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We present a new finite deformation, dynamic finite element model that incorporates surface tension to 

capture elastocapillary effects on the electromechanical deformation of dielectric elastomers. We demon- 

strate the significant effect that surface tension can have on the deformation of dielectric elastomers 

through three numerical examples: (1) surface tension effects on the deformation of single finite ele- 

ments with homogeneous boundary conditions; (2) surface tension effects on instabilities in constrained 

dielectric elastomer films, and (3) surface tension effects on bursting drops in solid dielectrics. Generally, 

we find that surface tension creates a barrier to instability nucleation. Specifically, we find in agreement 

with recent experimental studies of constrained dielectric elastomer films a transition in the surface in- 

stability mechanism depending on the elastocapillary length. The present results indicate that the pro- 

posed methodology may be beneficial in studying the electromechanical deformation and instabilities for 

dielectric elastomers in the presence of surface tension. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Dielectric elastomers (DEs) have attracted significant attention

in recent years as a soft and flexible actuation material ( Biddiss

and Chau, 2008; Brochu and Pei, 2010; Carpi et al., 2010 ). The

salient characteristic of DEs is that if sandwiched between two

compliant electrodes that apply voltage across its thickness, the

DE can exhibit both significant thinning and in-plane expansion,

where the in-plane expansion can often exceed several hundred

percent ( Keplinger et al., 2012 ). The ability to undergo such large

deformations has led to DEs being studied for both actuation-based

applications, including artificial muscles and flexible electronics,

and also for generation-based applications and energy harvesting

( Brochu and Pei, 2010; Carpi et al., 2010; Mirfakhrai et al., 2007 ). 

Detailed studies on the mechanics of DEs began about

15 years ago with the seminal experimental work of Pelrine

et al. (20 0 0) ; 1998 ). Since then, there have been many ex-

perimental ( Chiba et al., 2008; Fox and Goulbourne, 2008;

Keplinger et al., 2010; Kofod and Sommer-Larsen, 2005; Ko-

fod et al., 2003; Pei et al., 2004; Plante and Dubowsky,

20 06; 20 07a; 20 07b; Schlaak et al., 2005; Wang et al., 2012a;

2012b; 2011; Wissler and Mazza, 2007; Zhang et al., 2004 ),
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heoretical ( Dorfmann and Ogden, 20 05; 20 06; Goulbourne et al.,

0 05; McMeeking and Landis, 20 05; Patrick et al., 20 07; Plante and

ubowsky, 2007a; 2007b; Suo, 2010; Suo et al., 2008; Wissler and

azza, 2005 ), and recently a small number of computational stud-

es ( Buschel et al., 2013; Henann et al., 2013; Khan et al., 2013; Li

nd Landis, 2012; Park and Nguyen, 2013; Park et al., 2012; 2013;

u et al., 2007; Wissler and Mazza, 2005; Zhao and Suo, 2007;

hou et al., 2008 ) aimed that identifying the mechanisms that have

he largest impact on the nonlinear dynamical behavior and fail-

re mechanisms of DEs. A summary of recent developments on

lectromechanical instabilities in DEs has been given by Zhao and

ang (2014) . 

Concurrently, researchers have for many years studied the

orces exerted by fluids at rest upon solids, which are known as

urface tension, or elastocapillary forces. While the best-known ex-

mple of surface tension is likely that of deforming liquid droplets,

here has been interest in using it to deform solid structures, see

he reviews of Roman and Bico (2010) and Liu and Feng (2012) .

pecifically, there has recently been interest in using elastocapil-

ary forces to deform soft structures in controllable or unique ways,

ince for these systems the elastocapillary number, which is de-

ned as γ / μl , where γ is the surface tension, μ is the shear mod-

lus and l is a characteristic length, is close to unity, implying that

lastocapillary effects can be substantial for these soft materials. 

While elastocapillary effects have been extensively studied in

oft materials, its effect on soft materials like DEs that de-

orm when subject to an electric field, is a relatively unknown

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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henomenon. For example, Wang and Zhao (2013) performed in-

eresting experiments of electrostatically deforming a constrained

E in a liquid solution, and showed that the instability mecha-

ism of the surface could be tuned depending on the value of the

urface tension. Furthermore, Pineirua et al. (2010) showed how

lastocapillary origami could be developed by coupling surface ten-

ion with electric fields to deform a liquid droplet surrounded by a

hin sheet of PDMS. Overall, this discussion makes clear that there

ay be potential in using surface tension as an additional degree

f freedom to introduce new and interesting deformation mech-

nisms in electroactive polymers like DEs, and furthermore that

he computational tools needed to investigate such phenomena are

urrently lacking. 

Therefore, the objective of the present work is to present a fi-

ite element (FE) model for DEs accounting for the effects of sur-

ace tension, such that electro-elasto-capillary phenomena in DEs

an be computationally investigated. We pay particular interest

o those instances where surface tension couples to and impacts

nown electromechanical instabilities that dielectric elastomers are

nown to undergo, specifically snap-through instability ( Pelrine

t al., 20 0 0 ), surface creasing and wrinkling ( Wang et al., 2012b;

011; Wang and Zhao, 2013 ), and bursting drops in solid dielectrics

 Wang et al., 2012a ). 

. Background: nonlinear electromechanical field theory 

The numerical results we present in this work are based upon

 FE discretization of the electromechanical field theory proposed

y Suo and co-workers ( Suo, 2010; Suo et al., 2008 ). In this field

heory at mechanical equilibrium, the nominal stress S iJ satisfies

he following (weak) equation: 

 

V 

S iJ 
∂ξi 

∂X J 

d V = 

∫ 
V 

(
B i − ρ

∂ 2 x i 
∂t 2 

)
ξi d V + 

∫ 
A 

T i ξi d A, (1)

here ξ i is an arbitrary vector test function, B i is the body force

er unit reference volume V, ρ is the mass density of the material

nd T i is the force per unit area that is applied on the surface A in

he reference configuration. 

For the electrostatic problem, the nominal electric displacement
˜ 
 I satisfies the following (weak) equation: ∫ 

V 

˜ D I 
∂η

∂X I 

d V = 

∫ 
V 

qηd V + 

∫ 
A 

ωηd A, (2)

here η is an arbitrary scalar test function, q is the volumetric

harge density and ω is the surface charge density, both with re-

pect to the reference configuration. It can be seen that the strong

orm of the mechanical weak form in (1) is the momentum equa-

ion, while the strong form of the electrostatic weak form in (2) is

auss’s law. 

As the governing field equations in (1) and (2) are decoupled,

he electromechanical coupling occurs through the material laws.

he hyperelastic material law we adopt here has been utilized in

he literature to study the nonlinear deformations of electrostat-

cally actuated polymers; see the works of Vu et al. (2007) , and

hao and Suo (2007) . Due to the fact that the DE is a rubber-

ike polymer, phenomenological free energy expressions are typi-

ally used to model the deformation of the polymer chains. In the

resent work, we will utilize the form ( Vu et al., 2007; Zhao and

uo, 2007 ) 

 (C , ̃  E ) = μW 0 − 1 

2 

λ( ln J ) 2 − 2 μW 

′ 
0 (3) ln J − ε

2 

J C −1 
IJ 

˜ E I ̃  E J , (3)

here W 0 is the mechanical free energy density in the absence of

n electric field, ε is the permittivity, J = det (F ) , where F is the

ontinuum deformation gradient, C −1 
IJ 

are the components of the

nverse of the right Cauchy–Green tensor C , λ is the bulk modulus
nd μ is the shear modulus. The second and third terms in (3) are

sed to enforce material incompressibility by taking a large ratio

f the bulk to the shear modulus λ/ μ. 

We model the mechanical behavior of the DE using the Arruda–

oyce rubber hyperelastic function ( Arruda and Boyce, 1993 ),

here the mechanical free energy W 0 in (3) is approximated by

he following truncated series expansion: 

 0 (I 1 ) = 

1 

2 

(I 1 − 3) + 

1 

20 N 

(I 2 1 − 9) + 

11 

1050 N 

2 
(I 3 1 − 27) 

+ 

19 

70 0 0 N 

3 
(I 4 1 − 81) + 

519 

673750 N 

4 
(I 5 1 − 243) , (4) 

here N is a measure of the cross link density, I 1 is the trace of

 , and where the Arruda–Boyce model reduces to a neo-Hookean

odel if N → ∞ . We note that previous experimental studies of

issler and Mazza (2007) have validated the Arruda–Boyce model

s being accurate for modeling the large deformation of DEs. 

. Finite element formulation 

.1. Nonlinear, dynamic finite element model 

The FE model we use was previously developed by Park et al.

2012) . In that work, the corresponding author and collaborators

eveloped a nonlinear, dynamic FEM formulation of the govern-

ng nonlinear electromechanical field equations of Suo et al. (2008)

hat are summarized in (1) and (2) . By using a standard Galerkin

E approximation to both the mechanical displacement and electric

otential fields, and incorporating inertial effects in the mechanical

omentum equation, an implicit, coupled, monolithic nonlinear

ynamic FE formulation was obtained with the governing equa-

ions ( Park et al., 2012 ) 


a 


�

)
= −

(
M + β
t 2 K 

mm K 

me 

β
t 2 K 

em K 

ee 

)−1 (
R 

mech 

R 

elec 

)
(5) 

here 
a is the increment in mechanical acceleration, 
� is the

ncrement in electrostatic potential, β = 0 . 25 is the standard New-

ark time integrator parameter, R 

mech is the mechanical residual,

 

elec is the electrical residual, and the various stiffness matrices

 include the purely mechanical ( K 

mm ), mixed electromechanical

 K 

me = K 

em ), and purely electrostatic ( K 

ee ) contributions. Details

egarding the residual vectors and the various mechanical, elec-

romechanical and electrostatic stiffnesses can be found in previ-

us work ( Park et al., 2012 ). 

In the present work, volumetric locking due to the incompress-

ble material behavior was alleviated using the Q1P0 method of

imo et al. (1985) . While viscoelastic effects have previously been

ccounted for within the FE model ( Park and Nguyen, 2013 ), these

ffects are neglected in the present work such that the effects of

urface tension on electromechanical instabilities in DEs can be in-

estigated without other physical complications. 

.2. Surface tension 

The major computational contribution of this work is in adding

urface tension effects to the FE formulation of DEs previously de-

eloped by Park et al. (2012) , such that coupled electro-elasto-

apillary effects can be studied. We discuss the relevant technical

etails in this section. 

FE formulations of surface tension have been given by Saksono

nd Peric (2006a ) and Javili and Steinmann (2010) , amongst others.

e note that the recently published work of Henann and Bertoldi

2014) uses the model presented by Saksono and Peric (2006a ),

ith an incompressible hyperelastic material model for the de-

orming solid. In the present work, we utilize the dynamic formu-

ation of Saksono and Peric (2006b ), where the utility and impor-

ance of using inertia to capture, using FE, the electromechanical
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Fig. 1. The reference body B 0 and the deformed body B t at time t . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic of finite element nodal numbering consistent with surface ten- 

sion formulation given in Eqs. (10) and (11) . Nodes 1 and 2 are surface nodes. 
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instabilities that occur in DEs was shown in the previous works

of Park et al. (2012, 2013) and Park and Nguyen (2013) . We now

briefly describe the formulation, and the resulting electro-elasto-

capillary FE equations that we solve, while a schematic of the cur-

rent and reference configurations for the large deformation kine-

matics is shown in Fig. 1 . 

Using the Saksono and Peric (2006b ) model, we begin with the

force continuity at the solid–liquid interface, 

σn = −p ext n + 2 Hγ n (6)

where n is the unit normal, σ is the Cauchy stress, H is the mean

curvature, and p ext is an external pressure. The spatial (updated La-

grangian) form of the weak form of the momentum equation can

then be written as ∫ 
(σ : ∇w − ρ( b − a ) · w ) dv −

∫ 
t · w da −

∫ 
(−p ext n · w ) da 

+ 

∫ 
(γ∇ s · w ) da −

∫ 
(γ w · m ) ds = 0 (7)

where w is the virtual displacement, t is the traction, b is the body

force, ∇ s = (I − n ⊗ n ) ∇ is the surface gradient operator, ρ is the

density and a is the acceleration. In the present work, we neglect

the three-phase contact line, i.e. the integral in (7) over the line ds ,

for simplicity. 

The FE form of (7) can be obtained by making the usual

Galerkin approximation of both the displacements and virtual dis-

placements with the same shape functions, resulting in the (me-

chanical) residual R 

mech ( X ) 

R 

mech (X ) = M ̈X + F int − F ext + F sur f = 0 (8)

where the various terms in (8) take the following form for each

element e : 

M e = 

∫ 
ρN 

T N dv 

F int 
e = 

∫ 
B 

T σdv 

F ext 
e = 

∫ 
N 

T b dv + 

∫ 
N 

T t da 

F sur f 
e = 

∫ 
γ∇ s N da (9)

where N and B are the standard FE shape function and gradient,

respectively. As can be seen in (8) , the only non-standard term

compared to the standard discretization of the momentum equa-

tion arises in the surface force F surf , and the corresponding surface

stiffness K 

surf . 

Henann and Bertoldi (2014) analytically derived the surface

force F surf for a two-dimensional, 4-node bilinear quadrilateral
lement as 

 

sur f = −hγ

L e 

⎛ 

⎜ ⎜ ⎝ 

x 1 − x 2 

y 1 − y 2 

x 2 − x 1 

y 2 − y 1 

⎞ 

⎟ ⎟ ⎠ 

(10)

The surface stiffness K 

surf can be obtained through linearization

f the surface force F surf in (8) . This value for a 4-node bilinear

uadrilateral element in two-dimensions was also given analyti-

ally by Henann and Bertoldi (2014) as 

 

sur f = 

hγ

L e 

⎛ 

⎜ ⎜ ⎝ 

1 0 −1 0 

0 1 0 −1 

−1 0 1 0 

0 −1 0 1 

⎞ 

⎟ ⎟ ⎠ 

− hγ

L 3 e 

⎛ 

⎜ ⎜ ⎝ 

x 1 − x 2 

y 1 − y 2 

x 2 − x 1 

y 2 − y 1 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

x 1 − x 2 

y 1 − y 2 

x 2 − x 1 

y 2 − y 1 

⎞ 

⎟ ⎟ ⎠ 

T

(11)

here L e = 

√ 

(x 2 − x 1 ) 2 + (y 2 − y 1 ) 2 is the length of the FE face

ontaining nodes 1 and 2. The ordering of the FE nodes corre-

ponding to Eqs. (10) and (11) is shown in Fig. 2 . 

The final coupled electromechanical FE equations we solve,

hich include the surface tension terms, can be written as 


a 


�

)
= −

(
M + β
t 2 (K 

mm + K 

sur f ) K 

me 

β
t 2 K 

em K 

ee 

)−1 (
R 

mech 

R 

elec 

)
(12)

In comparing the new FE formulation including surface tension

n (12) to the previous FE equations of Park et al. (2012) in (5) ,

he only changes are the addition of the surface stiffness K 

surf to

he standard mechanical stiffness matrix K 

mm , as well as the sur-

ace contribution F surf to the mechanical residual R 

mech , as shown

reviously in (8) and (9) . 

. Numerical results 

All numerical simulations were performed using the open

ource simulation code ( Tahoe, 2016 ) using standard 4-node,

ilinear quadrilateral finite elements within a two-dimensional,

lane strain approximation. Before any application of electrostatic

oading via applied voltages, the surface tension is first applied

ncrementally until the desired value is reached. This incremental

pproach is necessary to avoid computational instabilities, as

reviously discussed by Javili and Steinmann (2010) . The surface

ension is applied incrementally by first defining a target value of

urface tension γ , after which we define the following function

or the current value of surface tension γ 0 : 

0 = min 

(
γ , 

γ t 

t 

)
(13)
0 
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Fig. 3. (a) Schematic of a single finite element with homogeneous boundary conditions; (b) deformed configuration with γ /μl = 0 ; (c) deformed configuration with γ /μl = 

10 . Note that Psi in (b) and (c) refers to voltage. 
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Fig. 4. Deformation of a single, homogeneously deforming finite element subject to 

voltage loading. 

4

 

Z  

c  

fl  

fi  

i  

s  

s  

γ  

i  

w  

i  

i

 

Z  

t  

i  

r  

f  
here t is the current time and t 0 is the total time allotted to

each the prescribed value for surface tension γ . Once the system

s in equilibrium with the surface tension, voltage is applied in a

onotonically increasing fashion. 

.1. Single element tests 

We first perform a suite of parametric benchmark studies to

ain a qualitative understanding of how surface tension impacts

he electromechanical behavior of DEs undergoing homogeneous

nd inhomogeneous deformation. A single 4-node bilinear quadri-

ateral element of unit length and height is used for these simula-

ions. For all numerical simulations, we chose the following consti-

utive parameters for the Arruda-Boyce model in Eq. (4) : μ = ε =
 , λ = 10 0 0 and N = 5 . 0 , while different values of the surface ten-

ion γ are chosen. 

Our first simulations were performed under conditions de-

igned to allow homogeneous deformation of the DE. The elec-

romechanical boundary conditions are as shown in Fig. 3 (a), with

ollers on the −x and −y surfaces, and voltage applied at the top

urface of the single square element. Surface tension is present on

he free surfaces. The resulting configurations for elastocapillary

umber values of γ /μl = 0 to γ /μl = 10 are shown in Fig. 3 (b)

nd (c). As can be seen, Fig. 3 (b) shows the well-known deformed

onfiguration where the DE contracts along the thickness direction

hile simultaneously elongating in response to the applied voltage,

hus exhibiting the well-known electromechanical snap through

nstability ( Park et al., 2012 ). However, the configuration in Fig. 3 (c)

s quite different when γ /μl = 10 . Instead of resulting in a rectan-

ular deformed configuration, the single element takes a deformed

onfiguration that is not much changed from the initial, square

onfiguration, which shows that the impact of surface tension is

o resist the deformation that would otherwise occur due to the

pplied voltage. 

We plot the resulting normalized voltage-charge curves in Fig. 4

or various values of γ / μl ranging from 0 to 125. We can see that

he effect of increasing surface tension is to significantly increase

he voltage that is required to induce the electromechanical insta-

ility. These results are qualitatively in agreement with previous

xperimental and theoretical studies on soft materials which found

hat the effect of surface tension is to create a barrier to instability

ucleation ( Chen et al., 2012; Mora et al., 2011 ). We also note that

 softening response is not observed in the voltage-charge plot due

he fact that a plane strain, and not plane stress ( Zhou et al., 2008 )

pproximation in two dimensions is utilized. 
.2. Surface creasing in constrained 2D strip 

Our next example is based on recent experiments by Wang and

hao (2013) , who studied the surface instability mechanisms in

onstrained DE films in which the top surface is immersed in a

uid. The fluid was varied such that the top surface of the DE

lm was subject to different values of surface tension. Interest-

ngly, upon application of a critical voltage, a transition in the

urface instability mechanism from creasing to wrinkling was ob-

erved, which was found to be dependent on elastocapillary length

/( μH ), where H is the film thickness. Along with the transition

n surface instability mechanism, the wavelength of the instability

as also found to change, from about λ = 1 . 5 H for the creasing

nstability to longer wavelengths, λ = 5 − 12 H when the elastocap-

llary length γ /( μH ) > 1. 

We performed FE simulations of the experiments of Wang and

hao (2013) , where the schematic of the problem geometry and

he relevant electro-elasto-capillary boundary conditions is shown

n Fig. 5 , i.e. the bottom surface of the film is fixed, the left and

ight sides are on rollers while a voltage is applied to the top sur-

ace, where the surface tension is also present. Most results shown
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Fig. 5. Schematic of the DE film with electro-elasto-capillary boundary conditions. 

Fig. 6. Computationally observed transition in the surface instability mechanism in DEs as a function of the elastocapillary length γ /( μH ), for a DE film of dimensions 80 ×
4. The variable D_Magnitude refers to the magnitude of the displacement field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Normalized critical electrical field as a function of elastocapillary length for 

a 160 × 4 DE film. 
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F

are for a DE film of dimensions 160 × 4, which was discretized

with square 4-node bilinear quadrilateral finite elements having an

edge length of unity. No initial defects or perturbation is required

for the observation of instability. Because the formulation is dy-

namic, there will intrinsically be small differences in deformation

at the surface such that the instability will nucleate without the

need for any pre-existing defects. 

We show in Fig. 6 (a) the difference in surface instability mech-

anism depending on the elastocapillary length. As can be seen,

when the elastocapillary length is small (i.e. γ /μH = 0 . 5 ), the sur-

face instability mechanism is that of creasing, or localized folds, as

previously observed both experimentally ( Wang et al., 2011 ), and

computationally ( Park et al., 2013 ). As the elastocapillary length

increases to become similar to the film height, the surface insta-

bility mechanism changes to wrinkling, as shown in Fig. 6 (b). The

change in instability mechanism is characterized by a significantly

larger instability wavelength as compared to the creasing instabil-

ity in Fig. 6 (a). Furthermore, rather than abrupt, localized folds as

in the creasing instability in Fig. 6 (a), the surface exhibits a more

gradual and undulating pattern as seen in Fig. 6 (b). 

This instability transition was also characterized experimentally

by plotting the normalized electric field E c / 
√ 

μ/ε as a function of

the elastocapillary length, as shown in Fig. 7 , where E c is the value

of the electric field when the instability nucleates. The analytic

solutions for the critical electric fields to nucleate wrinkles and

creases were developed by Wang and Zhao (2013) , and are writ-

ten as: 

E c crease ≈ 1 . 03 

√ 

μ

ε
+ 1 . 88 

√ 

γ

Hε
(14)

E c wrinkle ≈ 2 . 49 

√ 

μ

ε
+ 0 . 46 

√ 

γ

Hε
(15)

As seen in Fig. 7 , the FE model is able to capture the general

trends, including the transition in the value of the critical elec-
ric field E c predicted theoretically. We note that while the ana-

ytic solution was derived for an incompressible neo-Hookean ma-

erial, we have used an incompressible Arruda–Boyce model in the

resent work. We did verify that the usage of a neo-Hookean ma-

erial did not alter the values or trends in the critical electric field

r wavelength shown in Figs. 7 and 8 . 

The FE prediction for the critical electric field is generally larger

han the analytic theory, which is expected given that while a

ocking-resistant Q1P0 formulation was used (Simo et al. 1985) , the

E-discretized structure is still stiffer than the continuum. 
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Fig. 8. Normalized instability wavelength as a function of elastocapillary length for 

a 160 × 4 DE film. 
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Fig. 9. Computational model for bursting drop in dielectric elastomer. 
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We also calculated the normalized instability wavelength λ/ H

s a function of the elastocapillary length as shown in Fig. 8 . In

hat figure, the wrinkling wavelength as a function of elastocapil-

ary number is given by 

εE 2 

μ
= 2 Hk 

1 + 2 e 2 Hk + e 4 Hk + 4 e 2 Hk H 

2 k 2 

−1 + e 4 hk − 4 e 2 Hk H k 
+ ( H k ) 

2 γ

μH 

(16) 

The creasing wavelength is fixed as λcrease = 1 . 5 H, which was

reviously obtained by Wang and Zhao (2013) . 
Fig. 10. Representative snapshots of bursting drop evolution in constrained D
For elastocapillary numbers γ /( μH ) < 1, we find the normal-

zed wavelength λ/ H to be close to the value of 1.5 predicted

heoretically Wang and Zhao (2013) . For larger elastocapillary

umbers, i.e. γ /( μH ) > 1, where wrinkling is observed, a dramatic

ncrease in normalized instability wavelength λ/ H is observed.

hile our FE simulations capture the instability wavelength tran-

ition, the predicted wavelength after the transition to wrinkling

ccurs is smaller than the analytic theory. 

This discrepancy was also observed in the experimental stud-

es of Wang and Zhao (2013) . In that work, like the current FE

odels, the critical electric fields for creasing and wrinkling as in

ig. 7 were in better agreement with the analytic theory than the

nstability wavelength. Specifically, the experiments also found a

maller instability wavelength in the transition region from creas-

ng to wrinkling than the analytic solution. The FE predictions
E film. D_Magnitude indicates the magnitude of the displacement field. 
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Fig. 11. Snapshot of bursting drop geometry taken at same time for different values 

of surface tension γ . 
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do fall within the bounds observed experimentally by Wang and

Zhao (2013) , though at the lower end of the observed wavelengths.

This is likely due to differences in how the instability wavelength

was calculated in our plane strain 2D FE simulations as compared

to the 3D experimental studies. In particular, there is larger spa-

tial variation in the wavelengths observed in the 3D experimental

structure, whereas the 2D plane strain approximation results in a

constant instability wavelength through the thickness of the film,

and so we expect and find that the FE predictions fall towards the

lower end of the experimental values. 

4.3. Bursting drop in a solid dielectric 

Our final numerical example is a computational study of the ex-

periments of Wang et al. (2012a ). The experimental configuration

is shown in Fig. 9 . The problem is one of a dielectric film with
Fig. 12. Position of bursting drop tip as a function of applied electric field E top , 

where R 0 is the initial radius of the drop, and b is the long axis of the bursting 

drop. 

F

t

 small hole containing a conductive liquid, for example NaCl so-

ution. All edges of the film are constrained mechanically, and a

oltage differential � is applied across the film. The novel experi-

ental finding was the first observation of instabilities of drops in

olids, in which the drop in the center of the film begins to elon-

ate in a crack-like fashion towards the boundaries at which the

oltage is applied. While viscoelastic effects on the bursting drop

nstability were previously studied by Park and Nguyen (2013) ,

hat has not been investigated, either experimentally or theoreti-

ally, is the effect of changing the conductive fluid within the hole.

e account for the effect of different conductive fluids by changing

he surface tension around the hole perimeter, as shown schemat-

cally in Fig. 9 ; the fluid itself is not explicitly modeled in these

imulations. 

The 2D plane strain model in Fig. 9 had dimensions of 20 by

0, with the radius of the hole being 2. The geometry was dis-

retized using 4-node bilinear quadrilateral finite elements with a

esh spacing of 0.25, for a total number of 6271 elements and

456 nodes. 

The electromechanical instability is shown in Fig. (10 ). There, it

s seen that as the applied voltage increases, the circular drop be-

ins to change shape, and then as shown in Fig. 10 (b)–(d), begins

o elongate in the direction of the applied voltage, where the elon-

ation resembles crack-like propagation. 

We quantify the effects of surface tension on the nature of the

ursting drop. We show in Fig. 11 three snapshots, overlaid on top

f each other, of the bursting drop geometry taken at the same

ime for different values of surface tension γ . As can be seen, the

rop has elongated the most for the case without surface tension,

.e. γ = 0 , as compared to its initial, circular shape. As the surface

ension increases, the bursting drop elongation becomes progres-

ively more delayed, which again shows that surface tension acts

s a barrier to instability nucleation in electroactive polymers. We

lso note that the slightly asymmetric direction of bursting drop

longation is due to the fact that bursting drop follows the con-

ours of the FE mesh, which is slightly asymmetric with respect to

he hole. 

It is also of interest to quantify the position of the bursting

rop tip as a function of applied electric field, which is shown

n Fig. 12 . As can be seen, the nucleation for larger values of sur-

ace tension is delayed, and thus occurs at larger values of applied
ig. 13. Comparison of 2D and constrained 3D results for inhomogeneous deforma- 

ion of a single finite element. 
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lectric field E top . Once the nucleation occurs, and the bursting

rop begins to elongate towards the applied electric field, it ap-

ears as though the surface tension does not have a significant

mpact on the elongation rate of the bursting drop tip, which is in

ontrast to the effect that viscoelasticity was previously observed

o have ( Park and Nguyen, 2013 ). This is likely because viscoelas-

icity impacts the stiffness of the entire DE geometry, whereas the

urface tension creates a nucleation barrier only at the bursting

rop tip. 

. Conclusions 

We have presented a new dynamic, finite deformation finite

lement model of dielectric elastomers that incorporates surface

ension to capture elastocapillary effects on the electromechanical

eformation. The simulations demonstrate that increasing surface

ension, or equivalently the elastocapillary number, results in an

ncrease in the critical voltage or electric field needed to nucleate

n electromechanical instability in the dielectric elastomer. We also

emonstrated a transition in surface instability mechanism from

reasing to wrinkling in constrained dielectric elastomer films by

ncreasing the elastocapillary number. The present results indicate

hat the proposed methodology may be beneficial in studying the

lectromechanical deformation and instabilities for dielectric elas-

omers in the presence of surface tension. 
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ppendix 

We show here verification of the 2D Q1P0 formulation in alle-

iating volumetric locking. To do so, we compare it to results ob-

ained using a single 8-node hexahedral element with the previ-

usly published Q1P0 formulation of Park et al. (2013) . The 2D re-

ults were obtained using the 2D version of the Q1P0 formulation

f Simo et al. (1985) ; the boundary conditions on the single 4-node

uadrilateral 2D finite element that is mechanically fixed on its

ottom surface. For the 3D element, in addition to having its bot-

om surface completely constrained, all z -displacements were set

o zero to mimic a 2D plane strain problem. The results are shown

n Fig. 13 . As can be seen, the 2D and constrained 3D formulations

ive quite similar results, validating the present 2D formulation. 
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