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Electro-elastocapillary Rayleigh–plateau
instability in dielectric elastomer films†

Saman Seifia and Harold S. Park*b

We demonstrate, using both finite element simulations and a linear stability analysis, the emergence of

an electro-elastocapillary Rayleigh–plateau instability in dielectric elastomer (DE) films under 2D, plane

strain conditions. When subject to an electric field, the DEs exhibit a buckling instability for small elasto-

capillary numbers. For larger elastocapillary numbers, the DEs instead exhibit the Rayleigh–plateau

instability. The stability analysis demonstrates the critical effect of the electric field in causing the Rayleigh–

plateau instability, which cannot be induced solely by surface tension in DE films. Overall, this work demon-

strates the effects of geometry, boundary conditions, and multi-physical coupling on a new example of

Rayleigh–plateau instability in soft solids.

1 Introduction

The effects of surface tension on the behavior of fluids have
been investigated for many years. The canonical example is the
Rayleigh–plateau instability (RPI), in which a fluid breaks up
into smaller drops in order to minimize its surface area while
keeping the volume unchanged.1 More recently, significant
interest has developed in understanding the effects of surface
tension on solids, and in particular soft solids like gels and
elastomers2–4 through an effect known as elastocapillarity.
The reason why surface tension only impacts soft solids can
be gleaned through the elastocapillary length le = g/m, where g is
the surface tension and m is the solid shear modulus. While le is
negligible for crystalline solids, it can approach macroscopic
dimensions for soft solids with sufficiently small m, which has
resulted in many recent investigations of surface tension effects
on the deformation of soft solids.2–5

Recently, Mora et al.6 reported experimental observations of
surface tension-induced RPI in soft gels, in which the gels
exhibited capillary instabilities characterized by large, local
area constrictions along the length of the gel. Subsequently,
researchers have investigated various aspects of the RPI in
soft solids.6–10 An important unresolved question, which we
address here, is how the RPI in soft solids is impacted by non-
mechanical external perturbations. Such questions may be
relevant for soft solids like dielectric elastomers (DEs),11–13

which have been extensively studied in recent years due to
their potential as a soft and flexible actuation material when

subject to externally applied electric fields. While many of the
most interesting applications for DEs, such as soft, underwater
robots,14,15 tunable lenses,16 manipulating microfluidic flows17

and magnetic resonance imaging,18 involve operation of the DE
in fluidic environments, where elastocapillary effects due to the
presence of a fluid may be prominent,2,5 elastocapillary effects
can be felt by solids in the absence of a fluid, for example due to
vacuum, gas or an interface with another soft solid.

Here, we demonstrate using a combination of nonlinear
finite element (FE) methods19 and a rigorous linear stability
analysis20,21 that a DE film subjected to electro-elastocapillary
forces undergoes an instability transition from buckling to RPI.
Our analytic model and FE calculations show the transition
point between these two types of instabilities occurs at a critical
elastocapillary number of �gc = gc/mH C 2 and normalized

electric potential �Fc ¼ Fc

�
H

ffiffiffiffiffiffiffiffi
E=m

p
¼ 2; these expressions are

valid assuming that the DE film length L is much larger than its
thickness H.

The problem schematic and the aforementioned instability
transition are shown in Fig. 1. There, we consider a DE film that
is fixed at both ends. We consider 2D, plane strain conditions
for the DE film as the in-plane dimensions are typically much
larger than the thickness13 for DEs. The bottom of the film is
voltage-free, i.e. F = 0, while the top of the film is subject to
a time-dependent voltage F(t) which increases linearly with
time, while surface tension g acts on both the top and bottom
surfaces. The increase in voltage is sufficiently slow such that
the electrostatic loading process can be modeled analytically as
quasi-static. The aspect ratio of the DE film is L/H = 20, which is
modeled using standard bilinear 2D plane strain finite elements
which fully account for incompressibility of the DE.22 The FE
model used is dynamic, nonlinear, fully electromechanically
coupled, and was previously shown to accurately capture
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experimentally-observed23 surface tension effects on surface
instabilities like creasing and wrinkling of DEs.19

Fig. 1(b) demonstrates that at small elastocapillary numbers
g/mH, the DE film buckles once a critical voltage is reached. The
buckling occurs because the DE film is fixed at both ends,
which prevents both the elongation in the x1-direction and the
contraction in the thickness (x2)-direction that would otherwise
occur due to the applied voltage,24 leaving the DE in a state
of axial compression. Eventually, as the compressive force
increases due to increasing voltage, the film buckles as shown in
Fig. 1(b). In contrast, for larger elastocapillary numbers, buckling
is not observed, as shown in Fig. 1(c). Instead, a RPI-like instability
is observed.

2 Electro-elastocapillary buckling

We now present an analytic model of the electro-elastocapillary
buckling and RPI instabilities, which accounts for both surface
tension, as well as the electromechanical coupling in the DE
film due to the applied voltage. We first consider the voltage-
induced buckling by considering a DE film with a rectangular

cross section H � W subject to both electric field E ¼ E1 E2ð ÞT

and surface tension g. For the DE film shown in Fig. 1(a), the
modified buckling equation assuming quasistatic loading
while accounting for surface tension and electric fields can be
written as

YI
@4u2
@x14

þ P� Psð Þ@
2u2

@x12
¼ 0 (1)

where Y is the Young’s modulus, u2(x1) denotes the vertical
deflection at point x1, and Ps = 2gW is the axial force due to
surface tension, which depends upon the surface tension g and
the out of plane (z-direction) width W of the film.25,26 P is the
axial force that is generated by the application of an electric
field in the x2-direction (E1 = 0)

P = EE2
2A (2)

where A = HW is the cross sectional area. According to Euler
buckling theory, the critical load of axial buckling can be
found as

Pc ¼ Z
p2YI
L2
þ Ps (3)

Inserting E2 = �F/H for F the applied voltage on top of
the beam and H being the height, the critical voltage can be
found as

Fc ¼ H
m
E

� ��1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z
p2YH2

12L2m
þ 2

g
mH

s
(4)

where E is the dielectric constant. Normalizing the voltage by

H
ffiffiffiffiffiffiffiffi
m=E

p
and the surface tension by mH we obtain the relation-

ship between critical voltage �Fc and elastocapillary number
�g = g/mH for a film with both ends fixed (Z = 4) as

�Fc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2YH2

3L2m
þ 2�g

s
(5)

3 Electro-elastocapillary
Rayleigh–plateau instability
3.1 Governing equations and their incremental forms

However, as shown in Fig. 1, the instability mechanism changes
for elastocapillary numbers that are larger than �g 4 2 from
voltage-induced buckling to a voltage-induced RPI. We thus
performed a linear stability analysis of surface tension on the
electromechanical deformation of the DE film. The analysis
follows that previously performed,23,27 with the boundary con-
ditions being different in the present work. To do so, we note
that the total stress T due to both mechanical deformation and
electrical polarization of the DE is T = TM + TE. Assuming a
neo-Hookean material model, the mechanical and electrical
stresses can be written as

TM ¼ m
J
B � p1;

TE ¼ EE � E � E
2
jEj21;

(6)

where B = FFT is the left Cauchy–Green strain tensor, J = det(F)
and p is the hydrostatic pressure.

Stress in absence of body forces satisfies the equilibrium
equationr�T = 0. Assuming there is no free charge in the material,
Gauss’s law for an ideal linear DE, where electric displacement
related to electric field via D = EE, reads as

r�D = E(r�E) = 0 (7)

Consequently, we can obtain r�TE = 0, and as a result the
equilibrium equation reduces to

r�TM = 0 (8)

Because a linear stability analysis assumes small deforma-
tions in the DE film at instability, we next linearize the stress

Fig. 1 (a) Schematic with boundary conditions for a DE film subjected to
elastocapillary and electrical forces. (b and c) FE results showing different
modes of instability. (b) Buckling for �g = 0.5 where the critical voltage
reaches �Fc = 1.066. (c) RPI for �g = 5 where the critical voltage is ramped up
to �Fc = 2.03. D-VEC refers to the displacement magnitude.
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expressions in (6). The left Cauchy–Green strain tensor B for
infinitesimal strains then can be approximated as

B E 1 + 2e, (9)

where the strain tensor e ¼ 1

2
ruþrTuð Þ and u = (u1 u2)T is

the displacement vector. The perturbed expression of mecha-
nical stress for an incompressible neo-Hookean material ( J = 1)
then becomes

:
TM = m(r :u + rT :u) � :

p1 (10)

The perturbed electrical stress is27

:
TE = 2E

:
E # E � E(

:
E�E)1 (11)

where _E ¼ _E1
_E2

� �T
is the perturbed electric field vector. At

the onset of instability, the DE undergoes a small, symmetric
sinusoidal undulation dH on both the top and bottom surfaces
of the DE film. Consequently, one can obtain the electric field
expression by performing a Taylor expansion

F
H þ 2dH

¼ F
H
� 2

F
H

� 	
dH
H
þO dH2

� �
(12)

Therefore the perturbed electric field is
:
E2 = 2(F/H2)dH, and by

inserting it into (10) the perturbed electric stress for 2D plane-
strain conditions becomes

_TE ¼ 2

E
F2

H3
dH 0

0 �EF
2

H3
dH

0
BBB@

1
CCCA (13)

3.2 Linear stability analysis

By inserting the perturbed state of stress in (10) into the stress
equilibrium equation for the perturbed state in (8), that is
r� :TM = 0, and enforcing the incompressibility conditionr� :u = 0,
we can obtain the equilibrium equation at the perturbed state:

mr2 :u � r :p = 0 (14)

The boundary conditions on top of the beam are:

_T22 ¼ 2g _k; _T12 ¼ 0; at x2 ¼ H=2; (15)

where the first term is the film subjected to the Young–Laplace
boundary condition in which the mean curvature can be calcu-

lated as _k � 1

2

@2 _u2
@x12

. Due to symmetry of the DE film in the

thickness direction, only the upper half of the film is con-
sidered, and the symmetry boundary conditions at x2 = 0 can be
written as

_u2 ¼ 0;
@2 _u2
@x12

¼ 0; at x2 ¼ 0: (16)

The perturbed fields due to the incompressibility condition
r� :u = 0 are assumed to take the form of the stream function
c(x1, x2) such that

_u1 ¼
@c
@x2

; _u2 ¼ �
@c
@x1

: (17)

We assume a sinusoidal morphology on the top and bottom surfaces
of the film, which is characteristic of the RPI. Therefore, the stream
function and hydrostatic pressure takes the following forms:

c x1; x2ð Þ ¼ ~c x2ð Þ sin kx1ð Þ

_pðx; yÞ ¼ ~p x2ð Þ cos kx1ð Þ:
(18)

Inserting these relations into the governing equation in (14), we
obtain the following sets of equations

� mk2~c0 x2ð Þ þ m~c000 x2ð Þ þ k~p x2ð Þ ¼ 0;

� mk3~c x2ð Þ þ k~c00 x2ð Þ þ ~p0 x2ð Þ ¼ 0;
(19)

while first set of boundary conditions in (15) at x2 = H/2 becomes

2mk~c0ðH=2Þ þ gk3~cðH=2Þ þ ~pðH=2Þ � 2k
F2

H3
~cðH=2Þ ¼ 0;

~c00ðH=2Þ þ k2~cðH=2Þ ¼ 0;

(20)

and the second set in (16) at x2 = 0 becomes

~c(0) = ~c00(0) = 0 (21)

The solution to ~c and p̃ is

~c x2ð Þ ¼
k cosh kx2ð Þ 2C2kmþ C1x2ð Þ

2k2m

�
sinh kx2ð Þ km C2k

2x2 � C4x2 � 2C3

� �
þ C1

� �
2k2m

(22)

p̃(x2) = m(C4 � C2k2)sinh(kx) + C1cosh(kx) (23)

Inserting the expressions for p̃(x2) and ~c(x2) into the four
boundary conditions in (20) and (21), we obtain a set of four
linear algebraic equations for four unknowns:

A

C1

C2

C3

C4

0
BBBBBB@

1
CCCCCCA
¼ 0 (24)

where A is a 4� 4 matrix. The existence of a non-trivial solution
requires

det A ¼ 0 (25)

By solving the equation in (25), we can obtain expressions for
both the normalized voltage

�F2 ¼ HkeHk Hkð2� �gÞ þHk�g coshðHkÞ þ 2 sinhðHkÞð Þ
�1þ eHkð Þ2

(26)

and also the elastocapillary number �g:

�g ¼ 2�F2

H2k2
�
cosh 2 Hk

2

� 	
ðHkþ sinhðHkÞÞ

k sinh 2
Hk

2

� 	 (27)

where �F ¼ ðF=HÞ
ffiffiffiffiffiffiffiffi
E=m

p
and �g = g/mH is the elastocapillary number.
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3.3 Discussion

Having now obtained the normalized critical voltage �Fc for the
electromechanical buckling instability in eqn (5) and the electro-
elastocapillary RPI in eqn (26), where the lowest normalized
electric voltage in each curve gives the critical voltage (Fig. 3), we
plot both solutions in Fig. 2, along with FE simulation results for
different elastocapillary numbers �g. First, we note that the critical
voltage for buckling increases nonlinearly with increasing elasto-
capillary number. However, the critical voltage for the RPI is a
constant, i.e. �Fc = 2 (Fig. 3), therefore, for a critical elastocapillary
number of �gc C 2 (Fig. 2), the instability mechanism transitions
from buckling to RPI. As can be seen, the FE simulations capture
both the critical buckling and critical RPI voltages, along with
accurately capturing the elastocapillary number at which the
instability transition occurs.

There are three important factors that impact the electro-
elastocapillary instability transition from buckling to RPI: multi-
physical coupling, i.e. electroelasticity and elastocapillarity, the
geometry of the DE film, and the boundary conditions. We first
discuss the effect of the DE film geometry. To do so, we first note
that the total energy of the system can be written as

P = Em + Ee + Es (28)

where Em is the elastic energy, Ee is the electrical energy and Es

is the surface energy. The total surface energy of both surfaces
can be computed as

Es ¼ 2g
ðL
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ du2

dx1

� 	2
s

dx1 (29)

Expanding this energy for the onset of instability where the
surface undergoes small deformation, the surface energy func-
tional is approximated as

Es ’ 2Lgþ gk6L3~c x2ð Þ2

3
(30)

From eqn (30), one can see that the second term is always
positive, and therefore the minimum of Es is where k - 0. This
implies that in the absence of an electric field, i.e. F = 0 or Ee = 0,
the surface energy when the DE film is flat Es = 2Lg does not
decrease the total energy of the system, and therefore no elasto-
capillary or RPI will occur for plane-strain DE films, regardless of the
magnitude of the surface tension. This is of course different from
previous studies of RPI in cylindrical geometries of radius R0, where
a critical elastocapillary number of g = 6mR0 was obtained,6,10,28 and
demonstrates the impact of the DE geometry on the RPI.

As the above analysis demonstrates that the RPI cannot occur
for the plane-strain geometries that characterize DE films, we
now discuss the effect of multiphysical coupling through the
electric fields that are applied to actuate DEs. When no electric
fields are present, the minimum energy configuration of the DE
film is one in which it is flat. However, once an electric field is
applied to the DE film, the total energy decreases, because the
electrical energy contribution is

Ee ¼ �
ðH=2
�H=2

ðL
0

1

2
EjEj2dA (31)

Therefore, the decrease of the electrostatic potential energy of
the system from the initially flat state Ee = �ELF2/2H creates the
possibility of an electro-elastocapillary instability. For smaller
elastocapillary numbers (�go 2), the DE film shows the buckling
instability, which results in an increase in surface area along
the top and bottom surfaces due to the dominance of the elastic
energy over the surface energy. When �g 4 2, the elastocapillary
number is sufficiently large, which creates sufficient driving
force to prevent electromechanically-driven instability modes
like buckling that lead to surface area increases. This makes the
RPI mechanism a viable one, even in the presence of an applied
electric field.

While the electric field and geometry couple to alter the
critical elastocapillary number for RPI in DEs as compared to

Fig. 2 Critical voltage vs. elastocapillary number showing the transition
between buckling to RPI at �g = gc/mH = 2.

Fig. 3 The voltage for inducing RPI for a DE film as a function of elasto-
capillary number. The lowest electric potential which gives the critical value
for each curve is a constant �Fc = 2. Solid lines are analytic solution, symbols
are FE simulation results.
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previous studies of RPI in soft solids, we now examine the
question of the instability wavelength for the RPI in DEs. Based
on eqn (26), we plot the normalized voltage as a function of
wavenumber Hk in Fig. 3, where k = 2p/l and l being the
wavelength. We find the long-wavelength (k - 0) mode becomes
unstable first (the minimum of plots in Fig. 3) at �Fc = 2, which
occurs for all elastocapillary numbers, implying that the electro-
elastocapillary RPI in the DEs is an infinite wavelength instabi-
lity. This result is similar to that found previously in analyses of
the instability wavelength in RPIs in soft solids, where the only
driving force is elastocapillary.6,10,28

We note that in our FE simulations, because we ramped up
the voltage slowly to mimic quasistatic loading, we only observe
long wavelengths at instability, corresponding to Hk - 0 in
Fig. 3, due to the fact that the RPI occurs when �F reaches 2.
However, we did verify that, when constant voltage loadings
exceeding �F = 2 were chosen for various elastocapillary numbers,
we did observe smaller wavelengths for the RPI in line with the
analytic predictions shown in Fig. 3. Specifically, the wavelengths
obtained from the FE simulations are plotted against the analytic
solutions in Fig. 3, while examples of finite wavelength RPI
instabilities that were obtained for �F 4 �Fc are shown in Fig. 4.
As can be seen in Fig. 4, the wavelength of the RPI decreases with
increasing voltage for a constant elastocapillary number, matching
the analytic predictions in Fig. 3.

Finally, we note that the mechanical boundary conditions, or
the ways in which the DE film is constrained, play an important
role in determining the electro-elastocapillary instability that is
observed. For example, recent experiments23 and computational
studies19 considered DE films similar to the one in Fig. 1, though
with the bottom surface fixed in addition to both ends. By
considering surface tension effects on the top surface, and
applying a voltage difference similar to that shown in Fig. 1, an
interesting surface instability transition from creasing at low
elastocapillary numbers to longer wavelength wrinkling above a
critical elastocapillary number was observed. The constraint
at the bottom of the DE film thus prevents the RPI, which
requires instabilities on both the top and bottom surfaces, from
occurring.

We also note that the analytic solutions and FE simulations
performed in this work were for 2D, plane strain conditions,

which implies that there is no out of plane deformation.
Therefore, it is to be determined in future work whether the
conclusions drawn in this work are valid when the full 3D
picture is considered.

4 Conclusion

In conclusion, we have demonstrated that Rayleigh–plateau
instabilities can be induced in electroactive polymers like dielectric
elastomers under 2D plane strain conditions. The effect is driven
by the driving force to find different instability modes that reduce
the surface area, as compared to those that would otherwise occur
in the absence of surface tension. Our finite element simulations
were able to replicate our analytic models in predicting the
instability transition from buckling to Rayleigh–plateau at a critical
normalized voltage of �Fc = 2, and a critical elastocapillary number
of �gc C 2. Our results shed light on the effects of geometry and
multiphysical couplings on the Rayleigh–plateau instability in
soft solids, and the interesting physics observed in the electro-
elastocapillary mechanics of electroactive polymers.
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