modulus of
rotation due to 𝜎1 is the same as the elastic modulus of the dilation due to 𝜎2 (the coupling elastic modulus is the same), the elastic
solid is reciprocal, while it is nonreciprocal otherwise. The parameter 𝛽1 is an elastic modulus of nonreciprocal dilation–rotation
coupling, as the positive dilation causes a positive rotation, while – in contrast – the positive rotation gives a negative dilation,
when 𝐴̂ = 0 and 𝛽1 > 0 (Fig. 1(b)). Similarly, the parameter 𝛽2 is an elastic modulus of nonreciprocal dilation–shear coupling, as the
positive dilation causes a positive shear, while – in contrast – the positive shear gives a negative dilation, when 𝐾̂ = 0 and 𝛽2 > 0
(Fig. 1(c)). Beyond these extreme cases, at which the chiral moduli 𝐴̂ and 𝐾̂ are zero, the behavior of a real chiral solid such as
the one proposed later in this paper may require 𝐴̂ ≠ 0 and 𝐾̂ ≠ 0, while the nonreciprocal behavior is still maintained by having
the moduli 𝛽1 ≠ 0 and 𝛽2 ≠ 0, in which the dilation–rotation coupling or the dilation–shear coupling is in general nonreciprocal.
The verification of this form of chiral nonreciprocity can be done by deforming the chiral solid with only one of the two coupled
deformation fields at a time while measuring the contrast in the coupling modulus when changing the applied deformation field.

2.2.2. Second form of chiral, nonreciprocal elasticity
Solids are often deformed through the application of different deformation fields, which can be coupled if the solid is chiral.

Therefore, we anticipate situations where the elastic moduli of the solid may change depending on how many coupled deformation
5

fields are applied. This gives the second form of chiral nonreciprocal elasticity (Form II), which can be defined by the change in the
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Fig. 2. Chiral, nonreciprocal elastic 2D metamaterial made of passive chiral elements. (a) The lattice structure of the chiral metamaterial. The circles are rigid
particles that exhibit three degrees of freedom 𝑢𝑥, 𝑢𝑦, and 𝜃𝑧 and are connected by elastic ligaments that can stretch and bend. (b) The Chiral element of the 2D
metamaterial, which consists of a central rigid circle connected to four other rigid circles via four solid, elastic ligaments. The chirality is achieved by the chiral
distribution of the ligaments around the central circle. (c) The geometry of the elastic ligament that enables local geometrical asymmetry and nonreciprocity of
the chiral metamaterial.

elastic modulus of the solid depending on whether it is deformed with only one deformation field or multiple deformation fields
(Fig. 1(d)). For instance, due to the dilation–rotation coupling, we anticipate that the dilatational modulus 𝐵̂1 varies depending on
the following two scenarios: (1) we act on the chiral solid with dilation alone (i.e., 𝛾1 ≠ 0 but 𝛾2 = 0), and (2) the chiral solid is
pre-deformed by rotation 𝛾2 ≠ 0, while we act on it with dilation 𝛾1. In the first scenario, where only dilation 𝛾1 is applied, the
dilatational stress 𝜎1 ∝ 𝛾1, and the constant of proportionality is the elastic modulus 𝐵̂1 (i.e., 𝜎1 = 𝐵̂1𝛾1). In the second scenario,
where the chiral solid is pre-deformed by rotation 𝛾2, the constant of 𝜎1 − 𝛾1 proportionality is changed to become 𝐵̂1 +𝜆1, where 𝜆1
is the change in the dilatational modulus between the two scenarios. Thus, the modulus 𝜆1 is developed only when the chiral solid
is pre-deformed by rotation while acting on it with dilation. Similarly, the modulus 𝜆2 is developed when we act on the chiral solid
with rotation, while the solid is pre-deformed by dilation. In the constitutive law in Eq. (11), the elastic moduli 𝜆𝑖 are developed
only when the isotropic chiral solid is deformed by two different, but coupled, deformation fields. We emphasize that the described
constitutive behavior of the chiral, nonreciprocal elastic solids is still within the context of linear elasticity, as the stress is a linear
function of the deformation, though the system is nonlinear as the elastic constants of the constitutive model in Eq. (11) change
depending on (1) the direction of the applied deformation (not the value of the deformation), and (2) whether the solid is subject
to coupled deformation fields or not.

3. Chiral, nonreciprocal elastic 2D isotropic metamaterial made of passive chiral elements

Having proposed chiral, non-reciprocal elasticity in the form of the elasticity tensor in Eq. (11), the question remains—what
does a solid that exhibits that constitutive behavior look like? Odd elastic solids have been recently developed to describe a class of
solid materials with non-symmetric elasticity (Scheibner et al., 2020; Chen et al., 2021b; Brandenbourger et al., 2022). This route of
obtaining non-symmetric elasticity depends on using active energy sources at the solid’s microstructure, where current designs of odd
elastic solids utilize active elements operating under thermodynamic non-equilibrium, which requires the presence of independent
(external) energy sources to actuate and control the motion of the internal active components. For instance, piezoelectric actuators
operated by external energy sources along with feed-forward controllers were used to realize odd elastic, active meta-beams, which
achieved non-symmetric elasticity (Chen et al., 2021b). Similarly, circular arrays of active joints with externally powered motors and
micro-controllers were used to realize autonomous, active robots with non-symmetric elastic response (Brandenbourger et al., 2022).
Given this need for active elements and energy sources, the development of metamaterials with non-symmetric elasticity using only
passive elements that do not require external sources of energy to operate has been out of reach. Here, we resolve this challenge
and demonstrate a 2D isotropic metamaterial that is made entirely from passive chiral elements and is capable of developing a non-
symmetric elastic response enabled by the chiral, nonreciprocal elasticity described above and without any external energy sources.
The metamaterial is chiral, and thus it can achieve coupling between different deformation fields, while, to enable nonreciprocity,
the chiral metamaterial is made with local (microscopic) geometrical asymmetry (Fig. 2).

The specific structure of the considered chiral metamaterial is shown in Fig. 2(a), which is a 2D lattice of chiral elements, each
of which consists of a central rigid circle that is connected to other four rigid circles by four elastic ligaments (Fig. 2(b)). The local
geometrical asymmetry of the considered chiral metamaterial is manifested in the ligaments being made with curved portions at their
ends, and thus the ligaments are curved around the rigid circles, as shown in Fig. 2(c). The geometrical asymmetry is defined by the
geometrical angle 𝜃0 such that when 𝜃0 = 0, the ligaments are straight (without curved ends) and tangent to the rigid circles, and thus
the chiral metamaterial has no asymmetries and becomes reciprocal. The rigid circle possesses three kinematical degrees of freedom,
i.e. two displacements 𝑢𝑥 and 𝑢𝑦 and rotation (spin) about its center 𝜃𝑧, and the ligaments are elastic (Bernoulli–Euler) beams that
can stretch and bend, with elastic modulus 𝐸, area moment of inertia 𝐼 , and cross-sectional area 𝐴, and thus the chiral element is
6
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Fig. 3. Nonreciprocal deformation fields of the chiral element. Spatially inverted (a) dilation ±𝛾1, (b) rotation ±𝛾2, and (c) spin ±𝜃𝑧 of the chiral element. In
(a) and (b), the rigid circles translate but do not spin. In (c), all circles are only spin with 𝜃𝑧. All figures obtained through finite element simulations using
ABAQUS.

comprised only of passive components. Two parameters define the chiral geometry of the metamaterial; the chiral angle 𝛼0 and the
lattice length 𝑎, where the radius of the circle 𝑅 = (𝑎∕2) sin 𝛼0, and the length of the straight portion of the ligament 𝐿 = 𝑎 cos 𝛼0
(Fig. 2). It is important to note that the ligaments are stress-free in the initial curved configuration shown in Fig. 2(c). Furthermore,
the ligaments are fixed to the circles at only one point, the tied joints labeled in Fig. 2(c). As the chiral metamaterial is subject to
deformation, the ligaments are allowed to either wrap further around or deform away from the circles. Further attachment to the
circles are modeled using normal contact forces; there are no tangential, or dissipative frictional contact forces that are considered.

The chiral metamaterial enables asymmetric elasticity by replacing the active elements that have been used in current designs
of odd elastic, active solids (Scheibner et al., 2020; Chen et al., 2021b) with the chiral element shown in Fig. 2(b), which
behaves in a chiral, nonreciprocal elastic fashion. By means of finite element simulations using the commercial simulation package
ABAQUS (Smith, 2009), the mechanism enabling chiral, nonreciprocal elastic behavior of the chiral element is demonstrated in
Fig. 3 for different deformation modes. In all cases, enabled by the geometrical asymmetry, certain directions of deformation enable
stiffening by pulling the elastic ligaments tighter and straighter around the rigid circles, whereas other directions of deformation
enable softening by causing the elastic ligaments to detach from the rigid circles by becoming more curved. For concreteness,
consider the case of dilation in Fig. 3(a). There, positive dilation results in the stretching of the elastic ligaments, and thus the curved
ends of the ligament come into contact with the circles, resulting in a relatively stiff mechanical response. In contrast, if negative
dilation is prescribed, the elastic ligaments may, except for the fixed points, detach from the rigid circles, while becoming more
curved, resulting in a relatively soft mechanical response. Thus, the chiral element exhibits two different stiffness values depending
on the direction of the applied loading. The same mechanism can be observed in Figs. 3(b) and 3(c) depending on the direction of
applied loading, resulting in the nonreciprocal elastic response that we aim to capture, below, using a chiral, nonreciprocal elasticity
tensor.

We emphasize that each ligament in the chiral element is a passive, elastic component that conserves energy when deformed in
isolation from the chiral structure. Each circle is also a passive component that rigidly moves. However, when the curved ligament
is tied to and comes into contact with the rigid circles, the result is a structure of multiple passive components (see Fig. 2(b)),
which behaves in a chiral, nonreciprocal elastic fashion, and thus this minimal structure enables asymmetric elasticity of the
chiral metamaterial. The chiral, nonreciprocal elasticity of the chiral metamaterial emerges due to (1) the chiral distribution of
the ligaments around the rigid circles, and (2) the nonreciprocity enabled by making the ends of the ligaments curved. Thus, if the
ligaments are not curved or are not chiral with respect to the circles, the chiral, nonreciprocal elasticity is suppressed.

Remark 1. Microscopic geometrical asymmetries in elastic media such as the curved ligaments in Fig. 2(c) enable the elasticity
and the nonreciprocal behavior of the solid to differ depending on how it is deformed. Therefore, it becomes crucial to know a
priori what nonreciprocal behavior and its associated deformations are going to be considered when determining the continuum
field equations and the constitutive model of the nonreciprocal elastic solid. As our objective is to reveal the chiral, nonreciprocal
elasticity of the chiral metamaterial, here we focus on the global nonreciprocal behavior of the chiral metamaterial by considering
the specific class of deformations which satisfy the following conditions. First, those which make the mechanical response of the
chiral metamaterial be isotropic. Second, those which make the stress a linear function of the strain only. Third, those which ensure
that the chiral metamaterial conserves linear momentum.

3.1. Constitutive modeling

Having established the physical mechanisms, as shown in Figs. 2 and 3, enabling the emergence of nonreciprocal elastic
behaviors, we now show the formalism of the continuum constitutive model of the chiral, nonreciprocal elasticity of the considered
chiral metamaterial. Because an asymmetric elastic response cannot emerge from a free energy function (Scheibner et al., 2020), we
develop a discrete model of the chiral element highlighted in Fig. 2(b) based on Newtonian mechanics, from which we determine the
equivalent, elastic continuum field equations of the chiral metamaterial, and then the constitutive model of the chiral, nonreciprocal
elasticity. Specifically, we determine the equations of motion and the constitutive relationships of the chiral metamaterial under
deformations that satisfy the conditions stated above in Remark 1. To have the stress be proportional to strain, which is required
7
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to conserve linear momentum, we assume homogeneous deformation of all ligaments, i.e. all ligaments along the same direction
exhibit similar deformations. Isotropy requires that the chiral metamaterial exhibits the same stiffness along different axes, which
also requires that the chiral metamaterial should exhibit a uniform stiffness for all ligaments for a given mode of deformation.
Examples of deformations that satisfy these conditions are shown in Fig. 3, where all ligaments of the chiral element are either
compressed or stretched depending on the direction of the applied deformation.

3.1.1. Discrete, Newtonian mechanics
We consider the chiral element shown in Fig. 2(b) in which each circle is a rigid particle of mass 𝑚 and mass rotatory inertia 𝐽

hat possesses three kinematical degrees of freedom, i.e., 𝑢𝑥, 𝑢𝑦 and 𝜃𝑧, while the ligaments are Bernoulli–Euler beams. The rotation
f the circle 𝜃𝑧 is a spin field that is distinct from the rotation (𝑢𝑥,𝑦−𝑢𝑦,𝑥) that would be applied at the external boundary of the chiral

element, as illustrated by comparing Figs. 3(b) and 3(c). Interaction forces and couples are developed between the rigid circles that
move and rotate through the elastic ligaments that bend and stretch, such that the forces and couples of interactions between the
central circle 𝑖, 𝑗 and one of its neighbor circles 𝑞 can be determined in the form:

⎧

⎪

⎨

⎪

⎩

𝐹 𝑙𝑥
𝐹 𝑙𝑦
𝑀 𝑙

𝑧

⎫

⎪

⎬

⎪

⎭

=

⎡

⎢

⎢

⎢

⎣

𝑘𝑙𝑥𝑥 𝑘𝑙𝑥𝑦 𝑘𝑙𝑥𝜃
𝑘𝑙𝑦𝑥 𝑘𝑙𝑦𝑦 𝑘𝑙𝑦𝜃
𝑘𝑙𝜃𝑥 𝑘𝑙𝜃𝑦 𝑘𝑙𝜃𝜃

⎤

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑢𝑖,𝑗𝑥 − 𝑢𝑞𝑥
𝑢𝑖,𝑗𝑦 − 𝑢𝑞𝑦
𝜃𝑖,𝑗𝑧 + 𝜃𝑞𝑧

⎫

⎪

⎬

⎪

⎭

(12)

where 𝑘𝑙𝛼𝛽 are the various equivalent stiffnesses of the ligament 𝑙 that connects the central circle 𝑖, 𝑗 and its neighbor circle 𝑞. The
stiffnesses 𝑘𝑙𝛼𝛽 can be related to the generalized rigidities of the ligament, as follows:

𝑘𝑙𝑥𝑥 = 𝑆𝑙𝑥̂𝑥̂cos
2𝛼𝑙 + 𝑆𝑙𝑦̂𝑦̂sin

2𝛼𝑙 − (𝑆𝑙𝑥̂𝑦̂ + 𝑆
𝑙
𝑦̂𝑥̂) sin 𝛼

𝑙 cos 𝛼𝑙

𝑘𝑙𝑦𝑦 = 𝑆𝑙𝑥̂𝑥̂sin
2𝛼𝑙 + 𝑆𝑙𝑦̂𝑦̂cos

2𝛼𝑙 + (𝑆𝑙𝑥̂𝑦̂ + 𝑆
𝑙
𝑦̂𝑥̂) sin 𝛼

𝑙 cos 𝛼𝑙

𝑘𝑙𝑥𝑦 =
(

𝑆𝑙𝑥̂𝑥̂ − 𝑆
𝑙
𝑦̂𝑦̂

)

sin 𝛼𝑙 cos 𝛼𝑙 + 𝑆𝑙𝑥̂𝑦̂cos
2𝛼𝑙 − 𝑆𝑙𝑦̂𝑥̂sin

2𝛼𝑙

𝑘𝑙𝑦𝑥 =
(

𝑆𝑙𝑥̂𝑥̂ − 𝑆
𝑙
𝑦̂𝑦̂

)

sin 𝛼𝑙 cos 𝛼𝑙 + 𝑆𝑙𝑦̂𝑥̂cos
2𝛼𝑙 − 𝑆𝑙𝑥̂𝑦̂sin

2𝛼𝑙

𝑘𝑙𝑥𝜃 = 𝑆𝑙𝑥̂𝜃cos 𝛼
𝑙 − 𝑆𝑙𝑦̂𝜃sin 𝛼

𝑙

𝑘𝑙𝜃𝑥 = 𝑆𝑙𝜃𝑥̂cos 𝛼
𝑙 − 𝑆𝑙𝜃𝑦̂sin 𝛼

𝑙

𝑘𝑙𝑦𝜃 = 𝑆𝑙𝑥̂𝜃sin 𝛼
𝑙 + 𝑆𝑙𝑦̂𝜃cos 𝛼

𝑙

𝑘𝑙𝜃𝑦 = 𝑆𝑙𝜃𝑥̂sin 𝛼
𝑙 + 𝑆𝑙𝜃𝑦̂cos 𝛼

𝑙

𝑘𝑙𝜃𝜃 = 𝑆𝑙𝜃𝜃

(13)

here 𝛼𝑙 is the chiral angle of ligament 𝑙 measured from the +𝑥−direction and 𝑆𝑙
𝛼̂𝛽

are the various rigidities of the ligament 𝑙 that
re defined with respect to the ligament’s local coordinates (𝑥̂, 𝑦̂). Because the ligament is modeled as a Bernoulli–Euler beam, it
as axial rigidity 𝑆𝑥̂𝑥̂, bending rigidity 𝑆𝑦̂𝑦̂, rotational rigidity 𝑆𝜃𝜃 , and rigidity for bending-rotation coupling 𝑆𝑦̂𝜃 and 𝑆𝜃𝑦̂, while
ecause the ends of the ligament are curved, it also has rigidities for axial-bending coupling 𝑆𝑥̂𝑦̂ and 𝑆𝑦̂𝑥̂ and axial-rotation coupling
𝑥̂𝜃 and 𝑆𝜃𝑥̂. It should be noted that, due to the geometrical asymmetry of the ligaments, the rigidity matrix 𝑆𝛼̂𝛽 and the equivalent
tiffness matrix 𝑘𝛼𝛽 are – in general – asymmetric (i.e., 𝑆𝛼̂𝛽 ≠ 𝑆𝛽𝛼̂ and 𝑘𝛼𝛽 ≠ 𝑘𝛽𝛼), as the rigidity of the ligament varies depending
n the deformation of the chiral element—specifically, whether the ligaments are firmly attached to or detached from the circles
uring the deformation of the chiral element as illustrated in Fig. 3.

The equations of motion of the central circle 𝑖, 𝑗 can be determined according to the defined interactions with the nearest-neighbor
ircles (Eq. (12)), as follows:

4
∑

𝑙=1
𝐹 𝑙𝑥 = −𝑚𝑢̈𝑖,𝑗𝑥

4
∑

𝑙=1
𝐹 𝑙𝑦 = −𝑚𝑢̈𝑖,𝑗𝑦

4
∑

𝑙=1
𝑀 𝑙

𝑧 = −𝐽 𝜃̈𝑖,𝑗𝑧

(14)

By observing that 𝛼𝑙=1 = 𝛼0, 𝛼𝑙=2 = 𝛼0 + 90◦, 𝛼𝑙=3 = 𝛼0 + 180◦, 𝛼𝑙=4 = 𝛼0 + 270◦ and considering the stiffnesses defined in
q. (13), while also considering that all ligaments are identical and exhibit similar deformations, the balance of forces along 𝑥- and
-directions and the moment about 𝑧-direction (Eq. (14)) can be explicitly written in the form:

𝑚𝑢̈𝑖,𝑗𝑥 + 𝑘𝑥𝑥
(

2𝑢𝑖,𝑗𝑥 − 𝑢𝑖+1,𝑗𝑥 − 𝑢𝑖−1,𝑗𝑥

)

+ 𝑘𝑥𝑦
(

2𝑢𝑖,𝑗𝑦 − 𝑢𝑖+1,𝑗𝑦 − 𝑢𝑖−1,𝑗𝑦

)

− 𝑘𝑥𝜃
(

𝜃𝑖−1,𝑗𝑧 − 𝜃𝑖+1,𝑗𝑧

)

+𝑘𝑦𝑦
(

2𝑢𝑖,𝑗𝑥 − 𝑢𝑖,𝑗+1𝑥 − 𝑢𝑖,𝑗−1𝑥

)

− 𝑘𝑦𝑥
(

2𝑢𝑖,𝑗𝑦 − 𝑢𝑖,𝑗+1𝑦 − 𝑢𝑖,𝑗−1𝑦

)

+ 𝑘𝑦𝜃
(

𝜃𝑖,𝑗−1𝑧 − 𝜃𝑖,𝑗+1𝑧

)

= 0
(15)

𝑚𝑢̈𝑖,𝑗𝑦 + 𝑘𝑦𝑥
(

2𝑢𝑖,𝑗𝑥 − 𝑢𝑖+1,𝑗𝑥 − 𝑢𝑖−1,𝑗𝑥

)

+ 𝑘𝑦𝑦
(

2𝑢𝑖,𝑗𝑦 − 𝑢𝑖+1,𝑗𝑦 − 𝑢𝑖−1,𝑗𝑦

)

− 𝑘𝑦𝜃
(

𝜃𝑖−1,𝑗𝑧 − 𝜃𝑖+1,𝑗𝑧

)

−𝑘𝑥𝑦
(

2𝑢𝑖,𝑗𝑥 − 𝑢𝑖,𝑗+1𝑥 − 𝑢𝑖,𝑗−1𝑥

)

+ 𝑘𝑥𝑥
(

2𝑢𝑖,𝑗𝑦 − 𝑢𝑖,𝑗+1𝑦 − 𝑢𝑖,𝑗−1𝑦

)

− 𝑘𝑥𝜃
(

𝜃𝑖,𝑗−1𝑧 − 𝜃𝑖,𝑗+1𝑧

)

= 0
(16)

𝐽 𝜃̈𝑖,𝑗𝑧 + 𝑘𝜃𝑥
(

𝑢𝑖−1,𝑗𝑥 − 𝑢𝑖+1,𝑗𝑥 + 𝑢𝑖,𝑗−1𝑦 − 𝑢𝑖,𝑗+1𝑦

)

+ 𝑘𝜃𝑦
(

𝑢𝑖−1,𝑗𝑦 − 𝑢𝑖+1,𝑗𝑦 + 𝑢𝑖,𝑗+1𝑥 − 𝑢𝑖,𝑗−1𝑥

)

+𝑘
(

4𝜃𝑖,𝑗 + 𝜃𝑖,𝑗+1 + 𝜃𝑖,𝑗−1 + 𝜃𝑖+1,𝑗 + 𝜃𝑖−1,𝑗
)

= 0
(17)
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Because of the geometrical asymmetry of the chiral element that is manifested in the ligaments being curved around the circles,
he behavior of the chiral element is chiral nonreciprocal. To demonstrate the chiral nonreciprocity of the element, the equivalent
tiffnesses 𝑘𝛼𝛽 in Eqs. (15)–(17) were numerically determined by finite element simulations (Smith, 2009) (see Appendix A for more
etails). Specifically, because the ligaments are identical and exhibit similar deformations, we considered one ligament connecting
wo circles (Fig. 2(c)) of a chiral element with chiral angle 𝛼0 = 30◦ and lattice length 𝑎 = 20 mm, where the circles are rigid and
he ligament is made of Aluminum (with elastic modulus 𝐸 = 70 GPa) with 1.5 mm thickness and 30 mm width. The ligament is
urved at its ends to achieve a geometrical asymmetry with 𝜃0 = 60◦. The ligament connecting two circles was considered under
he various deformation fields shown in Fig. 3, while the equivalent stiffnesses 𝑘𝛼𝛽 were determined by calculating the slopes of the

numerically determined force–deformation curves. The equivalent stiffnesses were obtained depending on (1) the direction of the
applied deformation field, revealing directional nonreciprocity (Fig. 1(a)), and (2) whether the ligament is deformed by two coupled
deformation fields or not, revealing Form II of chiral nonreciprocity (Fig. 1(d)), while also, the stiffness matrix was obtained non-
symmetric, as shown in Table A.1 of Appendix A such that 𝑘𝛼𝛽 ≠ 𝑘𝛽𝛼 , which indicates Form I of chiral nonreciprocity (Figs. 1(b)
and 1(c)). These stiffnesses will be used in the next section to evaluate the continuum elastic moduli for the chiral, nonreciprocal
elasticity.

3.1.2. Continuum field equations
In order to study the chiral, nonreciprocal constitutive behavior of the chiral metamaterial, the continuum field equations are

determined based on the discrete equations of motion in Eqs. (15)–(17). By implementing Taylor expansions 𝜚𝑖±1,𝑗 ≈ 𝜚 (𝑥, 𝑦) ±
𝑎 (𝜕𝜚 (𝑥, 𝑦)∕𝜕𝑥) +

(

𝑎2∕2
) (

𝜕2𝜚 (𝑥, 𝑦)∕𝜕𝑥2
)

and 𝜚𝑖,𝑗±1 ≈ 𝜚 (𝑥, 𝑦) ± 𝑎 (𝜕𝜚 (𝑥, 𝑦)∕𝜕𝑦) +
(

𝑎2∕2
) (

𝜕2𝜚 (𝑥, 𝑦)∕𝜕𝑦2
)

, where 𝜚 denotes a degree of
freedom, i.e., 𝑢𝑥, 𝑢𝑦, and 𝜃𝑧, the discrete equations of motion (Eqs. (15)–(17)) can be written at the continuum limit such that
𝜚𝑖,𝑗 ≈ 𝜚 (𝑥, 𝑦), as follows:

𝐵̂𝑢𝑥,𝑥𝑥 + 𝐶̂𝑢𝑥,𝑦𝑦 + 𝜉1𝑢𝑦,𝑥𝑥 − 𝜉2𝑢𝑦,𝑦𝑦 + 𝐶̂𝜃𝑧,𝑦 − 𝜉1𝜃𝑧,𝑥 = 𝜌̂𝑢̈𝑥 (18)

𝐵̂𝑢𝑦,𝑦𝑦 + 𝐶̂𝑢𝑦,𝑥𝑥 + 𝜉2𝑢𝑥,𝑥𝑥 − 𝜉1𝑢𝑥,𝑦𝑦 − 𝐶̂𝜃𝑧,𝑥 − 𝜉1𝜃𝑧,𝑦 = 𝜌̂𝑢̈𝑦 (19)

𝐶̂
(

𝑢𝑦,𝑥 − 𝑢𝑥,𝑦
)

+ 𝜉2
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
)

− 2𝐶̂𝜃𝑧 + 𝜒̂
(

𝜃𝑧,𝑥𝑥 + 𝜃𝑧,𝑦𝑦
)

= 𝐽 𝜃̈𝑧 (20)

where 𝜌̂ is the mass density, and 𝐽 is the mass rotatory inertia. The material coefficients in Eqs. (18)–(20) are defined in terms of
the equivalent stiffnesses of the ligaments, as follows:

𝐵̂ = 𝑘𝑥𝑥
4𝑏 , 𝐶̂ = 𝑘𝑦𝑦

4𝑏 = 𝑘𝜃𝑦
2𝑎𝑏 = 𝑘𝑦𝜃

2𝑎𝑏 = 𝑘𝜃𝜃
𝑎2𝑏
, 𝜒̂ = − 𝑘𝜃𝜃

2𝑏 , 𝜉1 =
𝑘𝑥𝑦
4𝑏 = 𝑘𝑥𝜃

2𝑎𝑏 , 𝜉2 =
𝑘𝑦𝑥
4𝑏 = 𝑘𝜃𝑥

2𝑎𝑏
(21)

where 𝑎 is the lattice constant and 𝑏 is the ligament width. It should be noted that, after the inspection of the equivalent stiffness
of the chiral element, it is found that 𝑘𝑦𝜃 ≅ 𝑘𝜃𝑦, 𝑘𝑥𝑦∕4𝑏 ≅ 𝑘𝑥𝜃∕2𝑎𝑏, and 𝑘𝑦𝑥∕4𝑏 ≅ 𝑘𝜃𝑥∕2𝑎𝑏. In Eqs. (18)–(20), 𝐵̂ is the bulk elastic
modulus, and 𝐶̂ is the torsional elastic modulus, while the coefficients 𝜉1 and 𝜉2 are chiral elastic moduli, which appear in the
equations of motion if and only if the solid is chiral, as these moduli vanish when 𝛼0 = 0.

As the equivalent stiffness of the chiral element is asymmetric, i.e., 𝑘𝛼𝛽 ≠ 𝑘𝛽𝛼 , the chiral elastic moduli 𝜉1 and 𝜉2 are not equal
(see Eq. (21)), and this enables asymmetric elasticity of the chiral metamaterial (Form I of chiral, nonreciprocal elasticity), which
we aim to demonstrate next. Furthermore, because the values of the equivalent stiffness of the chiral element 𝑘𝛼𝛽 change due to
chiral nonreciprocity, the values of the various elastic moduli shown in Eqs. (18)–(20) also change by (1) the spatial inversion of the
applied deformation field (directional nonreciprocity), as well as (2) acting on the chiral metamaterial with coupled deformation
fields (Form II of chiral nonreciprocity). By introducing the coefficients 𝜆𝑖 and 𝜅𝑖 that measure the modulation of the elastic moduli
due to Form II of chiral nonreciprocity, while accounting for the modulation of the elastic moduli due to directional nonreciprocity,
Eqs. (18)–(20) take the following form:

(𝐵̂ + 𝜆1)𝑢𝑥,𝑥𝑥 + (𝐶̂ + 𝜆2)𝑢𝑥,𝑦𝑦 + (𝜉1 + 𝜅1)𝑢𝑦,𝑥𝑥 − (𝜉2 + 𝜅2)𝑢𝑦,𝑦𝑦 + (𝐶̂ + 𝜆2)𝜃𝑧,𝑦 − (𝜉1 + 𝜅1)𝜃𝑧,𝑥 = 𝜌̂𝑢̈𝑥 (22)

(𝐵̂ + 𝜆1)𝑢𝑦,𝑦𝑦 + (𝐶̂ + 𝜆2)𝑢𝑦,𝑥𝑥 + (𝜉2 + 𝜅2)𝑢𝑥,𝑥𝑥 − (𝜉1 + 𝜅1)𝑢𝑥,𝑦𝑦 − (𝐶̂ + 𝜆2)𝜃𝑧,𝑥 − (𝜉1 + 𝜅1)𝜃𝑧,𝑦 = 𝜌̂𝑢̈𝑦 (23)

(𝐶̂ + 𝜆2)
(

𝑢𝑦,𝑥 − 𝑢𝑥,𝑦
)

+ (𝜉2 + 𝜅2)
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
)

− 2(𝐶̂ + 𝜆2)𝜃𝑧 + (𝜒̂ + 𝜆3)
(

𝜃𝑧,𝑥𝑥 + 𝜃𝑧,𝑦𝑦
)

= 𝐽 𝜃̈𝑧 (24)

The coefficients 𝜆𝑖 and 𝜅𝑖 appear in the equations of motion (Eqs. (22)–(24)) only when the solid exhibits Form II of chiral,
nonreciprocal elasticity, as these moduli vanish when the solid is subjected to only one deformation field, e.g., 𝑢𝑖,𝑗 or 𝜃𝑧, while
these moduli are non-zero when we act on the solid with multiple deformation fields.

By introducing the force stress tensor 𝜏𝑖𝑗 and the couple stress vector 𝑚𝑖, Eqs. (22)–(24) can be written in the form:

𝜏𝑥𝑥,𝑥 + 𝜏𝑦𝑥,𝑦 = 𝜌̂𝑢̈𝑥
𝜏𝑥𝑦,𝑥 + 𝜏𝑦𝑦,𝑦 = 𝜌̂𝑢̈𝑦

𝑚𝑥,𝑥 + 𝑚𝑦,𝑦 + 𝑠𝑧 = 𝐽 𝜃̈𝑧
(25)

where the force stresses 𝜏𝑖𝑗 are developed due to the direct displacement-based interactions of the circles, while the couple stresses
9

𝑚𝑖 are developed due to spin-spin interactions of the circles.
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In Eq. (25), 𝑠𝑧 is an internal body torque/couple that is developed due to applied external forces acting at the external surfaces
f the solid material, and thus it is related to the force stresses 𝜏𝑖𝑗 , as follows:

𝑠𝑧 = 𝜖𝑖𝑗𝜏𝑖𝑗 = 𝜏𝑥𝑦 − 𝜏𝑦𝑥 (26)

here 𝜖𝑖𝑗 is the 2D Levi-Civita symbol. The internal body torque 𝑠𝑧 is defined as in Eq. (26) to satisfy the conservation of the total
ngular momentum of continua with internal spins (Markovich et al., 2019). It should be noted that the internal body torque 𝑠𝑧

is spontaneously developed during the deformation of the chiral solid, and thus it is distinct from any external body torques that
would act on the solid.

3.1.3. Constitutive relations
By comparing Eq. (25) with Eqs. (22)–(24), the following constitutive relations are obtained:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜏𝑥𝑥
𝜏𝑦𝑦
𝜏𝑥𝑦
𝜏𝑦𝑥

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂ + 𝜆1 0 𝜉1 + 𝜅1 0
0 𝐵̂ + 𝜆1 0 −(𝜉1 + 𝜅1)

𝜉2 + 𝜅2 0 𝐶̂ + 𝜆2 0
0 −(𝜉2 + 𝜅2) 0 𝐶̂ + 𝜆2

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑥,𝑥
𝑢𝑦,𝑦

𝑢𝑦,𝑥 − 𝜃𝑧
𝑢𝑥,𝑦 + 𝜃𝑧

⎫

⎪

⎪

⎬

⎪

⎪

⎭

i.e., 𝜏𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝑢𝑙,𝑘 + 𝜖𝑙𝑘𝜃𝑧) (27)

and

𝑚𝑥 = (𝜒̂ + 𝜆3)𝜃𝑧,𝑥&𝑚𝑦 = (𝜒̂ + 𝜆3)𝜃𝑧,𝑦 i.e., 𝑚𝑖 = (𝜒̂ + 𝜆3)𝜃𝑧,𝑖 (28)

where 𝐶𝑖𝑗𝑘𝑙 is the fourth-rank elasticity tensor, which is obtained non-symmetric, i.e., 𝐶𝑖𝑗𝑘𝑙 ≠ 𝐶𝑘𝑙𝑖𝑗 as shown in Eq. (27). We can
write the constitutive law 𝜏𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝑢𝑙,𝑘 + 𝜖𝑙𝑘𝜃𝑧) in Eq. (27) in the form 𝜎𝛼 = 𝐶𝛼𝛽𝛾𝛽 shown in Eq. (11), as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎1
𝜎2
𝜎3
𝜎4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂ + 𝜆1 −(𝐴̂ + 𝛽) 0 0
−(𝐴̂ − 𝛽) 𝐶̂ + 𝜆2 0 0

0 0 𝐵̂ + 𝜆1 𝐴̂ + 𝛽
0 0 𝐴̂ − 𝛽 𝐶̂ + 𝜆2

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾1
𝛾2
𝛾3
𝛾4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝑖.𝑒., 𝜎𝛼 = 𝐶𝛼𝛽𝛾𝛽 (29)

where 𝐴̂ = (𝜉1+𝜉2+𝜅1+𝜅2)∕2 and 𝛽 = (𝜉1−𝜉2+𝜅1−𝜅2)∕2. The stress components 𝜎𝛼 and the deformations 𝛾𝛽 in Eq. (29) are defined
as:

𝜎1 = 𝜏𝑥𝑥 + 𝜏𝑦𝑦, 𝜎2 = 𝜏𝑦𝑥 − 𝜏𝑥𝑦, 𝜎3 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦, 𝜎4 = 𝜏𝑥𝑦 + 𝜏𝑦𝑥
𝛾1 = 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦, 𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 + 2𝜃𝑧, 𝛾3 = 𝑢𝑥,𝑥 − 𝑢𝑦,𝑦, 𝛾4 = 𝑢𝑥,𝑦 + 𝑢𝑦,𝑥

(30)

It is important to note the difference between the definition of the deformation field 𝛾2 in Eq. (11) and the one in Eq. (29). In
Eq. (11) the 2D solid is assumed to have only translational (i.e., 𝑢𝑥 and 𝑢𝑦) degrees of freedom, and thus 𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 is rotation
at the solid’s external boundary. On the other hand, as the chiral metamaterial possesses an additional degree of freedom that is a
spin field 𝜃𝑧 representing the spin of the rigid circle about its center, the deformation field 𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 + 2𝜃𝑧 is defined as the
relative rotation field that is the difference between the rotation at the external boundary of the metamaterial 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 and the
internal spin at the circles 2𝜃𝑧.

The constitutive law in Eq. (29) represents one of the major results of this work, as all subsequent discussions and analysis will
utilize this law, and as such we make several remarks here. First, this constitutive law represents an isotropic chiral solid which
conserves linear momentum where its stress 𝜎𝛼 is directly proportional to strain 𝛾𝛽 , but which also exhibits chiral, nonreciprocal
elasticity. The chiral, nonreciprocal elasticity of the chiral metamaterial is evident in the elasticity tensor 𝐶𝛼𝛽 in Eq. (29) (compare
Eq. (29) to Eq. (11)), as demonstrated next.

Second, the elasticity tensor 𝐶𝛼𝛽 in Eq. (29) is chiral as it breaks the reflection–rotation symmetry by having non-zero chiral
moduli 𝐴̂ and 𝛽. These moduli enable the chiral metamaterial to develop (1) dilation due to rotation of its external boundary or
spinning of its rigid circles, (2) rotation at the external boundary or spin at the rigid circles due to dilation, (3) shear deformations
due to axial strains, and (4) axial strains due to shear deformations.

Third, the elasticity tensor 𝐶𝛼𝛽 reveals directional nonreciprocity, as all of its elastic moduli are modulated depending on the
direction of the applied deformation/stress (recall Fig. 1(a) and the ± superscripts from Eq. (11)). The form of the elasticity tensor
does not change, though the values of all elastic moduli change by the spatial inversion of the applied deformation/stress.

Fourth, the elasticity tensor 𝐶𝛼𝛽 can be decomposed into symmetric and skew-symmetric elasticity tensors, with the skew-symmetric
tensor depending on the chiral modulus 𝛽, revealing Form I of chiral nonreciprocity, i.e., where the chiral coupling between
two different deformation modes (e.g., dilation and rotation) is nonreciprocal (recall Figs. 1(b) and 1(c)). The elasticity tensor
is symmetric when 𝛽 = 0, and thus the chiral modulus 𝛽 is what enables Form I of chiral nonreciprocity of the chiral metamaterial.

Fifth, the elasticity tensor also models Form II of chiral nonreciprocity, as the elastic moduli 𝜆1 and 𝜆2 appear only when the
solid is subjected to coupled deformation fields (recall Fig. 1(d) and Eq. (11)). The elastic moduli 𝜆1 and 𝜆2 represent the modulation
of, respectively, the elastic bulk modulus 𝐵̂ and the elastic torsional modulus 𝐶̂ by deforming the chiral metamaterial with coupled
deformation fields.

Remark 2. Because the modulation of the elastic moduli of 𝐶𝛼𝛽 depends on the directions of and the coupling between the different
deformation fields, there may be a set of deformations at which the elastic moduli 𝜆1, 𝜆2, and 𝛽 are zero, and thus the elasticity
10

tensor becomes reciprocal, but chiral (see Table A.2 of Appendix A).
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3.2. Numerical demonstration of chiral, nonreciprocal elasticity

Having analytically established the chiral, nonreciprocal elastic constitutive law in Eq. (29), we now demonstrate the chiral,
onreciprocal constitutive behavior of the chiral metamaterial using finite element simulations when it undergoes deformations
hat satisfy the conditions in Remark 1 above. While we could deform the chiral metamaterial in arbitrary ways resulting in highly
omplex deformation fields and complicated field equations, which then should be solved for the kinematical degrees of freedom 𝑢𝑥,
𝑢𝑦, and 𝜃𝑧, we instead demonstrate the chiral, nonreciprocal elasticity by subjecting the chiral metamaterial to uniform deformation
fields that are simple yet demonstrate the constitutive law in Eq. (29). As such, we consider here and for the remainder of the
paper the chiral metamaterial shown in Fig. 2(a) under the various deformation fields shown in Fig. 4, where it can be deformed
by uniform dilation 𝛾1 = 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦 (Fig. 4(a)), uniform rotation 𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 (Fig. 4(b)), and uniform spin 𝛾2 = 2𝜃𝑧 (Fig. 4(c)).
For each of these deformations, to have the chiral metamaterial exhibits only one deformation field (e.g., in Fig. 4(a) the chiral
metamaterial exhibits dilation only, where all other deformations are zero), the deformations in Figs. 4(a) and 4(b) are carried out
such that the rigid circles can translate but not spin, while in Fig. 4(c), the circles only spin, but do not translate. In addition, to
avoid rigid body rotations, the rotation (𝑢𝑥,𝑦 − 𝑢𝑦,𝑥) in Fig. 4(b) is performed at zero spin 𝜃𝑧 = 0, while the spin 𝜃𝑧 in Fig. 4(c) is
performed at zero rotation 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 = 0.

Remark 3. When the chiral metamaterial is deformed under the deformations shown in Figs. 4(a)-4(c), the torsional stress 𝜎2 is
non-zero, meaning that the stress tensor is non-symmetric, i.e., 𝜏𝑖𝑗 ≠ 𝜏𝑗𝑖, and thus the angular momentum is not conserved. To
conserve angular momentum, the chiral metamaterial should be deformed such that 𝜎2 = 0, which can be done by having both 𝛾1
and 𝛾2 non-zero (see Eq. (29)), e.g., dilation is carried out while the circles are free to spin. See Section 4.3 for more details.

Remark 4. In addition to the chiral, nonreciprocal elasticity manifested in the force-stress tensor in Eq. (29), the chiral metamaterial
also reveals chiral, nonreciprocal couple stress fields 𝑚𝑖 (see Eq. (28)). In Eq. (28), the elastic modulus 𝜒̂ is modulated depending on
the direction of the applied deformation as well as by coupling the spin gradient 𝜃𝑧,𝑖 with any other deformation field, e.g., dilation,
where the modulus 𝜆3 is the change in 𝜒̂ due to coupling. As the focus of this study is to reveal only the chiral, nonreciprocal
elastic behaviors manifested in the constitutive law in Eq. (29), we eliminate couple stress effects by considering uniform spin field
(i.e., 𝜃𝑧,𝑖 = 0), and therefore the couple stress 𝑚𝑖 is zero for the different deformations shown in Fig. 4. Chiral, nonreciprocal couple
stress effects will be considered in future work.

To demonstrate directional nonreciprocity via the modulation of the elastic moduli of the elasticity tensor 𝐶𝛼𝛽 in Eq. (29) by the
spatial inversion of the deformation, we performed finite element simulations of the chiral metamaterial shown in Fig. 2(a) when it
is deformed by a single deformation field (i.e., with the resulting nonreciprocal stress–strain response shown in Figs. 4(d)-4(f)) (see
Appendix A for more details on the finite element simulations). Specifically, Fig. 4(d) demonstrates the mechanical response of the
chiral metamaterial under dilation 𝛾1 (Fig. 4(a)), where the finite element analysis was initiated from a zero stress state, i.e. 𝜎0𝛼 = 0
where the superscript (0) indicates an initial stress, and where tensile dilation 𝛾1 = +0.0125 and compressive dilation 𝛾1 = −0.0125
were applied. The non-zero stresses developed in the chiral metamaterial were numerically determined as 𝜎1 = 44.88 MPa and
𝜎2 = −25.3 MPa for the tensile dilation, while these stresses were obtained as 𝜎1 = −21.45 MPa and 𝜎2 = 10.55 MPa for the compressive
dilation. It should be noted that, because of the chirality, in addition to the dilatational stress 𝜎1, the torsional stress 𝜎2 is developed,
and thus according to Eq. (29), two elastic moduli emerge where 𝐴̂−𝛽 is the modulus of the chiral coupling. By calculating the slope
of the stress–strain curves, the elastic moduli 𝐵̂ = 𝜎1∕𝛾1 and 𝐴̂−𝛽 = 𝜎2∕𝛾1 were determined. The chiral metamaterial showed higher
stiffness in tension than in compression, and thus the bulk modulus 𝐵̂ and the chiral modulus 𝐴̂−𝛽 were obtained by 𝐵̂ = 3592 MPa
and 𝐴̂− 𝛽 = 2025 MPa for tensile dilation, and 𝐵̂ = 1716 MPa and 𝐴̂− 𝛽 = 843.7 MPa for compressive dilation ( Fig. 4(d)). Thus, the
bulk modulus 𝐵̂ and the chiral modulus 𝐴̂−𝛽 are both modulated by the spatial inversion of the applied dilation. This contrast in the
elastic response of the chiral metamaterial due to the change of the direction of the applied dilation is dependent on the mechanism
of the chiral element deformation shown in Fig. 3, and specifically, how the ligaments of the chiral structure are attached to or
detached from the rigid circles during the deformation. For the applied deformations in Fig. 4, in one direction, the ligaments are
detached completely from the rigid circles resulting in a low stiffness, whereas in the opposite direction, the ligaments are pressed
against the circles such that the curved ends of the ligaments come into full contact with the circles, resulting in a high stiffness. In
general, and as demonstrated in Figs. 4(d)-4(f), the chiral metamaterial modulates its elastic moduli through the spatial inversion
of an applied dilation, rotation, or spin.

In addition to the directional nonreciprocity, we also demonstrate asymmetric elasticity (Form I of chiral, nonreciprocal elasticity)
of the chiral metamaterial through finite element simulations. Specifically, in Figs. 4(d)-4(f), we compare the elastic moduli of the
chiral coupling 𝐴̂ ± 𝛽 obtained by deforming the chiral metamaterial independently with dilation (Fig. 4(a)), rotation (Fig. 4(b)),
and spin (Fig. 4(c)). It follows that the dilation–rotation coupling and the dilation-spin coupling are not reciprocal, as the torsional
stress 𝜎2 developed due to dilation 𝛾1 in Fig. 4(d) is not equivalent to the dilatational stress 𝜎1 developed due to rotation or spin 𝛾2
in Figs. 4(e) or 4(f). For example, the elastic modulus of the dilation–rotation coupling was obtained by 𝐴̂ − 𝛽 = 843.7 MPa due to
compressive dilation, while it was obtained by 𝐴̂ + 𝛽 = 2018 MPa due to counterclockwise rotation (see Figs. 4(d) and 4(e)). This
contrast in the coupling moduli gives the chiral modulus 𝛽 non-zero, such that 𝐴̂ = 1431 MPa and 𝛽 = 587.2 MPa, and thus reveals
asymmetric elasticity of the chiral metamaterial. We emphasize that the values of the elastic moduli 𝐴̂ and 𝛽 still may change by
the spatial inversion of either one of the coupled deformation fields, and thus there is a set of deformations at which the chiral
11

solid exhibits symmetric elasticity, where in this case 𝛽 becomes zero (see Appendix A). In general, the asymmetric elastic response
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Fig. 4. Chiral, nonreciprocal elasticity of the chiral metamaterial. (a-c) Examples of elastic deformations that enable chiral, nonreciprocal elasticity of the
chiral metamaterial. These deformations were obtained through finite element simulations using ABAQUS (see Appendix A for more details), where the chiral
metamaterial was deformed by (a) dilation 𝛾1 = 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦 = ±0.0125 where 𝑢𝑥,𝑥 = 𝑢𝑦,𝑦, (b) rotation 𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 = ±0.0125 where 𝑢𝑥,𝑦 = −𝑢𝑦,𝑥, and (c) spin
𝛾2 = 2𝜃𝑧 = ±0.0125. The deformations in (a) and (b) were carried out such that the rigid circles can translate but not spin, while in (c), the circles only spin,
but do not translate. To avoid rigid body rotations, the rotation (𝑢𝑥,𝑦 − 𝑢𝑦,𝑥) in (b) was performed at zero spin 𝜃𝑧 = 0, while the spin 𝜃𝑧 in (c) was performed
at zero rotation 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 = 0. (d–g) Elastic stress–strain curves of the chiral metamaterial determined by finite element simulations. (d-f) Directional and Form
I of chiral, nonreciprocal elasticity. The chiral metamaterial was deformed by a single deformation field, i.e., (d) dilation 𝛾1 = 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦 = ±0.0125, where
𝑢𝑥,𝑥 = 𝑢𝑦,𝑦, (e) rotation 𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 = ±0.0125, where 𝑢𝑥,𝑦 = −𝑢𝑦,𝑥, and (f) spin 𝛾2 = 2𝜃𝑧 = ±0.0125. In (d-f), the elastic moduli in Eq. (29) were determined by
calculating the slope of the stress–strain curve, which were obtained depending on the direction of the applied deformation. (g) Form II of chiral, nonreciprocal
elasticity. Comparison of the bulk modulus obtained when deforming the chiral metamaterial by only compressive dilation 𝜎1|𝛾1=−0.0125 & 𝛾2=0 = 𝐵̂𝛾1 to the bulk
modulus obtained by deforming the chiral metamaterial by counterclockwise rotation and compressive dilation 𝜎1|𝛾1=−0.0125 & 𝛾2=−0.0125 − 𝜎

(0)
1 = (𝐵̂ + 𝜆1)𝛾1, where

𝜎(0)1 = 𝜎1|𝛾1=0 & 𝛾2=−0.0125 is an initial dilatational stress developed by the introduction of the rotation. The modulus 𝐵̂ changes to 𝐵̂ + 𝜆1 after the introduction of
rotation. (h) The variations of the bulk modulus 𝐵̂ and the chiral coupling modulus 𝐴̂+ 𝛽 as functions of the area of contact established between the ligaments
and the rigid circles. These results were determined based on ABAQUS finite element simulations of the chiral structure shown in Fig. 2(c), but different circle
profiles were used for the different contact angles.

(Form I of chiral, nonreciprocal elasticity) of the chiral metamaterial arises when the contact state is different between the two
deformation modes, while it is suppressed when the contact state is the same between the two deformation modes.

To demonstrate Form II of chiral, nonreciprocal elasticity, where the chiral metamaterial can also modulate its elastic moduli
by deforming it with coupled deformation fields, we show in Fig. 4(g) the mechanical response of the chiral metamaterial under
the dilation–rotation coupling—specifically, we compare (1) the response when the chiral metamaterial is deformed by compressive
dilation alone, i.e., 𝛾1 = −0.0125 & 𝛾2 = 0 to (2) the response when it is deformed by counterclockwise rotation and compressive
dilation, i.e., 𝛾1 = −0.0125 & 𝛾2 = −0.0125. The bulk modulus 𝐵̂ when the chiral metamaterial was deformed by dilation alone was
determined by 𝐵̂ = 𝜎1∕𝛾1 = 1716 MPa, while because the chiral metamaterial maintains coupling between rotation and dilation, the
bulk modulus 𝐵̂ is modulated by the introduction of the rotation 𝛾2 = −0.0125, where a different bulk modulus value was determined
by 𝐵̂ + 𝜆1 = (𝜎1 − 𝜎

(0)
1 )∕𝛾1 = 2890 MPa, where 𝜎(0)1 is the initial dilatational stress developed by the introduction of the rotation. By

comparing these two values of the bulk modulus, the elastic modulus 𝜆1 was calculated by 𝜆1 = 1174 MPa, which indicates that the
chiral metamaterial can modulate its elastic moduli if coupled deformation fields are simultaneously applied.
12
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We also note that, for the considered chiral metamaterial, the mechanisms of enabling the various forms of chiral nonreciprocity
hown in Fig. 1 are not independent from one another. These mechanisms are rather related and unified by the geometrical and
aterial characteristics of the chiral structure, as the chiral metamaterial cannot exhibit one form of chiral nonreciprocity without

he others. For instance, the directional nonreciprocity is eliminated along with the elastic moduli 𝜆1, 𝜆2 and 𝛽, which enable Form
I and Form II of chiral, nonreciprocal elasticity of the solid, and thus the entire chiral, nonreciprocal elastic effect is eliminated,
if the isotropic metamaterial is either achiral (i.e., 𝛼0 = 0) or reciprocal (i.e., 𝜃0 = 0). Therefore, the attainment of chirality and
nonreciprocity enables chiral, nonreciprocal elasticity of the chiral metamaterial, with all forms of chiral nonreciprocity emerging
simultaneously.

It is important to note that the stiffness of the chiral metamaterial depends on the area of the contact established between the
curved ends of the ligaments and the rigid circles, such that the minimum stiffness value is obtained when the ligaments are detached
completely from the circles and thus no contact is developed, while the maximum value of the stiffness is obtained when the curved
ends of the ligaments come into full contact with the circles. The area of the contact that can be established between the ligaments
and the circles depends on the profile of the curved end of the ligament and the profile of the rigid circle. By changing either one of
the two profiles, the area of the contact changes, resulting in a different stiffness of the chiral metamaterial. For instance, we present
in Fig. 4(h) the slope of the stress–strain curves of the chiral metamaterial under tensile dilation only (+𝛾1) (for the bulk modulus
𝐵̂) or counterclockwise rotation only (−𝛾2) (for the chiral modulus 𝐴̂+ 𝛽) for different profiles of the rigid circle. It is clear that the
elastic moduli of the chiral metamaterial increase due to an increase in the area of contact established between the ligament and
the circle.

Before moving forward, it is also important to discuss other implications of the non-reciprocal nature of the elasticity tensor
developed in Eq. (29). As just discussed, the values of the elastic moduli vary depending upon what deformation or combination
of deformations are imposed. In one sense, this implies that the chiral metamaterial is a type of smart material, which can adjust
its mechanical response depending on the type of loading it is subject to. On the other hand as previously discussed, this adds
complication in using the constitutive model in Eq. (29), due to the fact that it must be known a priori what deformations are going
to be applied to the chiral metamaterial in order to have an accurate model for its resulting mechanical response.

Remark 5. Whereas the constitutive response can be linear elastic as shown in Fig. 4, the chiral metamaterial being nonreciprocal
implies that it is a nonlinear material system that does not always satisfy the superposition principle, as when we apply equal and
opposite deformations on the chiral metamaterial, the net force is not zero, i.e., 𝐹 (𝑢)+𝐹 (−𝑢) = 𝐹 (𝑢−(−𝑢)) ≠ 0. Therefore, this system,
like other recent examples of asymmetric elasticity (Scheibner et al., 2020; Chen et al., 2021b; Brandenbourger et al., 2022), violates
Maxwell–Betti reciprocity.

4. Mechanical activity of the 2D chiral metamaterial

Above, we established the constitutive model for the chiral metamaterial shown in Fig. 2 via Eq. (29), and also demonstrated,
via finite element simulations, that its mechanical response is non-symmetric and nonreciprocal (Fig. 4), where previous works have
demonstrated that if a linear, elastic solid has asymmetric elasticity, it enables mechanical activity in which the solid can interact
with the surrounding with mechanical work (Chen et al., 2021b; Scheibner et al., 2020). Here, we first theoretically demonstrate
the mechanical activity of the chiral metamaterial within the context of the developed chiral nonreciprocal elastic constitutive law
(Eq. (29)) - specifically, we demonstrate that our chiral metamaterial that is made of passive chiral elements can break energy
conservation, and thus it can interact with the surrounding with mechanical work when it is used in specific cycles of quasistatic
deformations. Next, we demonstrate through numerical finite element simulations the practical implementation of these deformation
cycles, while elucidating the specific conditions needed for the chiral metamaterial to exhibit linear, chiral nonreciprocal elastic
behavior throughout the deformation cycle and thus to reveal mechanical activity.
4.1. Mechanical activity: Theoretical demonstration

We first develop a thermodynamic framework of energy balance and energy conservation of chiral, nonreciprocal elastic solids,
based on which we demonstrate theoretically within the context of the developed analytical model that the described chiral,
nonreciprocal elasticity enables static thermodynamic non-equilibrium (violation of thermodynamic equilibrium without dynamics)
and thus enables mechanical activity of elastic solids at zero-frequency.

4.1.1. Thermodynamics: energy balance
The energy balance of a system is the concern of the first law of thermodynamics, which states that the net energy transfer to

(or from) the system from (or to) its surroundings in the form of heat 𝛿𝑄 or work 𝛿𝑊 is equal to the net change in the total energy
of the system d𝑈 , i.e., d𝑈 = 𝛿𝑄 + 𝛿𝑊 . The second law of thermodynamics, on the other hand, defines the internal entropy change
d𝑆 of the system by d𝑆 = 𝛿𝑄∕𝑇 as it undergoes reversible thermodynamic processes, or by d𝑆 ≥ 𝛿𝑄∕𝑇 when it undergoes irreversible
thermodynamic processes, where 𝑇 is the absolute temperature of the system surroundings. Given this thermodynamic standpoint
of physical systems, and as elasticity describes reversible material deformations, we can establish the condition of energy balance
in elastic solids by substituting the first law into the second law of thermodynamics, as follows (assuming isothermal processes,
i.e., d𝑇 = 0):
13

𝛿𝑊 = d𝜓 (31)
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where 𝜓 = 𝑈 − 𝑇𝑆 is the Helmholtz free energy, which expresses the maximum internal capacity of a system undergoing an
sothermal process to do (receive) work on (from) its surroundings. This law states that in the absence of irreversible interactions
ith the surroundings, the work 𝛿𝑊 needed to drive an elastic solid through an isothermal deformation process between two states

s equal to the net change in the solid’s internal free energy d𝜓 between the two states. The violation of the energy balance in
q. (31) indicates an inelastic solid that exhibits irreversible deformations due to internal energy sources that result in energy gain
r loss (i.e., non-conservation of energy). However, inelastic solids are outside the scope of the present study, as the developed
hiral, nonreciprocal elasticity defines a class of elastic solids that do not contain energy sources, and thus always satisfy the energy
alance in Eq. (31) when undergoing reversible interactions with the surroundings.

.1.2. Thermodynamics: energy conservation
Having established the energy balance of chiral, nonreciprocal elastic solids, we examine here the conservation of energy as the

hiral, nonreciprocal elastic solid undergoes a closed cycle of a sequence of reversible deformations, in each of which the energy
alance law in Eq. (31) must be satisfied.

There are two different notations for the differential used in Eq. (31), i.e., ’d’ and ’𝛿’, where ’d’ defines a differential whose
ntegral does not depend on the path of the thermodynamic (or deformation) process, while ’𝛿’ is a differential whose integral is
ath dependent. Therefore, the internal, free energy 𝜓 is a state function whose integral over a deformation cycle 𝛺 depends only
n the initial and final states of the solid in the cycle, i.e., ∮𝜕𝛺 d𝜓 = 𝜓f inal − 𝜓initial, and thus the net change in the internal, free
nergy of the solid through a closed deformation cycle is zero, i.e., ∮𝜕𝛺 d𝜓 = 0, as the state of the solid at the beginning and the end
f the cycle is the same 𝜓f inal = 𝜓initial. The work 𝛿𝑊 however is not a state variable, as its integral over a deformation cycle gives a
umulative work ∮𝜕𝛺 𝛿𝑊 that depends on the path of the deformation cycle. If the cumulative work used to drive the solid through
he deformation cycle equals the net change in the solid’s internal, free energy through the cycle (i.e., ∮𝜕𝛺 𝛿𝑊 = ∮𝜕𝛺 d𝜓), the energy
f deforming the solid through the cycle is conserved, and it is not conserved otherwise. Therefore, the difference between the
umulative work and the net change in the internal energy of the solid, i.e., 𝑊 = ∮𝜕𝛺 𝛿𝑊 − ∮𝜕𝛺 d𝜓 , is a mechanical work that can
e obtained by deforming the solid through a deformation cycle.

The conventional route to break energy conservation of a solid material system (i.e., ∮ 𝛿𝑊 − ∮ d𝜓 ≠ 0) depends on using the
olid through a cycle of irreversible deformation processes, in which the solid does not satisfy the energy balance in Eq. (31), and
his requires the solid be made with an internal, microscopic energy source that would supply or consume energy as the solid is used
hrough the deformation cycle. Unlike this route, in this study, we demonstrate a different route of breaking energy conservation
or a class of elastic solids that always satisfy the energy balance in Eq. (31), and thus these solids must not be connected to energy
ources. At the absence of energy sources, the cumulative work 𝑊 of deforming an elastic solid through a closed deformation cycle
an be non-zero if the solid exhibits non-symmetric elastic response, or – in general – modulation of its elastic properties during the
eformation cycle. Consider for instance an elastic solid whose stiffness is 𝑘𝛼𝛽 undergoing a closed deformation cycle of displacement-
ontrolled deformations 𝑢𝛼 . The cumulative work developed by deforming the elastic solid through the closed deformation cycle
an be then determined by 𝑊 = ∮ 𝛿𝑊 = ∮ 𝑢𝛼0 (𝑘𝛼𝛽𝑢𝛽 )𝛿𝑢𝛼 = (𝑘𝛼𝛽 − 𝑘𝛽𝛼)𝑢𝛽𝑢𝛼 , which is non-zero as long as 𝑘𝛼𝛽 ≠ 𝑘𝛽𝛼 . Thus, energy
onservation can be broken by enabling the elastic solid to exhibit a non-symmetric response through spontaneous modulation of
he stiffness as the solid is deformed, which can be achieved by means that does not require the use of active components that
onsume energy (i.e., without energy sources). Enabled by its chiral, nonreciprocal elasticity, the stiffness/elastic properties of the
onsidered chiral metamaterial in Fig. 2 can change depending on the direction and mode of the applied deformation (see Fig. 4),
nd thus the chiral metamaterial can break energy conservation, and it can interact with the surrounding with mechanical work
ithout using energy sources. Based on the chiral, nonreciprocal constitutive model of the chiral metamaterial in Eqs. (27)–(29),
ext we analytically demonstrate the mechanical work that can be obtained by deforming the chiral metamaterial through a closed
eformation cycle.

.1.3. Energy conservation of the chiral metamaterial
For the considered chiral metamaterial in Fig. 2, the work 𝛿𝑊 needed to deform it through a quasistatic deformation process

atisfying the energy balance in Eq. (31) takes the form 𝛿𝑊 = ∫𝑉 𝛿𝑤𝑑𝑉 , where 𝛿𝑤 is the first variation of the internal energy per
nit volume 𝑉 of the chiral solid. The variation 𝛿𝑤 is an infinitesimal change in the solid’s internal energy, which can be determined
ased on the Hamilton’s principle and after considering the equations of motion in Eq. (25), as follows:

𝛿𝑤 = 𝜏𝑗𝑖𝛿𝑢𝑖,𝑗 + 𝑀̂𝛿𝜃𝑧 (32)

here 𝑀̂ = −𝑚𝑖,𝑖 − 𝑠𝑧. By substituting Eqs. (27) and (28) into Eq. (32), and based on the sum rule of derivatives, 𝛿𝑤 can be written
s the sum of the variation of potential energy density 𝛿𝑤𝑝 and variations that depend on chiral nonreciprocity (cn) and thus cannot
e obtained from potential energy 𝛿𝑤𝑐𝑛, as follows:

𝛿𝑤 = 𝛿𝑤𝑝 + 𝛿𝑤𝑐𝑛i.e.,
𝛿𝑤𝑝 =

1
2 𝛿

[

𝐵̂
(

𝑢2𝑥,𝑥 + 𝑢2𝑦,𝑦
)

+ 𝐶̂
(

𝑢2𝑥,𝑦 + 𝑢
2
𝑦,𝑥

)

+ 2𝐶̂𝜃2𝑧 + 2𝐶̂𝜃𝑧
(

𝑢𝑥,𝑦 − 𝑢𝑦,𝑥
)

−
(

𝜉1 + 𝜉2
)

𝜃𝑧
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
)

+
(

𝜉1 + 𝜉2
) (

𝑢𝑦,𝑥𝑢𝑥,𝑥 − 𝑢𝑦,𝑦𝑢𝑥,𝑦
)

+ 𝜒̂
(

𝜃2𝑧,𝑥 + 𝜃
2
𝑧,𝑦

)]

𝛿𝑤𝑐𝑛 =
1
2

(

𝜉2 − 𝜉1
) [

𝜃𝑧𝛿
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
)

−
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
)

𝛿𝜃𝑧 − 𝑢𝑦,𝑥𝛿𝑢𝑥,𝑥 − 𝑢𝑦,𝑦𝛿𝑢𝑥,𝑦 + 𝑢𝑥,𝑥𝛿𝑢𝑦,𝑥 + 𝑢𝑥,𝑦𝛿𝑢𝑦,𝑦
]

+𝜆1
(

𝑢𝑥,𝑥𝛿𝑢𝑥,𝑥 + 𝑢𝑦,𝑦𝛿𝑢𝑦,𝑦
)

+ 𝜆2
[

𝑢𝑦,𝑥𝛿𝑢𝑦,𝑥 + 𝑢𝑥,𝑦𝛿𝑢𝑥,𝑦 + 𝜃𝑧𝛿
(

𝑢𝑥,𝑦 − 𝑢𝑦,𝑥
)

+
(

𝑢𝑥,𝑦 − 𝑢𝑦,𝑥
)

𝛿𝜃𝑧 + 2𝜃𝑧𝛿𝜃𝑧
]

( ) [ ( )] [ ( ) ]

(33)
14

−𝜆3 𝜃𝑧,𝑥𝑥 + 𝜃𝑧,𝑦𝑦 𝛿𝜃𝑧 + 𝜅1 𝑢𝑦,𝑥𝛿𝑢𝑥,𝑥 − 𝑢𝑥,𝑦𝛿𝑢𝑦,𝑦 − 𝜃𝑧𝛿 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦 + 𝜅2 𝑢𝑥,𝑥𝛿𝑢𝑦,𝑥 − 𝑢𝑦,𝑦𝛿𝑢𝑥,𝑦 − 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦 𝛿𝜃𝑧
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The variation of the potential energy 𝛿𝑤𝑝 is obtainable from a quadratic, free energy function, while the variations 𝛿𝑤𝑐𝑛 cannot
e expressed as the variation of potential energy and thus cannot be obtained assuming a free energy function. The appearance of
he variations 𝛿𝑤𝑐𝑛 in the energy balance of the chiral metamaterial is contingent on the metamaterial being chiral, nonreciprocal
lastic. These variations enable mechanical activity of the chiral metamaterial when it is used through closed cycles of quasistatic
eformations, as the chiral metamaterial can act on a mechanical component connected to it with mechanical work as it is deformed
hrough the cycle. For a closed deformation cycle, the change in the internal energy is zero, i.e., d𝜓 = 0, and thus the mechanical
ork 𝑊 that can be obtained by deforming the chiral metamaterial through a closed deformation cycle equals the cumulative work,
hich can be determined by integrating the differential of the internal energy density 𝛿𝑤 over the closed loop of the deformation

pace 𝛺 (i.e., 𝑊 = ∮𝜕𝛺 𝛿𝑤 = ∮𝜕𝛺 𝛿𝑤𝑝 + ∮𝜕𝛺 𝛿𝑤𝑐𝑛), which gives according to Green’s theorem:

𝑊 = ∮𝛺
[(

𝜉1 − 𝜉2
) (

𝛿𝑢𝑥,𝑥𝛿𝑢𝑦,𝑥 + 𝛿𝑢𝑥,𝑦𝛿𝑢𝑦,𝑦 − 𝛿
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
)

𝛿𝜃𝑧
)

+ 𝜆1
(

𝑢𝑥,𝑥𝛿𝑢𝑥,𝑥 + 𝑢𝑦,𝑦𝛿𝑢𝑦,𝑦
)

+𝜆2
(

𝑢𝑦,𝑥𝛿𝑢𝑦,𝑥 + 𝑢𝑥,𝑦𝛿𝑢𝑥,𝑦 + 𝜃𝑧𝛿
(

𝑢𝑥,𝑦 − 𝑢𝑦,𝑥
)

+
(

𝑢𝑥,𝑦 − 𝑢𝑦,𝑥
)

𝛿𝜃𝑧 + 2𝜃𝑧𝛿𝜃𝑧
)

− 𝜆3
(

𝜃𝑧,𝑥𝑥 + 𝜃𝑧,𝑦𝑦
)

𝛿𝜃𝑧
+𝜅1

(

𝑢𝑦,𝑥𝛿𝑢𝑥,𝑥 − 𝑢𝑥,𝑦𝛿𝑢𝑦,𝑦 − 𝜃𝑧𝛿
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
))

+ 𝜅2
(

𝑢𝑥,𝑥𝛿𝑢𝑦,𝑥 − 𝑢𝑦,𝑦𝛿𝑢𝑥,𝑦 −
(

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
)

𝛿𝜃𝑧
)]

(34)

here 𝑊 is the cumulative work per unit volume over the deformation cycle of the chiral metamaterial. Utilizing the kinematical
ariables defined in Eq. (30), the cumulative work 𝑊 can be written, as follows:

𝑊 = ∮𝛺
[

𝛽
(

𝛿𝛾2𝛿𝛾1 + 𝛿𝛾3𝛿𝛾4
)

+ 1
2𝜆1

(

𝛾1𝛿𝛾1 + 𝛾3𝛿𝛾3
)

+ 1
2𝜆2

(

𝛾2𝛿𝛾2 + 𝛾4𝛿𝛾4
)

− 𝜆3
(

𝜃𝑧,𝑥𝑥 + 𝜃𝑧,𝑦𝑦
)

𝛿𝜃𝑧
]

(35)

It follows from Eqs. (34) and (35) that the energy of the chiral, nonreciprocal elastic metamaterial is not fully conserved, and
hus it can act as a source of mechanical work. The emergence of the mechanical work is contingent on (1) the chiral, nonreciprocal
lasticity of the solid metamaterial, as the cumulative work 𝑊 in Eq. (35) depends on the elastic moduli of chiral, nonreciprocity
, 𝜆1, 𝜆2, and 𝜆3, while it is zero when the solid is either achiral or reciprocal elastic. The contact state between the ligaments and
he rigid circles may change as the chiral metamaterial is deformed through the deformation cycle, such that the ligaments may
e detached from the rigid circles in one or more deformation processes, while in the other deformation processes contact may be
stablished between the ligaments and the circles. This results in chiral nonreciprocity and modulation of the stiffness of the chiral
etamaterial through the deformation cycle, and thus mechanical work can be developed. The first term of the cumulative work

in Eq. (35) is developed due to asymmetric elasticity enabled by Form I of the chiral nonreciprocity, while the other terms of 𝑊
re developed due to Form II of the chiral nonreciprocity. It should be noted that, while it is clear that the form of the first term
f 𝑊 does not express a variation of potential energy, the other three terms of 𝑊 also do not express variation of potential energy
ecause the elastic moduli 𝜆1, 𝜆2, and 𝜆3 are developed only when the solid is deformed by two coupled deformation fields.

The emergence of the mechanical work is also contingent on (2) using the solid metamaterial through linear elastic deformation
ycles of coupled deformation fields, as non-zero cumulative work is guaranteed when the elastic moduli of chiral, nonreciprocity
, 𝜆1, 𝜆2, and 𝜆3 are non-zero and constants through the deformation cycle. With these elastic moduli being constants, meaning
hat the chiral metamaterial must be used in a linear elastic deformation cycle, the cumulative work in Eq. (35) is trivial zero if
nd only if the moduli 𝛽, 𝜆1, 𝜆2, and 𝜆3 are zero. It is therefore important to note that, in complex deformation cycles, in which
he chiral metamaterial is deformed by coupled deformation fields, during a deformation process, the chiral structure may undergo
transition between a state where the ligaments are detached from the circles (no contact) and a state where the ligaments come

nto contact with the circles, resulting in a nonlinear mechanical response during this deformation process, as a manifestation of the
onreciprocity of the chiral metamaterial. Therefore, it is important to maintain the contact state constant through each deformation
rocess of the deformation cycle, as this gives the mechanical response of the chiral metamaterial linear elastic through the cycle,
nd thus mechanical work can be developed.

It also follows from Eq. (35) that the cumulative work depends on the deformation path, in which the chiral metamaterial
hould be deformed by a sequence of coupled deformation fields. The chiral metamaterial achieves different forms of chiral coupling
ncluding dilation–rotation/spin coupling (𝛾1 ⇔ 𝛾2) and dilation–shear coupling (𝛾3 ⇔ 𝛾4), and thus it can develop mechanical work

when it is used through closed cycles that achieve such couplings (see Appendix B for calculations of the cumulative work). The
hiral metamaterial can also develop mechanical work by achieving internal gradients of spin 𝜃𝑧,𝑖 and nonreciprocal internal couple
tress fields 𝜆3𝜃𝑧,𝑖, as shown in the last term of Eq. (35). As mentioned in Remark 4, in this study, we focus on elastic behaviors and
echanical activity due to the nonreciprocal force stress fields manifested in the constitutive law in Eq. (29), while the cumulative
ork due to nonreciprocal couple stress fields (the last term of Eq. (35)) will be considered in a future study.

.2. Mechanical activity: Practical demonstration

A solid whose elastic response is linear and non-symmetric can interact with the surrounding with mechanical work (Scheibner
t al., 2020). While the chiral metamaterial proposed in this work is made from passive elements, and exhibits asymmetric elasticity
ithout being connected to external energy sources, which is in contrast to previous works (Scheibner et al., 2020; Chen et al.,
021b), the theoretical investigation of its mechanical activity above indicates that it can be active when used in a closed deformation
ycle of a specific sequence of deformations that enables it to exhibit linear, chiral nonreciprocal elastic behavior. We now discuss
ow this can be achieved practically using finite element simulations.

Specifically, we demonstrate in Fig. 5 the mechanical activity of our chiral metamaterial by determining the energy gain/loss
i.e., cumulative work 𝑊 ) when it undergoes a quasistatic deformation cycle of coupled dilation and rotation (𝜆1 ⇔ 𝜆2), where
he structural configuration is the same at the beginning and the end of the cycle. We considered a chiral metamaterial that is

◦
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ormed by 4 × 4 chiral elements (Fig. 2(a)) with a chiral angle 𝛼0 = 30 and lattice length 𝑎 = 20 mm, where the circles are rigid
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Fig. 5. Mechanical activity of the chiral metamaterial used in linear quasistatic deformation cycles. (a) Representation of a strain-controlled, quasistatic
deformation cycle of a sequence of dilation 𝛾1 and rotation 𝛾2. (b–e) The variations of the dilatational stress 𝜎1 and the torsional stress 𝜎2 versus the applied
strain through the deformation cycle. The stresses were determined using ABAQUS finite element simulations of the chiral metamaterial when deformed through
the cycle by (b) 𝛾1 = −0.0125 and 𝛾2 = −0.0125, (c) 𝛾1 = −0.0125 and 𝛾2 = +0.0125, (d) 𝛾1 = +0.0125 and 𝛾2 = +0.0125, and (e) 𝛾1 = +0.0125 and 𝛾2 = −0.0125.
During Process 3 → 4, the chiral metamaterial may undergo a transition (as indicated by the letter ‘T’) from (or to) no contact to (or from) full contact between
the ligaments and the circles, resulting in the nonlinear mechanical response shown by the dotted curves. To maintain linear elastic behavior throughout the
cycle (solid curves), the deformation sequence was carried out as detailed in Appendix A - Fig. A.6. (f–i) The variations of the cumulative work per unit volume
as the chiral metamaterial is deformed through the linear deformation cycle. The work cycles represented by the solid curves are the predictions of the finite
element simulations, while the work cycles represented by marks are the predictions of the analytical model based on Eq. (29). The results are represented when
the chiral metamaterial was used through the same deformation sequence, while spatially inverting the dilation 𝛾1 = ±0.0125 and the rotation 𝛾2 = ±0.0125. The
mechanical work that can be obtained from the deformation cycle is the value of the cumulative work per unit volume in units of kJ/m3 at the end of the cycle.

nd the ligaments are made of Aluminum (elastic modulus 𝐸 = 70 GPa) with 1.5 mm thickness and 30 mm width. To enable
onreciprocity, ligaments were made with local geometrical asymmetries with 𝜃0 = 60◦. Following the same sequence shown
n Fig. 5(a), the chiral metamaterial was used through four deformation cycles with different combinations of spatially inverted
ilations and rotations, i.e., 𝛾1 = ±0.0125 and 𝛾2 = ±0.0125. In each of these deformation cycles, starting from a zero-stress state, the

chiral metamaterial underwent a sequence of four elastic (reversible) deformation processes, in each of which the energy balance
law in Eq. (31) was satisfied. For each of these deformation cycles, the variations of the stresses 𝜎1 and 𝜎2 through the cycle were
determined as shown in Figs. 5(b)-5(e), while the cumulative work per unit volume 𝑊 during each cycle was determined by means
of analytical solutions based on Eq. (29) (see Appendix B for more details) and finite element simulations using the commercial
simulation package ABAQUS (Smith, 2009) (see Appendix A for more details), as shown in Figs. 5(f)-5(i).

As demonstrated above, the chiral metamaterial can exhibit chiral, nonreciprocal elastic response and modulation of its elastic
properties, which is dependent on how the contact state between the ligament and the rigid circles changes as the chiral solid is
deformed. Therefore, we anticipate that a deformation cycle from which mechanical work can be obtained is one in which the
contact state of the chiral solid changes through the deformation cycle—specifically, some processes of the deformation cycle are
carried out where no contact is established between the ligaments and the circles, while the other processes are carried out where
contact is established between the ligaments and the circles. Therefore, we considered the chiral metamaterial undergoing four
closed cycles of dilation–rotation coupling (Figs. 5(b)-5(e)). In two of these cycles (shown in Figs. 5(b) and (d)), the contact state
changes during the deformation cycle, while in two of these cycles (shown in Figs. 5(c) and (e)), the contact state does not change
during the deformation cycle. However, there are some practical challenges with carrying out these deformation cycles, as certain
actions must be taken to ensure the mechanical response of the chiral metamaterial is linear and chiral, nonreciprocal elastic, and
thus we make several remarks here on how to choose and establish a deformation cycle in which the chiral metamaterial can reveal
mechanical activity.
16
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First, to obtain mechanical work from deforming the chiral metamaterial through a closed deformation cycle, the contact state
etween the ligaments and the circles must change during the deformation cycle, as this enables the modulation of the elastic
roperties of the chiral solid, and thus chiral, nonreciprocal elasticity.

Second, according to Eq. (35), the mechanical behavior of the chiral metamaterial must be linear elastic through each process of
he deformation cycle in order to obtain non-zero mechanical work, and this requires a specific contact state between the ligaments
nd the circles to be established for each deformation process, and further that this contact state be maintained constant through
he deformation process.

Third, the transition between two different contact states should be done at the end of a deformation process, not during a
eformation process. This is required to ensure linear mechanical response of the chiral metamaterial, as a nonlinear mechanical
esponse is obtained when a transition between two different contact states occurs during a deformation process (see the dotted
urves in Figs. 5(b)-5(e)).

Fourth, the values of the applied deformation fields should be chosen to give non-zero mechanical work, as according to
q. (35), for each deformation cycle, there is a specific combination of the coupled deformation fields at which the mechanical
ork for a linear chiral, nonreciprocal elastic solid (i.e., with non-zero 𝛽 and 𝜆𝑖) is zero. For instance, for a dilation–rotation

cycle (𝜆1 ⇔ 𝜆2) starting from zero-stress state, the mechanical work is zero when the chiral solid is deformed such that the
igaments are detached from the circles in the first two processes (no contact), and then full contact is established between the
ntire curved end of each ligament and the circles at the end of the second deformation process, as this deformation sequence
equires 𝛾1∕𝛾2 = (2𝛽 ±

√

4𝛽2 + 𝜆1𝜆2)∕𝜆1, which gives zero mechanical work according to Eq. (35) (see Appendix B for more details).
To comply with the aforementioned requirements, the dilation–rotation cycle shown in Fig. 5(b), where the chiral metamaterial

was deformed by 𝛾1 = −0.0125 and 𝛾2 = −0.0125 in two consecutive processes and then reversed in another two consecutive processes,
was carried out such that, in the first two processes (1 → 2 and 2 → 3), the ligaments are detached from the rigid circles, while
after Process 3 → 4 and at State 4, full contact is established between the ligaments and the circles, such that the entire curved
nd of the ligament is pressed against the circular profile of the rigid circle. To avoid having nonlinear mechanical response due to
transition from a no contact state to a full contact state during Process 3 → 4, we established at State 3 and before undergoing

Process 3 → 4 a specific area of contact between the curved end of the ligament and the circle that gives linear mechanical behavior
through Process 3 → 4, and which also leads to the state of stress at the end of the deformation cycle being zero. These different
contact states can be achieved by enabling the chiral structure a mechanism of changing the profile of the circle to establish at State
3 a contact angle of 19.7◦ between the ligaments and the circles, and then to establish at State 4 contact angle of 60◦ between the
ligaments and the circles (see Fig. A.6 - Appendix A for more details). The change in the contact state of the chiral metamaterial
during the deformation cycle enables it to exhibit chiral, nonreciprocal elasticity (see Fig. 5(b)), and thus the mechanical work was
determined by the value of the cumulative work at the end of the deformation cycle by 𝑊 ≅ 16.6 kJ∕m3, as shown in Fig. 5(f). We
note that the contact angle 19.7◦ is specific for the applied deformations 𝛾1 = −0.0125 and 𝛾2 = −0.0125, as this contact state was
determined to give the state of stress of the chiral solid zero at the end of the deformation cycle.

We emphasize that the change in the contact state of the chiral metamaterial was achieved without contributing any energy
gain/loss to the solid, as the state of stress of the chiral solid does not change when we change the contact state at State 3 or State
4, as shown in Fig. 5(b). Here, we adopted an approach of changing the contact state by changing the circle profile (see Fig. A.6
- Appendix A), which can be practically done by means of a rigid-body slider mechanism, where the circumferential profile of the
circle changes by the rigid motion of a slider up and down, that – importantly – must not change the state of stress of the chiral
solid when applied, and thus it does not contribute any energy to the chiral solid. This mechanism of changing the circle profile is
still part of the mechanism required to modulate the elastic stiffness of the considered chiral metamaterial by changing the contact
state (see Figs. 3 and 4).

Similar actions were also taken to change the contact state of the chiral metamaterial through the dilation–rotation cycle shown in
Fig. 5(d), in which the chiral solid was first deformed by 𝛾1 = +0.0125 and 𝛾2 = +0.0125 in two processes, and then the deformation
was reversed in the last two processes (see Fig. A.6 - Appendix A). After the first two processes (1 → 2 and 2 → 3), where full
contact is established between the ligaments and the circles (60◦ of contact angle), we changed the contact state to only 12.5◦

before undergoing Process 3 → 4 and at State 3. Then, after Process 3 → 4 and at State 4, the contact between the ligaments
and the circles was removed, where no contact was established during Process 4 → 1. Through this deformation cycle, the chiral
metamaterial revealed chiral, nonreciprocal elasticity (see Fig. 5(d)), and revealed mechanical work of 𝑊 = −16 kJ∕m3, as shown
in Fig. 5(h). Again, we emphasize that there is no energy gain/loss was contributed anywhere in the deformation cycle.

Comparing these two deformation cycles to the other deformation cycles shown in Figs. 5(c) and 5(e), it follows that the chiral,
nonreciprocal elastic response of the chiral metamaterial is suppressed, and thus zero mechanical work was obtained for these
deformation cycles, as shown in Figs. 5(g) and 5(i). In these deformation cycles, the chiral structure is deformed such that the
ligaments are either detached from the circles (as for the cycle in Fig. 5(c)) or establish full contact of 60◦ with the circles (as
for the cycle in Fig. 5(e)) throughout the entire deformation cycle. Thus, the contact state of the chiral structure does not change
through the deformation cycle, and thus no chiral, nonreciprocal elastic behavior can be developed, suppressing the mechanical
activity of the chiral solid.

4.2.1. Demonstration of a deformation cycle
To understand how the mechanical work can be developed when deforming the chiral metamaterial through a dilation–rotation

closed cycle, while elucidating how this would be related to the chiral, nonreciprocal elasticity of the chiral solid, we focus our
17

discussion here on the deformation cycle shown in Figs. 5(b) and 5(f), in which the chiral metamaterial undergoes a sequence of
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compressive dilation 𝛾1 = −0.0125 and counterclockwise rotation 𝛾2 = −0.0125. Specifically, in Process 1 → 2, a uniform compressive
dilation 𝛾1 = −0.0125 mm∕mm is applied, and according to Eq. (29), a dilatational stress 𝜎1 = 𝐵̂𝛾1 is developed in the chiral
metamaterial, while because of the chirality, the chiral metamaterial also develops a torsional stress 𝜎2 = −(𝐴̂ − 𝛽)𝛾1 that depends
on the chiral moduli 𝐴̂ and 𝛽 (see Fig. 5(b)). As work depends on the deformation path, the work done on the chiral metamaterial
in this process (𝑊1→2) is calculated by the area under the stress 𝜎1-strain 𝛾1 curve of the Process 1 → 2 in Fig. 5(b) such that
𝑊1→2 = 0.5 ∫ 𝛾10 (𝜎1|𝛾2=0)𝛿𝛾1 = 0.25𝐵̂𝛾21 . It is important to note that the limits of the integral of 𝑊1→2 expression increase from zero to
𝛾1, and thus the work 𝑊1→2 is done on the chiral solid from its surrounding via the applied compression.

In Process 2 → 3, a counterclockwise rotation 𝛾2 = −0.0125 is then applied where the torsional stress changes to become
𝜎2 = −(𝐴̂ − 𝛽)𝛾1 + (𝐶̂ + 𝜆2)𝛾2, while through the chiral, nonreciprocal elasticity an additional dilatational stress that depends on
the chiral moduli 𝐴̂ and 𝛽 and the nonreciprocal modulus 𝜆1 is also developed, where the overall dilatational stress in the chiral
metamaterial becomes 𝜎1 = (𝐵̂+𝜆1)𝛾1−(𝐴̂+𝛽)𝛾2. It should be noted that the moduli 𝜆1 and 𝜆2 appear in the stress equations because
the chiral solid in Process 2 → 3 becomes deformed with both dilation and rotation, which are coupled deformation fields. The work
done on the chiral metamaterial through the Process 2 → 3 can be calculated by the area under the stress 𝜎2-strain 𝛾2 curve such
that 𝑊2→3 = 0.5 ∫ 𝛾20 𝜎2𝛿𝛾2 = −0.5(𝐴̂ − 𝛽)𝛾1𝛾2 + 0.25(𝐶̂ + 𝜆2)𝛾22 (see Figs. 5(b) and 5(f)).

In Process 3 → 4, the dilation 𝛾1 is reversed, and thus both the dilatational 𝜎1 and torsional 𝜎2 stresses change. If the chiral
solid is reciprocal, we anticipate that the same stresses that have been developed in Process 1 → 2 are conserved in Process
3 → 4. However, because of the chiral, nonreciprocal elasticity of the solid metamaterial, the dilatational stress reversed in Process
3 → 4 is different from that which was developed in Process 1 → 2 by 𝜆1𝛾1, and thus the dilatational stress at the end of this
process becomes 𝜎1 = −(𝐴̂ + 𝛽)𝛾2. Similarly, the torsional stress reversed in Process 3 → 4 is also different from that which was
developed in Process 1 → 2 by 𝜆2𝛾2, such that the conserved torsional stress is −(𝐴̂ − 𝛽)𝛾1 + 𝜆2𝛾2, and thus the torsional stress
at the end of this process becomes 𝜎2 = 𝐶̂𝛾2 (see Fig. 5(b)). The work reversed from the chiral metamaterial by the reversal
of the dilation 𝛾1 can be calculated by the area under the stress 𝜎1-strain 𝛾1 curve of Process 3 → 4 in Fig. 5(b) such that
𝑊3→4 = 0.5 ∫ 0

𝛾1
𝜎1𝛿𝛾1 = −0.25(𝐵̂ + 𝜆1)𝛾21 +0.5(𝐴̂+ 𝛽)𝛾2𝛾1. It should be noted that the limits of the integral are swapped, as the dilation

is reversed, and thus the work 𝑊3→4 is reversed from the chiral solid to the surrounding by removing the prescribed compression.
In Process 4 → 1, the rotation 𝛾2 is reversed, and the stresses drop to zero, and thus the chiral metamaterial recovers its original

state by the completion of the deformation cycle, indicating that the deformation cycle is closed. The work reversed from the chiral
metamaterial after this process is calculated by the area under the stress 𝜎2-strain 𝛾2 curve of the Process 4 → 1 in Fig. 5(b) such
that 𝑊4→1 = 0.5 ∫ 0

𝛾2
(𝜎2|𝛾1=0)𝛿𝛾2 = −0.25𝐶̂𝛾22 .

It follows from these four deformation processes that in the first two processes, work is done on the chiral solid from the
urrounding due to external loads applied at the solid’s external boundary, which is then reversed from the solid to the surrounding
n the last two processes by the removal of the external loads. If the work reversed from the chiral solid to the surrounding is the same
s the work done on the chiral solid from the surrounding, the energy used to drive the chiral solid through the deformation cycle is
onserved, and it is not conserved otherwise. It follows from the calculations of the deformation processes that the total work done on
he chiral solid from the surrounding in Processes 1 → 2 and 2 → 3 is 𝑊𝑖𝑛 = 𝑊1→2 +𝑊2→3 = 0.25𝐵̂𝛾21 −0.5(𝐴̂− 𝛽)𝛾1𝛾2 +0.25(𝐶̂ +𝜆2)𝛾22 ,
hile the work reversed from the chiral solid to the surrounding after Processes 3 → 4 and 4 → 1 is 𝑊𝑜𝑢𝑡 = 𝑊3→4 + 𝑊4→1 =
0.25(𝐵̂ + 𝜆1)𝛾21 + 0.5(𝐴̂ + 𝛽)𝛾2𝛾1 − 0.25𝐶̂𝛾22 . Putting these work values together, it follows that the chiral solid does not conserve
nergy, as the input work 𝑊𝑖𝑛 is not equal to the output work 𝑊𝑜𝑢𝑡 during the deformation cycle, and thus mechanical work can be
btained from this deformation cycle that is 𝑊 = 𝑊𝑖𝑛 +𝑊𝑜𝑢𝑡 = −0.25𝜆1𝛾21 + 𝛽𝛾1𝛾2 + 0.25𝜆2𝛾22 . For this specific deformation cycle, the

cumulative work per unit volume 𝑊 at the end of the cycle is obtained by 𝑊 ≅ 16.6 kJ∕m3, as shown in Fig. 5(f).
It important to note the difference between the cumulative work of our chiral, nonreciprocal elastic metamaterial and the

cumulative work of an odd elastic solid (Scheibner et al., 2020) undergoing the same deformation cycle. For the odd elastic solid,
where only Form I of chiral nonreciprocity is developed, the cumulative work equals the area of the deformation space 𝛾1𝛾2 times
the chiral modulus of non-symmetric elasticity 𝛽, i.e., 𝑊 = 𝛽𝛾1𝛾2. However, enabled by not only Form I of chiral nonreciprocity
due to the modulus 𝛽 but also Form II of chiral nonreciprocity due to the moduli 𝜆1 and 𝜆2, the cumulative work of our chiral
metamaterial depends on the deformation space and the nonreciprocal modulation of the elastic properties.

4.3. Conservation of momenta

Having demonstrated its mechanical activity and chiral, nonreciprocal elasticity, here we investigate the conservation of
momenta of the chiral metamaterial. The various momenta of continua with internal spin fields can be defined, as follows:

Linear Momentum ∶ 𝐋 = ∫𝑉 (𝜌̂𝐮̇(𝐱)) d𝑉
Total Angular Momentum ∶ 𝐉 = Ω + 𝐒, i.e.,

Ω = ∫𝑉 (𝐗(𝐱) × 𝜌̂𝐮̇(𝐱)) d𝑉 & 𝐒 = ∫𝑉
(

𝐈̂ ∙ Θ̇(𝐱)
)

d𝑉
(36)

where 𝐮̇ and Θ̇ are, respectively, the linear velocity of motion and the local, spin velocity of a material particle at point 𝐱, 𝜌̂ is the
mass density and 𝐈̂ is the vector of mass-spin inertia density, and 𝐗 is the position vector of the material particle at 𝐱 and 𝑉 is the
material volume. In addition to the linear momentum of the particle’s motion 𝐋, the solid has the total angular momentum 𝐉, which
is the sum of the orbital angular momentum Ω of the orbital rotation of each material particle about the material’s reference, and
the spin angular momentum 𝐒 of the independent spinning of each material particle about its mass-center point. The momentum
conservation is contingent on the linear momentum 𝐋 and the total angular momentum 𝐉 remaining constant over time as the solid
18

deforms.
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For our chiral metamaterial, every particle can move with 𝑢𝑥 and 𝑢𝑦 and can also locally spin with 𝜃𝑧. Considering these
independent degrees of freedom, the conservation of linear momentum requires 𝐿̇𝑘 = ∫𝑉 (𝜌̂𝑢̈𝑘)d𝑉 = 0, and the conservation of
total angular momentum requires 𝐽̇𝑧 = ∫𝑉 (𝑋𝑗𝜖𝑗𝑘𝜌̂𝑢̈𝑘 + 𝐽 𝜃̈𝑧)d𝑉 = 0. With the substitution of Eq. (25) into these two expressions, the
following conditions of conservation of momenta can be determined:

𝐿̇𝑘 = 0 ⇒ 𝜏𝑗𝑖,𝑗 = 0
𝐽̇𝑧 = 0 ⇒ 𝜖𝑗𝑘𝜏𝑗𝑘 + 𝑠𝑧 + 𝑚𝑖,𝑖 = 0

(37)

According to Eq. (37), the linear momentum and the total angular momentum are both conserved when the chiral metamaterial is
deformed quasistatically without any external body forces or external body torques acting on it.

The chiral metamaterial can be deformed while conserving both linear and angular momenta, or while conserving only linear
momentum. Under both cases, the chiral metamaterial can still reveal chiral, nonreciprocal elasticity. In the previous demonstrations
of the mechanical response of the chiral metamaterial (Figs. 4 and 5), it was deformed while angular momentum was not conserved.
For instance, when the chiral metamaterial is used through dilation-(rotation or spin) deformation cycles (e.g., Fig. 5), only linear
momentum can be conserved, while the angular momentum is not conserved by the need for the body torque 𝜎2 ≠ 0 to achieve chiral
coupling between dilation and either rotation or spin. Under dilation-(rotation or spin) cycles, a body torque is developed by either
rotating the external boundary or by spinning the circles of the chiral metamaterial, and thus the total angular momentum is not
conserved 𝐽̇𝑧 ≠ 0. It is important to note that the observed mechanical activity of the chiral metamaterial in Fig. 5 is not due to the
non-conservation of the angular momentum, but is instead only due to the chiral, nonreciprocal elasticity of the chiral metamaterial.
This can be demonstrated by the zero mechanical work that was obtained when the chiral metamaterial was deformed through the
deformation cycles in Figs. 5(c) and 5(e), where despite the angular momentum not being conserved, the chiral metamaterial is
reciprocal elastic and gives zero mechanical work. The non-conservation of angular momentum is manifested in the elasticity tensor
shown in Eq. (29), as the angular momentum is not conserved if and only if the stress 𝜎2 ≠ 0.

The chiral metamaterial can also reveal chiral, nonreciprocal elasticity while conserving both linear and angular momenta.
The chiral metamaterial conserves angular momentum when deformed such that 𝜎2 = 0. This can be achieved by – for example
– deforming the chiral metamaterial while letting all circles of the chiral structure to spin freely. When no couple stresses are
developed (i.e., 𝑚𝑖 = 0), according to Eqs. (26) and (37), the total, spin, and orbital angular momenta are all conserved if the stress
tensor 𝜏𝑖𝑗 is symmetric, i.e., 𝜖𝑗𝑘𝜏𝑗𝑘 = 0. For our chiral metamaterial, the symmetry of the stress tensor can be verified by expressing
it in terms of the spin field. Under conservation of spin angular momentum, the uniform spin field can be determined from Eq. (24)
as 𝜃𝑧 = 0.5(𝑢𝑦,𝑥 − 𝑢𝑥,𝑦) + ((𝜉2 + 𝜅2)∕(2(𝐶̂ + 𝜆2)))(𝑢𝑥,𝑥 + 𝑢𝑦,𝑦), where 𝜃𝑧,𝑖 = 0. The substitution of this expression into Eq. (27) gives the
stress components in the form:

𝜏𝑥𝑥 = (𝐵̂ + 𝜆1)𝑢𝑥,𝑥 +
1
2 (𝜉1 + 𝜅1)(𝑢𝑦,𝑥 + 𝑢𝑥,𝑦) −

(𝜉1+𝜅1)(𝜉2+𝜅2)
2(𝐶̂+𝜆2)

(𝑢𝑥,𝑥 + 𝑢𝑦,𝑦)

𝜏𝑦𝑦 = (𝐵̂ + 𝜆1)𝑢𝑦,𝑦 −
1
2 (𝜉1 + 𝜅1)(𝑢𝑦,𝑥 + 𝑢𝑥,𝑦) −

(𝜉1+𝜅1)(𝜉2+𝜅2)
2(𝐶̂+𝜆2)

(𝑢𝑥,𝑥 + 𝑢𝑦,𝑦)

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 1
2 (𝐶̂ + 𝜆2)(𝑢𝑦,𝑥 + 𝑢𝑥,𝑦) +

1
2 (𝜉2 + 𝜅2)(𝑢𝑥,𝑥 − 𝑢𝑦,𝑦)

(38)

where the stress tensor is symmetric, i.e., 𝜏𝑥𝑦 = 𝜏𝑦𝑥, and thus the total angular momentum is conserved. After the substitution of
these stress components into Eq. (30), the constitutive law in Eq. (29) takes the form:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎1
𝜎2
𝜎3
𝜎4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂ − 𝜉1𝜉2
𝐶̂

0 0 0
0 0 0 0
0 0 𝐵̂ + 𝜆1 𝐴̂ + 𝛽
0 0 𝐴̂ − 𝛽 𝐶̂ + 𝜆2

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑥,𝑥 + 𝑢𝑦,𝑦
𝑢𝑥,𝑦 − 𝑢𝑦,𝑥
𝑢𝑥,𝑥 − 𝑢𝑦,𝑦
𝑢𝑥,𝑦 + 𝑢𝑦,𝑥

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(39)

It is clear that the angular momentum is conserved in the elasticity tensor shown in Eq. (39), as the body torque field 𝜎2 = 0,
and thus it conserves linear momentum along with the various angular momenta. In addition, the elasticity tensor in Eq. (39) is still
chiral, nonreciprocal by having the moduli 𝛽, 𝜆1 and 𝜆2 non-zero and by being asymmetric elastic.

5. Comparison with existing elasticity models

5.1. Chiral, nonreciprocal elasticity versus odd elasticity

Recently, the theoretical construct of odd elasticity was introduced to describe a class of linear elastic, isotropic solids whose
constitutive behavior cannot be derived from a free energy (Scheibner et al., 2020). Because of this, the elasticity tensor of an
odd elastic solid is not symmetric, and furthermore while odd elastic solids conserve linear momentum, they are not required to
conserve angular momentum or energy, and thus they can violate energy conservation as the material is deformed through a closed
deformation cycle (Scheibner et al., 2020). Furthermore, the constitutive law of odd elasticity represents the stress as a linear
function of the displacement gradient. Thus, there are similarities between the chiral, nonreciprocal elastic constitutive law that we
developed here and the odd elasticity proposed by Scheibner et al. (2020). To more easily compare between these two elasticity
19
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concepts, the elasticity tensor of chiral, nonreciprocal elasticity shown in Eq. (11) 𝐶cn
𝛼𝛽 is compared with the elasticity tensor of odd

elasticity 𝐶odd
𝛼𝛽 , as follows:

𝐶cn
𝛼𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂±
1 + 𝜆±1 𝐴̂± + 𝛽±1 0 0

𝐴̂± − 𝛽±1 𝐶̂± + 𝜆±2 0 0
0 0 𝐵̂±

2 + 𝜆±3 𝐾̂± + 𝛽±2
0 0 𝐾̂± − 𝛽±2 𝜇̂± + 𝜆±4

⎤

⎥

⎥

⎥

⎥

⎦

& 𝐶odd
𝛼𝛽 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂1 0 0 0
𝐴̂ 0 0 0
0 0 𝐵̂2 𝐾̂
0 0 −𝐾̂ 𝜇̂

⎤

⎥

⎥

⎥

⎥

⎦

(40)

Odd elasticity is capable of breaking reciprocity like chiral, nonreciprocal elasticity by enabling only Form I of chiral nonre-
ciprocity. For instance, the odd elasticity tensor 𝐶odd

𝛼𝛽 models nonreciprocal coupling between dilation and rotation through the odd
elastic modulus 𝐴̂, such that dilation 𝛾1 produces dilatational 𝜎1 and torsional 𝜎2 stresses, while rotation does not produce any
stress, while it also models nonreciprocal coupling between dilation and shear through the odd elastic modulus 𝐾̂, such that the
positive dilation gives positive shear while the positive shear gives negative dilation (see Eq. (40)). This is analogous to Form I of
chiral, nonreciprocal elasticity we demonstrate in Figs. 1(b) and 1(c). Thus, both elasticity concepts can describe the asymmetric
elasticity of matter, where the elasticity tensor is asymmetric in their constitutive laws, and both elasticity tensors are chiral for 2D
isotropic solids. Therefore, both concepts cannot be derived assuming a free energy, and because of this, both odd elastic and chiral,
nonreciprocal elastic solids can act as sources of mechanical work when used through closed cycles of coupled deformations.

Despite the aforementioned similarities between chiral, nonreciprocal elasticity and odd elasticity around the asymmetric
elasticity, the two concepts are still distinct practically and theoretically. The major practical difference between odd elasticity and
chiral, nonreciprocal elasticity is that current manifestations of odd elasticity require the use of active elements operated by external,
independent energy sources, while chiral, nonreciprocal elasticity can be manifested using passive elements. Specifically, previous
realizations of odd elastic solids (Chen et al., 2021b; Scheibner et al., 2020) used internal, active elements with independent energy
sources to enable the nonreciprocal coupling needed to get the asymmetric elasticity tensor. For example, piezoelectric actuators and
sensors that achieved coupling between bending and shear were used along with an independent energy supplier with feed-forward
control to enable odd elasticity in beams. In this design, energy is supplied to the beam for the bending deformation mode but not
for the shear deformation mode, achieving nonreciprocal interactions in which bending induces shear, while shear does not induce
bending (Chen et al., 2021b). In addition, in the realization of robotic odd elastic active matter, externally powered-actuators and
micro-controllers were used to realize nonreciprocal behavior of linkage mechanisms that can exhibit coupled deformation modes,
such that the linkage rotation changes by the spatial inversion of the applied deformation (Brandenbourger et al., 2022). Because
the deformation of these odd elastic solids is controlled by external energy sources, such solids do not satisfy the energy balance
in Eq. (31). In contrast, chiral, nonreciprocal elasticity demonstrates the constitutive behavior of a class of non-symmetric elastic
solids that always satisfy the energy balance in Eq. (31). The chiral, nonreciprocal elasticity enables an asymmetric elasticity tensor
by combining nonreciprocity that enables modulation of the elastic properties with chirality that enables coupling between different
deformation fields, without active elements that require external energy sources. Among the various routes to breaking reciprocity,
there are passive, time-invariant media that can also break reciprocity (Asadchy et al., 2020; Coulais et al., 2017; Mahmoud et al.,
2015), and thus the realization of nonreciprocity does not always require active media. By implementing a geometrical asymmetry,
we realized a chiral metamaterial that exhibits asymmetric elasticity enabled by the modulation of the stiffness of its chiral elements
depending on the direction and type of the applied deformation. Therefore, by combining nonreciprocity that enables modulation
of the material stiffness with chirality, chiral, nonreciprocal elastic and mechanically active solids can be realized using passive
structures, as shown in this work.

The major theoretical difference between chiral, nonreciprocal elasticity and odd elasticity is in the distinct constitutive laws and
elasticity tensors (see Eq. (40)). The elastic moduli of the chiral, nonreciprocal elasticity tensor 𝐶cn

𝛼𝛽 are spontaneously modulated
by (1) the spatial inversion of the applied deformation (see the (±) superscripts in Eq. (40)), and (2) by coupling between different
deformation fields, as manifested in the moduli 𝜆𝑖 that are developed only when the chiral solid is deformed by coupled deformation
fields. This is in contrast to odd elastic solids, where the elastic moduli of the odd elasticity tensor 𝐶odd

𝛼𝛽 are constants and do not vary
depending on the direction or mode of deformation of the odd elastic solid. Furthermore, the coupling of chirality and nonreciprocity
that is manifested in the chiral, nonreciprocal elasticity tensor 𝐶cn

𝛼𝛽 enables, in addition to the activity due to asymmetric elasticity
that is manifested in the odd elasticity tensor 𝐶odd

𝛼𝛽 (Form I of chiral, nonreciprocity through 𝛽𝑖), activity due to the modulation of
the material elastic properties depending on the direction and type of the applied deformation (Form II of chiral, nonreciprocity
through 𝜆𝑖). Therefore, the present formulation of chiral, nonreciprocal elastic solids is more general as compared to the formulation
of the odd elasticity in previous works (Scheibner et al., 2020).

5.2. Comparison with micropolar continuum models

As the chiral metamaterial exhibits a spin field 𝜃𝑧 by rotating the circles of the chiral structure, the developed chiral, nonreciprocal
elasticity of the chiral metamaterial can be compared with micropolar elasticity. Previous works have used micropolar elasticity to
model the mechanics of chiral solids (Liu et al., 2012; Joumaa and Ostoja-Starzewski, 2011; Lakes and Benedict, 1982; Lakes, 2001;
Natroshvili and Stratis, 2006; Frenzel et al., 2017, 2019; Chen et al., 2020, 2021a). In some of these works, micropolar elasticity
was also used to justify the mechanical activity of chiral metamaterials (Frenzel et al., 2017, 2019; Chen et al., 2021a). However,
because micropolar elasticity is based on a free energy function and thus enforces energy conservation, the activity described above
cannot be captured by the conventional micropolar models. This can be demonstrated by considering the non-centrosymmetric
20
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micropolar model of chiral solids (Lakes, 2001; Liu et al., 2012; Natroshvili and Stratis, 2006; Lakes and Benedict, 1982; Joumaa
and Ostoja-Starzewski, 2011), which assumes the following free energy function, for 2D isotropic linear elastic materials (assuming
a uniform spin field 𝜃𝑧) (Liu et al., 2012):

𝑤 = 1
2 (𝜆𝛾𝛼𝛼𝛾𝛽𝛽 + 𝜇1𝛾𝛼𝛽𝛾𝛼𝛽 + 𝜇2𝛾𝛼𝛽𝛾𝛽𝛼) + 𝐴(𝛾𝑘𝑘𝜖𝛼𝛽𝛾𝛼𝛽 ) (41)

where 𝛾𝛼𝛽 = 𝑢𝛽,𝛼 + 𝜖𝛽𝛼𝜃𝑧, and 𝜆, 𝜇1, and 𝜇2 are Lame constants, while 𝐴 is an elastic modulus of chiral coupling. Using the stresses
and kinematic variables in Eq. (30), the constitutive law can be then obtained in the following form, according to Eq. (41):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎1
𝜎2
𝜎3
𝜎4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

2𝜆 + 𝜇1 + 𝜇2 −2𝐴 0 0
−2𝐴 𝜇1 − 𝜇2 0 0
0 0 𝜇1 + 𝜇2 0
0 0 0 𝜇1 + 𝜇2

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛾𝑥𝑥 + 𝛾𝑦𝑦
𝛾𝑦𝑥 − 𝛾𝑥𝑦
𝛾𝑥𝑥 − 𝛾𝑦𝑦
𝛾𝑥𝑦 + 𝛾𝑦𝑥

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(42)

This micropolar model reveals chiral coupling where the elasticity tensor in Eq. (42) is chiral when the modulus 𝐴 ≠ 0. This
chirality enables unusual deformations, where dilation produces twist and where twist produces dilation (Liu et al., 2012). However,
these unusual deformations do not necessarily entail that the chiral solid is mechanically active, as these deformations are fully
recovered by means of energy conservation, and the chiral solid is still mechanically passive if the chirality is not combined
with nonreciprocity. As we demonstrated in this study, the mechanical activity of chiral solids is contingent on having chiral
nonreciprocity, and thus the verification of the mechanical activity of chiral metamaterials should be carried out based on energy
conservation and chiral, nonreciprocal elasticity rather than the material deformation. The elasticity tensor in Eq. (42) is reciprocal,
as it is symmetric and with constant elastic moduli, and therefore it cannot reveal chiral, nonreciprocal elasticity or mechanical
activity under static equilibrium. Therefore, further justifications may be needed on the mechanical activity of chiral metamaterials
considered in studies, e.g., Frenzel et al. (2017), Frenzel et al. (2019) and Chen et al. (2021a), where the verification of the
mechanical activity was carried out based on measures other than chiral nonreciprocity, e.g., unusual twist and unusual acoustic
phonons.

Another micropolar elasticity model that enforces non-conservation of angular momentum has been developed and used to make
elastic cloaks (Vasquez et al., 2012; Nassar et al., 2020a, 2019; Zhang et al., 2020; Xu et al., 2020), by exploiting the resulting non-
symmetric stress tensor to enable cloaking without requiring anisotropy. In the context of this model, the chiral solid is assumed
working under an external angular momentum source that produces an external body torque – that is a linear function of the spin 𝜃𝑧
– acting on the solid. This external body torque adds torsional stiffness 𝐶𝐸 to the component 𝐶22 of the elasticity tensor in Eq. (42),
such that it becomes 𝐶22 = 𝜇1 − 𝜇2 + 𝐶𝐸 . With this, the orbital angular momentum is not conserved, and thus the stress tensor
that is based only on the displacement gradient is asymmetric, while because the external torque only contributes to a diagonal
element of the elasticity tensor, the elasticity is still reciprocal and symmetric, and therefore this micropolar model cannot reveal
non-symmetric elasticity or mechanical activity.

In the same context, it is important stating the case when the chiral solid is connected to an external, independent energy
source that produces momentum contributing to the dilation–rotation coupling of the solid. If this source of external momentum is
reciprocal, it produces an external body torque 𝑇𝐸 = 2𝐴𝐸 (𝛾𝑥𝑥+𝛾𝑦𝑦), while it also produces external body forces 𝐹𝐸𝑥 = 2𝐴𝐸 (𝛾𝑥𝑦,𝑥−𝛾𝑦𝑦,𝑦)
nd 𝐹𝐸𝑦 = 2𝐴𝐸 (𝛾𝑥𝑥,𝑥 − 𝛾𝑦𝑥,𝑦), all of which are equivalently coupled via the same coupling modulus 𝐴𝐸 . Under this reciprocal
omentum, the constitutive law of the micropolar continuum takes the following form:
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⎭
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⎡
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⎢
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⎣

2𝜆 + 𝜇1 + 𝜇2 −2(𝐴 + 𝐴𝐸 ) 0 0
−2(𝐴 + 𝐴𝐸 ) 𝜇1 − 𝜇2 0 0

0 0 𝜇1 + 𝜇2 2𝐴𝐸

0 0 2𝐴𝐸 𝜇1 + 𝜇2
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⎥

⎥

⎥

⎥

⎦
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⎪
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⎩

𝛾𝑥𝑥 + 𝛾𝑦𝑦
𝛾𝑦𝑥 − 𝛾𝑥𝑦
𝛾𝑥𝑥 − 𝛾𝑦𝑦
𝛾𝑥𝑦 + 𝛾𝑦𝑥

⎫
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⎪

⎬

⎪

⎪

⎭

(43)

t is clear that, under reciprocal external momentum sources, the elasticity tensor is symmetric, and thus it cannot reveal chiral,
onreciprocal elasticity or mechanical activity. For the elasticity tensor to be asymmetric, the momentum source should be
onreciprocal such that it develops either body torque or body forces by injecting momentum in only one direction (or at least the
orce and the torque fields are not equivalently coupled by enabling different coupling moduli). Approaches of enabling asymmetric
lasticity based on external momentum sources often require the use of external energy sources along with one-way controllers to
ealize nonreciprocal momenta (Brandenbourger et al., 2019; Chen et al., 2021b; Scheibner et al., 2020; Brandenbourger et al.,
022). However, by exploiting a geometrical asymmetry that resulted in nonreciprocal elastic behaviors in which the material elastic
roperties can be modulated depending on the direction of the applied deformation, we demonstrated the enabling of nonreciprocal
omenta and asymmetric elasticity in chiral elastic solids without using nonreciprocal, external momentum or energy sources.

pecifically, we demonstrated a chiral metamaterial that can spontaneously develop nonreciprocal momenta without using external
omentum sources, such that, according to Eqs. (22)–(24), it can develop spontaneous body torque 𝑇 𝑆 = (𝐴̂ − 𝛽)(𝛾𝑥𝑥 + 𝛾𝑦𝑦) and

pontaneous body forces 𝐹𝑆𝑥 = (𝐴̂ + 𝛽)𝛾𝑥𝑦,𝑥 − (𝐴̂ − 𝛽)𝛾𝑦𝑦,𝑦 and 𝐹𝑆𝑦 = (𝐴̂ − 𝛽)𝛾𝑥𝑥,𝑥 − (𝐴̂ + 𝛽)𝛾𝑦𝑥,𝑦 during deformation, which are not
quivalently coupled to each other by having the nonreciprocal modulus 𝛽 ≠ 0.

Overall, the constitutive theory based on chiral, nonreciprocal elasticity that we developed to model the chiral metamaterial
ade of passive elements that can act as a source of mechanical work is distinct from previously developed micropolar elasticity
odels by (1) modeling the mechanics of chiral solids without the assumption of the existence of a free energy, and thus it can
escribe situations for which the solid may violate energy conservation, (2) modeling the nonreciprocal behavior of active chiral
olids, and in particular the consequences of coupling chirality with nonreciprocity, and (3) enabling mechanical activity using
assive structures, with no need for external energy sources.
21
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6. Conclusions

The main contribution of this work is two-fold. First, we have proposed the notion of chiral, nonreciprocal elasticity, which
epresents a generic route to enabling 2D, isotropic elastic solids exhibiting asymmetric elasticity, and thus such elastic solids can
reak static thermodynamic equilibrium and can act as sources of mechanical work when used in specific quasistatic deformation
ycles. Specifically, this approach describes elastic behaviors that result from coupling nonreciprocity with chirality, to enable the
onreciprocal coupling of different deformation fields, which enables such solids to exhibit: (1) asymmetric isotropic elasticity in
hich the solid conserves linear momentum, and (2) spontaneous modulations of the elastic properties depending on the mode of
eformation. Second, we have developed an isotropic 2D chiral metamaterial that, by exploiting local geometrical asymmetry,
ehaves in a chiral, nonreciprocal elastic fashion while only requiring passive, and not active energy sources. We have also
emonstrated, arising from its asymmetric elasticity, the ability of the chiral metamaterial to act as a source of mechanical work
hrough specific quasistatic deformation cycles though no energy is dissipated/consumed by its passive elements. Furthermore, using
inite element simulations we have demonstrated the practical actions that must be taken for the chiral metamaterial to exhibit
he idealized linear, chiral nonreciprocal elastic behavior and thus mechanical activity through a quasistatic deformation cycle.
ecause of the relative simplicity of the chiral metamaterial, we anticipate that the developments made in this work will enable
urther fundamental investigations into a range of emerging research areas, including solid active matter (Bowick et al., 2022), and
opological mechanics (Shankar et al., 2020).
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ppendix A. Finite element simulations

To demonstrate the mechanical response of the chiral metamaterial, and to verify the developed analytical models including the
hiral, nonreciprocal constitutive law in Eq. (29), we carried out static finite element simulations – using the commercial simulation
ackage ABAQUS (Smith, 2009) – of the chiral metamaterial in Fig. 2(a) when used through the various deformations shown in
igs. 3–5. To obtain the results presented in this study, we modeled a chiral lattice that is comprised of 4 × 4 chiral elements with
𝛼0 = 30◦ chiral angle and 𝑎 = 20 mm lattice constant (Fig. 2). The circles of the chiral lattice were modeled as rigid bodies, while the
igaments were modeled as linear elastic Bernoulli–Euler beam elements with cross sectional dimensions 𝑏 = 30 mm×ℎ = 1.5 mm for

a rectangular cross section, where 𝑏 is the width and ℎ is the thickness, and with Young’s modulus 𝐸 = 70 GPa and zero Poisson’s
ratio. To enable microscopic geometrical asymmetry of the chiral metamaterial, the ligaments were made tangent to the circles with
curved ends around the circles with 𝜃0 = 60◦, as shown in Fig. 2(c). Rigid connections were defined between the elastic ligaments
nd the rigid circles such that the end points of the ligaments were rigidly tied to the circles, as indicated by the tied joints in
ig. 2(c). In addition, a node-to-surface, Augmented Lagrangian hard contact was defined between the ligaments and the circles,
here the hard contact was only defined in the normal direction, while there are no tangential frictional or dissipative interactions

hat were considered.
For all finite element simulations carried out in this work, we adopted assumptions leading to linear elastic mechanical response

f the chiral metamaterial, and thus all sources of nonlinearity were eliminated. Specifically, for all simulations, the circles of the
hiral lattice were modeled as rigid bodies, while the ligaments were modeled as linear, elastic Bernoulli–Euler beam elements
ith uniform, rectangular cross section and linear, elastic material properties. In addition, small-displacement/strain analyses
ere adopted in all simulations, where the geometric nonlinearity was not considered. Furthermore, to maintain the linear elastic

esponse of the chiral metamaterial, while the contact between the ligaments and the circles is considered, we deformed the chiral
etamaterial with small displacements and small rotations at the centers of the rigid circles. Specifically, in all simulations presented

n this study, the chiral metamaterial was deformed by small strains 𝑢𝑖,𝑗 = ±0.00625 and small rotations 𝜃𝑧 = ±0.0125, which resulted
in linear mechanical response of the chiral metamaterial while the contact was considered, as shown in the stress–strain results in
22

Figs. 4 and 5.
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Fig. A.6. Detailed sequence of the quasistatic deformation cycles presented in (a) Fig. 5(b) and (b) Fig. 5(d), elucidating the change in the contact state
throughout the deformation cycle. These deformation cycles were carried out such that the profile of the circle was changed at State 3 to establish contact with
(a) 19.7◦ and (b) 12.5◦ of the ligament’s curved end, and then at State 4 the profile was changed to establish (a) full contact of 60◦ or (b) no contact with the
curved end of the ligament.

A.1. Finite element simulations of the chiral metamaterial through quasistatic deformation cycles

The finite element simulation of the chiral metamaterial when used through each one of the quasistatic deformation cycles shown
in Fig. 5 was carried out over four deformation steps of static analysis such that two coupled deformation fields were applied in a two
consecutive steps, which were then reversed in another two consecutive steps. In each step, the chiral metamaterial was deformed
by a uniform deformation field where prescribed displacements or spins were applied at the centers of the rigid circles, as shown in
Fig. A.7. The horizontal and vertical nodal forces 𝐹𝑥𝑚 and 𝐹𝑦𝑚 and the nodal moment 𝑀𝑧𝑚 along with the nodal displacements 𝑢𝑥𝑚
and 𝑢𝑦𝑚 and the nodal rotations 𝜃𝑧𝑚 at the centers of the circles of the chiral lattice were determined with the incremental change
of the applied deformation.

As shown in Figs. 5(b) and 5(d), because of nonreciprocity, the chiral metamaterial may undergo a transition between a state
where the ligaments are detached from the circles and a state where the ligaments come into full contact with the circles, resulting
in a nonlinear mechanical response when the applied deformation is reversed during Process 3 → 4. To obtain linear response during
Process 3 → 4, at State 3 and before undergoing Process 3 → 4, a specific contact was established between the ligaments and the
circles by changing the circle profile, as shown in Fig. A.6. For instance, after Processes 1 → 2 and 2 → 3 of the deformation cycle
shown in Fig. 5(b), the ligaments are detached from the circles. Then at State 3, we change the profile of the circle to establish
contact between the ligaments and the circles, as shown in Fig. A.6(a). After Process 3 → 4 (at State 4), we change the profile of the
circle again to establish full contact between the curved ends of the ligaments and the circles, as shown. With this, the behavior of
the chiral structure is linear elastic throughout the deformation cycle, as shown in Fig. 5(b). It should be noted that the change of
the circle profile does not contribute any energy gain/loss to the chiral structure, as the state of stress of the solid does not change
by changing the circle profile at State 3 or State 4, as shown in Fig. 5.

Practically, the change of the circle profile can be done utilizing a slider mechanism that moves rigidly up and down to change
the circumferential profile of the circle, and thus changes the contact state of the chiral solid. Specifically, at State 3 and before
undergoing Process 3 → 4, the slider is moved up rigidly to establish contact with a portion of the curved end of the ligament, and
this contact state is maintained during Process 3 → 4. Then, after Process 3 → 4 and at State 4, the slider is displaced back rigidly
to establish contact with the entire curved end of the ligament. While this slider would require a mechanism actuating it, it does
not contribute any energy gain/loss to the chiral solid as (1) it moves rigidly and (2) it does not change the state of stress of the
chiral solid when applied.

To calculate the variation of the internal energy density 𝑤 of the chiral metamaterial through the deformation cycle, the sum of
the nodal forces at the centers of the circles of the top boundary layer 𝐹 (𝑖)

𝑦𝑥 =
∑5
𝑚=1 𝐹𝑥𝑚 and 𝐹 (𝑖)

𝑦𝑦 =
∑5
𝑚=1 𝐹𝑦𝑚 and at the centers of the

circles of the right boundary layer 𝐹 (𝑖)
𝑥𝑥 =

∑5
𝑚=1 𝐹𝑥𝑚 and 𝐹 (𝑖)

𝑥𝑦 =
∑5
𝑚=1 𝐹𝑦𝑚, and also the sum of the nodal moments at the centers of

all circles 𝑀 (𝑖)
𝑧 =

∑25
𝑚=1𝑀𝑧𝑚 were first determined at all increments of the applied deformation, where the superscript (𝑖) stands for

the increment number. Then, the stress components were calculated at every increment, such that the stresses at the 𝑖th increment
take the form:

𝜏(𝑖)𝑥𝑥 = 𝐹 (𝑖)
𝑥𝑥∕4𝑎𝑏

𝜏(𝑖)𝑦𝑦 = 𝐹 (𝑖)
𝑦𝑦 ∕4𝑎𝑏

𝜏(𝑖)𝑥𝑦 = 𝐹 (𝑖)
𝑥𝑦∕4𝑎𝑏

𝜏(𝑖)𝑦𝑥 = 𝐹 (𝑖)
𝑦𝑥∕4𝑎𝑏

(𝑖) (𝑖) 2

(A.1)
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Fig. A.7. Boundary conditions employed in the finite element simulations of the chiral metamaterial. The chiral metamaterial was deformed by (a-b) prescribed
displacements 𝑢𝑥𝑚 and 𝑢𝑦𝑚 and (c) prescribed spin 𝜃𝑧𝑚 at the centers of the rigid circles. In (a-b), 𝑢𝑥𝑚 and 𝑢𝑦𝑚 are the nodal displacements defined at the center
of the circle, where 𝑚 stands for the circle index. The displacements were applied at the circles to achieve uniform (a) dilation 𝛾1 = 𝑢𝑥,𝑥 + 𝑢𝑦,𝑦 and (b) rotation
𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥. The size of the arrow scales the nodal displacements prescribed at the center of each circle. Circles with dots at their centers were fixed along
𝑥− and 𝑦−directions, such that 𝑢𝑥𝑚 = 0 and 𝑢𝑦𝑚 = 0, while circles without prescribed displacements were allowed to move freely along 𝑥− and 𝑦−directions. The
spin 𝜃𝑧𝑚 at all circles was maintained fixed such that 𝜃𝑧𝑚 = 0 at all circles. In (c), the chiral metamaterial was deformed by uniform spin field such that a spin
𝜃𝑧𝑚 was applied at the centers of all circles, while the centers of the circles were fixed along 𝑥− and 𝑦−directions, such that 𝑢𝑥𝑚 = 0 and 𝑢𝑦𝑚 = 0.

Then, the internal energy density 𝑤 at the 𝑖th increment was calculated, as follows (see Eq. (32)):

𝑤(𝑖) = 1
2

(

𝜏(𝑖)𝑥𝑥𝑢
(𝑖)
𝑥,𝑥 + 𝜏

(𝑖)
𝑦𝑦𝑢

(𝑖)
𝑦,𝑦 + 𝜏

(𝑖)
𝑥𝑦𝑢

(𝑖)
𝑦,𝑥 + 𝜏

(𝑖)
𝑦𝑥𝑢

(𝑖)
𝑥,𝑦 + 𝑀̂ (𝑖)𝜃(𝑖)𝑧

)

(A.2)

where the deformations 𝑢(𝑖)𝑖,𝑗 and 𝜃(𝑖)𝑧 were calculated, after determining the average of the nodal displacements at the centers of the
circles of the top boundary layer 𝑢(𝑖)𝑥𝑦 =

∑5
𝑚=1 𝑢𝑥𝑚∕5 and 𝑢(𝑖)𝑦𝑦 =

∑5
𝑚=1 𝑢𝑦𝑚∕5, and at the centers of the circles of the right boundary

layer 𝑢(𝑖)𝑥𝑥 =
∑5
𝑚=1 𝑢𝑥𝑚∕5 and 𝑢(𝑖)𝑦𝑥 =

∑5
𝑚=1 𝑢𝑦𝑚∕5, along with the nodal spin 𝜃(𝑖)𝑧 =

∑25
𝑚=1 𝜃𝑧𝑚∕25 at the centers of all circles, as follows:

𝑢(𝑖)𝑥,𝑥 = 𝑢(𝑖)𝑥𝑥∕2𝑎
𝑢(𝑖)𝑦,𝑦 = 𝑢(𝑖)𝑦𝑦∕2𝑎
𝑢(𝑖)𝑥,𝑦 = 𝑢(𝑖)𝑥𝑦∕2𝑎
𝑢(𝑖)𝑦,𝑥 = 𝑢(𝑖)𝑦𝑥∕2𝑎

(A.3)

To verify the energy balance in Eq. (31) for the chiral metamaterial during the deformation cycle along with the accuracy of the
performed simulations, we carried out finite element simulations for each process of the deformation cycle separately and evaluated
the values of the various energy terms that ABAQUS uses to determine the energy balance of the entire chiral model, where only
two energy terms have been found non-zero through the deformation process, namely the internal energy d𝜓 and the external work
𝛿𝑊 , and thus the variation of the total energy function (i.e., 𝛿𝐸𝑡𝑜𝑡𝑎𝑙 = d𝜓 − 𝛿𝑊 ) through each deformation process was determined
by 𝐸(𝑖)

𝑡𝑜𝑡𝑎𝑙 ≅ 0 at all increments of the process. This verifies that each deformation process of the deformation cycle was carried out
satisfying the energy balance in Eq. (31), which indicates that the chiral solid is deformed without contributing external energy
gain/loss to the solid.

It follows from Eq. (A.2) that the internal energy density of the chiral metamaterial is zero at the end of the deformation cycle,
as the stresses and all displacements drop to zero when the chiral metamaterial recovers its original undeformed configuration at
the end of the cycle, and thus the net change in the internal, free energy of the chiral metamaterial over the deformation cycle is
zero (i.e., ∮𝜕𝛺 d𝜓 = 0). Nonetheless, while the energy balance in Eq. (31) has to be satisfied for each process of the deformation
cycle, mechanical work can still be developed when the chiral metamaterial undergoes and completes the closed deformation cycle.
The mechanical work equals the amount of work accumulated by the deformation of the chiral metamaterial through the cycle
(i.e., 𝑊 = ∮𝜕𝛺 𝛿𝑊 ≠ 0). The variation of the cumulative work per unit volume 𝑤𝑐 of the chiral metamaterial through the deformation
cycle was calculated, as follows:

𝑤(𝑖)
𝑐 =

∑𝑖
𝑛=1

[

𝜏(𝑛)𝑥𝑥
(

𝑢(𝑛)𝑥,𝑥 − 𝑢
(𝑛−1)
𝑥,𝑥

)

+ 𝜏(𝑛)𝑦𝑦
(

𝑢(𝑛)𝑦,𝑦 − 𝑢
(𝑛−1)
𝑦,𝑦

)

+ 𝜏(𝑛)𝑥𝑦
(

𝑢(𝑛)𝑦,𝑥 − 𝑢
(𝑛−1)
𝑦,𝑥

)

+ 𝜏(𝑛)𝑦𝑥
(

𝑢(𝑛)𝑥,𝑦 − 𝑢
(𝑛−1)
𝑥,𝑦

)

+ 𝑀̂ (𝑛)
(

𝜃(𝑛)𝑧 − 𝜃(𝑛−1)𝑧

)]

(A.4)

where 𝑤(𝑖)
𝑐 is the cumulative work per unit volume at the 𝑖th increment. As the deformation cycle was initiated from a zero stress

state, the mechanical work 𝑊 developed by deforming the chiral metamaterial through the closed deformation cycle was then
determined by the value of the cumulative work per unit volume at the end of the deformation cycle, such that 𝑊 = 𝑤(𝑁)

𝑐 , where
24

𝑁 = 40000 is the number of increments considered through the deformation cycle.
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A.2. Determination of the ligament stiffness

Because beams with curved portions exhibit different rigidities depending on the direction of the applied load, analytical
omputations of the rigidities and the equivalent stiffnesses of the ligaments of the chiral metamaterial could be challenging, and
herefore we adopted a numerical approach to determine the equivalent stiffnesses of the ligament 𝑘𝛼𝛽 shown in Eqs. (13) and

(15)–(17). Specifically, we carried out static finite element simulations of one ligament connecting two rigid circles (Fig. 2(c)) to
determine the equivalent stiffnesses 𝑘𝛼𝛽 . The one ligament-two circles structure shown in Fig. 2(c) is the minimal model that can be
used to determine the equivalent stiffnesses of the chiral element, as the four ligaments of the chiral element are identical, similarly
distributed around the central circle, and exhibit similar deformations (see Fig. 2(b)). This minimal structure was considered under
the different deformations shown in Fig. 3, where the circle (𝑖, 𝑗) was fixed, while the other circle (𝑖 + 1, 𝑗) was subjected to a
isplacement 𝑢𝑥 or 𝑢𝑦 or spin 𝜃𝑧 at its center. The forces 𝐹𝑥 and 𝐹𝑦 along with the moment 𝑀𝑧 at the center (𝑖 + 1, 𝑗) were then
etermined. Afterwards the equivalent stiffnesses of the ligament were determined by substituting the numerically obtained forces
nd moment into the following relations:

𝐹𝑥 = 𝑘𝑥𝑥𝑢𝑥 + 𝑘𝑥𝑦𝑢𝑦 − 2𝑘𝑥𝜃𝜃𝑧
𝐹𝑦 = 𝑘𝑦𝑥𝑢𝑥 + 𝑘𝑦𝑦𝑢𝑦 − 2𝑘𝑦𝜃𝜃𝑧
𝑀𝑧 = −𝑘𝜃𝑥𝑢𝑥 − 𝑘𝜃𝑦𝑢𝑦 + 2𝑘𝜃𝜃𝜃𝑧

(A.5)

The chiral element reveals directional nonreciprocity (Fig. 1(a)), as the equivalent stiffnesses change by changing the direction
f the applied deformation. For example, when the ligament was stretched with 𝑢𝑥 = +0.25 mm (while 𝑢𝑦 = 0 and 𝜃𝑧 = 0), the
orces 𝐹𝑥 = 21.55 kN and 𝐹𝑦 = 12.15 kN were developed, and thus, according to Eq. (A.5), the axial stiffness 𝑘𝑥𝑥 = 86.18 kN/mm
nd the coupling stiffness 𝑘𝑦𝑥 = 48.58 kN/mm were calculated, as shown in Table A.1. If the structure is reciprocal, we anticipate
he same forces are developed when the displacement is spatially inverted. However, the forces were obtained by 𝐹𝑥 = −10.30 kN
nd 𝐹𝑦 = −5.06 kN when the displacement was inverted to 𝑢𝑥 = −0.25 mm, and thus the stiffnesses 𝑘𝑥𝑥 and 𝑘𝑦𝑥 also changed to
ecome 𝑘𝑥𝑥 = 41.19 kN/mm and 𝑘𝑦𝑥 = 20.25 kN/mm, indicating directional nonreciprocity. A similar behavior was observed when
alculating the other stiffnesses before and after the inversion of the corresponding, applied deformation.

The chiral element also reveals Form I of chiral nonreciprocity (Figs. 1(b) and 1(c)), where the stiffness matrix of the chiral
lement was obtained non-symmetric (i.e., 𝑘𝛼𝛽 ≠ 𝑘𝛽𝛼). In reciprocal material systems, the symmetric stiffness matrix indicates that
he coupling stiffness is the same when the structure is deformed by either one of two coupled deformation fields. However, when
he chiral structure was deformed by 𝑢𝑥 = +0.25(−0.25) mm, the stiffness of the axial-bending coupling of the ligament was obtained
y 𝑘𝑦𝑥 = 48.58(20.25) kN/mm ( Table A.1), which was then changed to 𝑘𝑥𝑦 = 48.43(20.25) kN/mm when the chiral structure was
eformed by 𝑢𝑦 = +0.25(−0.25) mm, and this clearly indicates that the axial-bending coupling of the chiral structure is asymmetric
hen the structure is deformed by 𝑢𝑥 = +0.25 mm and 𝑢𝑦 = −0.25 mm, or by 𝑢𝑥 = −0.25 mm and 𝑢𝑦 = +0.25 mm. In general, the

hiral structure reveals asymmetry for the axial-bending coupling (𝑘𝑥𝑦 ≠ 𝑘𝑦𝑥) and the axial-rotation coupling (𝑘𝜃𝑥 ≠ 𝑘𝑥𝜃), while it
ives symmetric bending-rotation coupling (𝑘𝜃𝑦 ≅ 𝑘𝑦𝜃).

The stiffness can also change when the chiral element is deformed by two coupled deformation fields instantaneously. This can
e verified by comparing the forces developed in the chiral element when it is deformed by each one of the deformation fields to the
orces developed in the element when the two deformation fields are both applied instantaneously. For example, the chiral element
as considered under three loading cases in which the element is deformed by (1) 𝑢𝑥 = +0.25 mm only, (2) 𝑢𝑦 = −0.25 mm only,
nd by (3) both 𝑢𝑥 = +0.25 mm and 𝑢𝑦 = −0.25 mm, where the force 𝐹𝑥 developed in the element was determined for each of these
ases by 21.55, −5.06, and 9.43 kN, respectively. The axial stiffness 𝑘(1)𝑥𝑥 = 𝐹 (1)

𝑥 ∕𝑢𝑥 was then calculated for the first loading case by
(1)
𝑥𝑥 = 86.18 kN/mm. The stiffness 𝑘𝑥𝑥 can be then calculated for the third loading case by subtracting the contribution of the coupling
orce 𝐹 (2)

𝑥 from the total force 𝐹 (3)
𝑥 while calculating the stiffness such that 𝑘(3)𝑥𝑥 = (𝐹 (3)

𝑥 − 𝐹 (2)
𝑥 )∕𝑢𝑥 = (9.43 + 5.06)∕0.25 = 57.94 kN. It

s clear that the stiffness value is decreased by 28.24 kN/mm when changing the loading case from deforming the chiral element
ith only one deformation field to deforming it by two coupled deformation fields, which verifies Form II of chiral nonreciprocity

Fig. 1(d)).
In Table A.1, we give some of the numerically determined stiffnesses of the ligaments, illustrating the modulation of the stiffness

f the chiral element depending on the direction and type of the applied deformation.

.3. Determination of the chiral, nonreciprocal elastic moduli

Here, we show the analytical calculations of the chiral, nonreciprocal elastic moduli shown in Eq. (29) using the stiffnesses
alculated via the methodology shown in Appendix A.2. First, we determined the discrete equations of a chiral metamaterial with
× 4 chiral elements in terms of the applied displacements and spins at the centers of the circles, from which we determined the

ontinuum field equations, and then the elastic moduli were obtained in terms of the equivalent stiffnesses 𝑘𝛼𝛽 , as follows:

𝐵̂ + 𝜆1 = 5𝑘𝑥𝑥∕4𝑏, 𝐶̂ + 𝜆2 = 5𝑘𝑦𝑦∕4𝑏 = 5𝑘𝜃𝑦∕2𝑎𝑏 = 5𝑘𝑦𝜃∕2𝑎𝑏 = 5𝑘𝜃𝜃∕𝑎2𝑏
𝐴̂ = 5(𝑘𝑥𝑦 + 𝑘𝑦𝑥)∕8𝑏 = 5(𝑘𝑥𝜃 + 𝑘𝜃𝑥)∕4𝑎𝑏, 𝛽 = 5(𝑘𝑥𝑦 − 𝑘𝑦𝑥)∕8𝑏 = 5(𝑘𝑥𝜃 − 𝑘𝜃𝑥)∕4𝑎𝑏

(A.6)

hen, the numerically determined equivalent stiffnesses of the chiral element 𝑘𝛼𝛽 (from Appendix A.2) were substituted into
q. (A.6), which gave the elastic moduli values, as shown in Table A.2. It should be noted that the calculations of the elastic moduli
ere carried out while considering the changes of the equivalent stiffnesses depending on the direction of the applied deformation,
nd whether the chiral metamaterial is deformed by one deformation field or multiple deformation fields.
25
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Table A.1
Examples of numerically determined equivalent stiffnesses of the ligaments of a chiral metamaterial with 𝛼0 = 30◦,
𝑎 = 20 mm, 𝑏 = 30 mm, ℎ = 1.5 mm, 𝐸 = 70 GPa, and 𝜃0 = 60◦, where 𝑢𝑥 = ± 0.25 mm, 𝑢𝑦 = ± 0.25 mm, and
2𝜃𝑧 = ± 0.0125 rad are the applied deformation fields.
Equivalent stiffness Applied kinematical field Stiffness value

𝑘𝑥𝑥
(kN∕mm)

+𝑢𝑥 (−𝑢𝑥) [−𝑢𝑥 & 𝑢𝑦] {−𝑢𝑥 & + 𝜃𝑧}
[+𝑢𝑥 & −𝑢𝑦] (+𝑢𝑥 & + 𝜃𝑧)
[−𝑢𝑥 & +𝑢𝑦] (−𝑢𝑥 & − 𝜃𝑧)
[+𝑢𝑥 & +𝑢𝑦] (+𝑢𝑥 & − 𝜃𝑧)

86.18 (41.19) [41.19] {41.19}
[57.95] (71.90)
[69.33] (55.34)
[86.21] (86.37)

𝑘𝑥𝑦
(kN∕mm)

+𝑢𝑦(−𝑢𝑦) [−𝑢𝑥 & −𝑢𝑦] {+𝜃𝑧 & −𝑢𝑦}
[+𝑢𝑥 & −𝑢𝑦] (−𝜃𝑧 & −𝑢𝑦)
[−𝑢𝑥 & +𝑢𝑦] (+𝜃𝑧 & +𝑢𝑦)
[+𝑢𝑥 & +𝑢𝑦] (−𝜃𝑧 & +𝑢𝑦)

48.39 (20.25) [20.25] {20.25}
[48.46] (34.40)
[20.25] (34.28)
[48.44] (48.50)

𝑘𝑦𝑥
(kN∕mm)

+𝑢𝑥
(

−𝑢𝑥
)

[−𝑢𝑥 & −𝑢𝑦] {−𝑢𝑥 & + 𝜃𝑧}
[+𝑢𝑥 & −𝑢𝑦] (+𝑢𝑥 & + 𝜃𝑧)
[−𝑢𝑥 & +𝑢𝑦] (−𝑢𝑥 & − 𝜃𝑧)
[+𝑢𝑥 & +𝑢𝑦] (+𝑢𝑥 & − 𝜃𝑧)

48.58 (20.25) [20.25] {20.25}
[30.55] (39.46)
[38.61] (29.48)
[48.40] (48.58)

Table A.2
Values of the chiral, nonreciprocal elastic moduli of a chiral metamaterial with 𝛼0 = 30◦, 𝑎 = 20 mm, 𝑏 = 30 mm, 𝜃0 = 60◦, and 𝐸 = 70 GPa when it is used
through various deformation cycles.

Deformation cycle Cycle parameters Chiral, Nonreciprocal elastic moduli

𝐵̂ 𝐴̂ 𝐶̂ 𝜆1 𝜆2 𝛽

Dilation→Spin/Rotation

𝛾1 = −0.0125, 𝛾2 = −0.0125 1716 1431 1188 1174 −733.0 587.2
𝛾1 = −0.0125, 𝛾2 = 0.0125 1716 843.7 432.4 0 0 0
𝛾1 = 0.0125, 𝛾2 = 0.0125 3592 1434 432.4 −1178 840.4 −591.9
𝛾1 = 0.0125, 𝛾2 = −0.0125 3592 2022 1188 ≅ 0 ≅ 0 ≅ 0

To understand how the elastic moduli are calculated, let us consider the dilation–rotation cycle (Fig. 5), where in the first two
teps, dilation 𝛾1 = −0.0125 and rotation 𝛾2 = −0.0125 are consecutively applied, and then reversed in steps 3 and 4. For this
eformation cycle, the elastic moduli are calculated, as follows:

𝐵̂ = (5∕4𝑏)(𝑘𝑥𝑥|𝛾1=−0.0125,𝛾2=0) = 1716 MPa
𝐶̂ = (5∕4𝑏)(𝑘𝑦𝑦|𝛾1=0,𝛾2=−0.0125) = 1188 MPa

𝐴̂ = (5∕8𝑏)(𝑘𝑥𝑦|𝛾1=0,𝛾2=−0.0125 + 𝑘𝑦𝑥|𝛾1=−0.0125,𝛾2=0) = 1431 MPa
𝛽 = (5∕8𝑏)(𝑘𝑥𝑦|𝛾1=0,𝛾2=−0.0125 − 𝑘𝑦𝑥|𝛾1=−0.0125,𝛾2=0) = 587.2 MPa

𝜆1 = (5∕4𝑏)(𝑘𝑥𝑥|𝛾1=−0.0125,𝛾2=−0.0125 − 𝑘𝑥𝑥|𝛾1=−0.0125,𝛾2=0) = 1174 MPa
𝜆2 = (5∕4𝑏)(𝑘𝑦𝑦|𝛾1=−0.0125,𝛾2=−0.0125 − 𝑘𝑦𝑦|𝛾1=0,𝛾2=−0.0125) = −733.0 MPa

(A.7)

ppendix B. Mechanical work calculations

The chiral metamaterial can develop mechanical work when it undergoes quasistatic deformation cycles that involve deforming
t with two or more coupled deformation fields. The mechanical work developed by deforming the chiral metamaterial through

closed deformation cycle can be analytically calculated by determining the cumulative work as the deformation fields change
uring the cycle (Eqs. (34) and (35)). According to Eqs. (34) and (35), the mechanical work developed by deforming the chiral
etamaterial through the different deformation cycles shown in Fig. 5 can be determined analytically, as follows:

𝑊 = ∫ 𝛾10 (𝛿𝑤|𝛾2=0) + ∫ 𝛾20 (𝛿𝑤) + ∫ 0
𝛾1
(𝛿𝑤) + ∫ 0

𝛾2
(𝛿𝑤|𝛾1=0) (B.1)

ith 𝛿𝑤 as defined in Eq. (33). By calculating the integration, while observing that the moduli 𝜆1 and 𝜆2 are considered only during
processes 2 → 3 and 3 → 4, the mechanical work 𝑊 for these deformation cycles can be obtained in the form:

𝑊 = 1
4𝜆2𝛾

2
2 − 1

4𝜆1𝛾
2
1 + 𝛽𝛾1𝛾2 (B.2)

The mechanical work developed by deforming the chiral metamaterial can also be verified based on the chiral, nonreciprocal
lastic constitutive law (Eq. (29)). Consider a chiral metamaterial through a closed cycle of a sequence of dilation 𝛾1 and rotation 𝛾2
see Fig. 5), such that in Process 1 → 2, the chiral metamaterial is deformed by 𝛾1, which is followed by deforming the metamaterial
26

y 𝛾2 in Process 2 → 3. These two deformations are then reversed in Processes 3 → 4 and 4 → 1. First, the variations of the non-zero
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Fig. B.8. The chiral metamaterial is mechanically passive when used in spin-rotation cycles. (a) Representation of the spin-rotation cycle. (b-e) The numerical
and analytical computations of the cumulative work per unit volume of the chiral metamaterial when it undergoes a sequence of quasistatic spin 2𝜃𝑧 = ±0.0125
and rotation 𝛾2 = 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 = ±0.0125. The variations of the cumulative work per unit volume as the chiral metamaterial is deformed through the cycle were
determined using ABAQUS finite element simulations (solid curves) and analytically based on Eq. (29) (marks). The results are represented when the chiral
metamaterial was used through the same deformation sequence, while spatially inverting the spin and the rotation. Through these deformations cycles, the chiral
metamaterial is reciprocal, and thus it does not develop mechanical work.

stresses 𝜎𝛼 through the deformation cycle are calculated based on Eq. (29), as follows:

After Process 1 → 2 (𝛾1 is applied) ∶
𝜎1 = 𝐵̂𝛾1 & 𝜎2 = −

(

𝐴̂ − 𝛽
)

𝛾1
After Process 2 → 3 (𝛾2 is applied) ∶

𝜎1 =
(

𝐵̂ + 𝜆1
)

𝛾1 −
(

𝐴̂ + 𝛽
)

𝛾2 & 𝜎2 = −
(

𝐴̂ − 𝛽
)

𝛾1 +
(

𝐶̂ + 𝜆2
)

𝛾2
After Process 3 → 4 (𝛾1 is reversed) ∶

𝜎1 = −
(

𝐴̂ + 𝛽
)

𝛾2 & 𝜎2 = 𝐶̂𝛾2
After Process 4 → 1 (𝛾2 is reversed) ∶

𝜎1 = 0 & 𝜎2 = 0

(B.3)

Second, the work done on (or by) the chiral metamaterial during each of the four deformation processes is calculated by the area
under the stress 𝜎𝑖-deformation 𝛾𝑖 curve, i.e., ∫ 𝛿𝑤 = 1

2 ∫
(

𝜎𝑖𝛿𝛾𝑖
)

, as follows:

After Process 1 → 2 (𝛾1 is applied) ∶
𝑤1 =

1
2 ∫

𝛾1
0 𝜎1|𝛾2=0𝛿𝛾1 =

1
4 𝐵̂𝛾

2
1

After Process 2 → 3 (𝛾2 is applied) ∶
𝑤2 =

1
2 ∫

𝛾2
0 𝜎2𝛿𝛾2 = − 1

2

(

𝐴̂ − 𝛽
)

𝛾1𝛾2 +
1
4

(

𝐶̂ + 𝜆2
)

𝛾22
After Process 3 → 4 (𝛾1 is reversed) ∶

𝑤3 =
1
2 ∫

0
𝛾1
𝜎1𝛿𝛾1 = − 1

4

(

𝐵̂ + 𝜆1
)

𝛾21 + 1
2

(

𝐴̂ + 𝛽
)

𝛾2𝛾1
After Process 4 → 1 (𝛾2 is reversed) ∶

𝑤4 =
1
2 ∫

0
𝛾2
𝜎2|𝛾1=0𝛿𝛾2 = − 1

4 𝐶̂𝛾
2
2

(B.4)

Finally, the mechanical work 𝑊 is the value of the work accumulation over the deformation cycle, which can be calculated as the
sum of the work values after the different deformation processes, as follows:

𝑊 =
∑4
𝑖=1𝑤𝑖 =

1
4𝜆2𝛾

2
2 − 1

4𝜆1𝛾
2
1 + 𝛽𝛾1𝛾2 (B.5)

It follows from Eq. (B.5) that, whereas the mechanical work 𝑊 is non-zero when the chiral metamaterial is used in a closed
cycle of the coupled dilation 𝛾1 and rotation 𝛾2, there is a specific combination of the dilation and rotation at which this mechanical
work is zero, and this can be determined from Eq. (B.5) by 𝛾1∕𝛾2 = (2𝛽 ±

√

4𝛽2 + 𝜆1𝜆2)∕𝜆1.

It should be noted that, because the coupling between rotation 𝑢𝑥,𝑦 − 𝑢𝑦,𝑥 and spin 𝜃𝑧 of the chiral metamaterial is symmetric
(see Fig. 4), the chiral metamaterial develops no mechanical work when used in a closed cycle of a sequence of rotation and spin
deformations. We verified this analytically based on Eqs. (34) and (35) and numerically using finite element simulations, as the
mechanical work for the spin-rotation cycle is always zero, as shown in Fig. B.8.
27
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